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Abstract
We study the problem of learning-based attacks in linear systems, where the communication chan-
nel between the controller and the plant can be hijacked by a malicious attacker. We assume the
attacker learns the dynamics of the system from observations, then overrides the controller’s actua-
tion signal, while mimicking legitimate operation by providing fictitious feedback about the sensor
readings to the controller. On the other hand, the controller is on a lookout to detect the presence of
the attacker and tries to enhance the detection performance by carefully crafting its control signals.
We study the trade-offs between the information acquired by the attacker from observations, the
detection capabilities of the controller, and the control cost. Specifically, we provide tight upper
and lower bounds on the expected ε-deception time, namely the time required by the controller to
make a decision regarding the presence of an attacker with confidence at least (1− ε log(1/ε)). We
then show a probabilistic lower bound on the time that must be spent by the attacker learning the
system, in order for the controller to have a given expected ε-deception time. We show that this
bound is also order optimal, in the sense that if the attacker satisfies it, then there exists a learning
algorithm with the given order expected deception time. Finally, we show a lower bound on the
expected energy expenditure required to guarantee detection with confidence at least 1−ε log(1/ε).
Keywords: Data poisoning attack, Man in the middle attack, Cyber physical system

1. Introduction

Attacks directed to Cyber-Physical Systems (CPS) can have catastrophic consequences ranging
from hampering the economy through financial scams, to possible losses of human lives through
hijacking autonomous vehicles and drones, see Pasqualetti et al. (2013); Shoukry et al. (2018);
Hoehn and Zhang (2016). In this framework, two important problems arise: understanding of the
regime where the system can be attacked, and designing ways to mitigate these attacks and render
the system secure, see Ma et al. (2019); Zhang et al. (2020b); Jun et al. (2018); Zhan et al. (2020);
Chen and Zhu (2019); Vemprala and Kapoor (2020); Ferdowsi and Saad (2018); Mao et al. (2020);
Khojasteh et al. (2019, 2021); Rangi et al. (2021). Techniques developed to secure CPS include
watermarking, moving target and baiting, and typically require either a loss of performance, or
∗ indicates equal contribution.
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additional resources available at the controller, see Satchidanandan and Kumar (2017); Mo et al.
(2015); Kanellopoulos and Vamvoudakis (2019); Flamholz et al. (2019).

In this paper, we focus on the former aspect of the problem, namely understanding the regime
under which the system can be attacked. We focus on linear plants and on an important and widely
used class of attacks based on the “man-in-the-middle" (MITM) technique. In this case, the attacker
takes over the physical plant’s control and feedback signals, and acts as a malicious controller for
the plant and fictitious plant for the controller. By doing so, it overrides the control signals with
malicious inputs aimed at destroying the plant; and it overrides the feedback signals to the controller,
trying to mimic the safe and legitimate operation of the system. In learning based MITM attack, we
assume that the attacker has full access to both sensor and control signals, but the plant dynamics
are unknown to the attacker. Thus, the attacker needs to learn about the plant in order to being able
to generate the fictitious signals to the controller that allow the attacker to remain undetected for
the time needed to cause harm. On the other hand, the controller has perfect (or nearly perfect)
knowledge of the system dynamics and is actively looking out for an anomalous behaviour in the
feedback signals from the plant. This assumed information pattern is justified, since the controller is
typically tuned in much longer than the attacker, and has knowledge of the system dynamics to a far
greater precision than the attacker. Following the detection of the attacker, the controller can shut
the plant down, or switch to a “safe” mode where the system is secured using additional resources,
and the attacker is prevented from causing additional "harm" to the plant, see Dibaji et al. (2019);
Weerakkody et al. (2019); Teixeira et al. (2015); Hashemi and Ruths (2020).

We consider a learning-based MITM attack that evolves in two phases: exploration and ex-
ploitation. In the exploration phase, the attacker observes the plant state and control inputs, and
learns the plant dynamics. In the exploitation phase, the attacker hijacks the plant, and utilizes the
learned estimate to feed the fictitious feedback signals to the controller. During this phase, the at-
tacker may also refine its estimate by continuing to learn. Within this context, our results are as
follows: first, we provide a lower bound on the expected ε-deception time, namely the time re-
quired by the controller to make a decision regarding the presence of an attacker with confidence at
least 1 − ε log(1/ε). This bound is expressed in terms of the parameters of the attacker’s learning
algorithm and the controller’s strategy. Second, we show that there exists a learning-based attack
and a detection strategy such that a matching upper bound on the expected ε-deception time is ob-
tained. We then show that for a wide range of learning algorithms, if the expected ε-deception time
is at least of duration D, then the duration of the exploration phase of the attacker must be at least
Ω(D/ log(1/ε)), as ε → 0. We establish that this bound is also order-optimal since there exists a
learning algorithm such that if the duration of the exploration phase is O(D/ log(1/ε)) as ε → 0,
then the expected ε-deception time is at least D. Finally, we show that if the controller wants to
detect the attacker in at most D duration with confidence at least 1 − ε log(1/ε), then the expected
energy expenditure on the control signal must be at least of order Ω(D/ log(1/ε)), as ε→ 0.

All proofs are available at Rangi et al. (2020b).

2. Related Work

There is a wide range of recent research on learning-based control for linear systems Dean et al.
(2019); Sarkar and Rakhlin (2019); Berkenkamp et al. (2017); Fisac et al. (2018); Khojasteh et al.
(2020); Vrabie et al. (2009); Jiang and Jiang (2012); Cheng et al. (2020); Fan et al. (2020); Lederer
et al. (2019); Buisson-Fenet et al. (2020). In these works, learning algorithms are proposed to
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design controllers in the presence of uncertainty. In contrast, in our setting we assume that the
controller has full knowledge of the system dynamics, while the attacker may take advantage of
these algorithms. Thus, our focus is not on the optimal control design given the available data, but
rather on the trade-offs between the attacker’s learning capability, the controller’s detection strategy,
and the control cost.

The MITM attack has been extensively studied in control systems for two special cases, namely,
the replay attack and the statistical duplicate attack. The detection of replay attacks has been studied
in Mo et al. (2014, 2015); Miao et al. (2013), and ways to mitigate these attacks have been studied
in Zhu and Martínez (2014). Likewise, the ways to detect and mitigate statistical duplicate attacks
has been studied in Satchidanandan and Kumar (2017); Smith (2015); Porter et al. (2020). These
works do not consider learning-enabled attackers, and analyze the performance of the controller for
only a specific detection strategy. In contrast, we investigate learning-enabled attacks, and present
trade-offs between the attacker’s learning capability through observations, the controller detection
strategy, and the control cost. Learning based attacks have been recently considered in Khojasteh
et al. (2019, 2021); Ziemann and Sandberg (2020). In Khojasteh et al. (2019, 2021), a variance
based detection strategy has been investigated to present bounds on the probabilities of detection
(or false alarm) of the attacker. In Ziemann and Sandberg (2020), an optimization-based controller
is proposed that has the additional capability of injecting noise to interfere with the learning process
of the attacker. Here, we consider a wider class of learning-based attacks and detection strategies,
and provide tight trade-offs for these attacks.

Multiple variants of MITM attacks are studied in Reinforcement Learning (RL). In Rakhsha
et al. (2020), the work studies the MITM attacks under the assumption that the attacker has perfect
knowledge of the underlying MDP. The results are further extended to the setting where attacker
has no knowledge of the underlying MDP Rakhsha et al. (2021). This is analogues to studying
learning based attacks in RL where the attacker eavesdrops on the actions performed by the learner
and manipulates the feedback from the environment. In Zhang et al. (2020a), the work studies the
feasibility of MITM attack under the constraint on the amount of contamination introduced by the
attacker in the feedback signal. The relationship between the problem of designing optimal MITM
attack in RL and the problem of designing optimal control is discussed in Zhu (2018). Finally,
the learning based MITM attacks are also an active area of research in the Multi-Armed Bandits
(MAB), see Jun et al. (2018); Ma et al. (2018); Bogunovic et al. (2021); Rangi et al. (2021). In the
same spirit of our work, these works study the feasibility of the attacks, and provide bounds on the
amount of contamination needed by the attacker to achieve its objective. However, these works do
not consider the possibility of the detection of the attacker. In this work, we focus on understanding
the regime where the system can be attacked without the detection of the attacker.

3. Problem Setup

We consider the networked control system depicted in Fig. 1(a) and Fig. 1(b), where the plant dy-
namics are described by a discrete-time and linear time-invariant (LTI) system, namely at time
k ∈ N, we have

Xk+1 = AXk + Uk +Wk, (1)

where Xk, Uk, Wk are vectors of dimension M × 1 representing the plant state, control input, and
plant disturbance respectively, and A is a matrix of dimension M × M , representing the open-

3



LEARNING BASED ATTACKS IN CYBER PHYSICAL SYSTEMS

(a) Exploration Phase (b) Exploitation Phase

Figure 1: System model during the two attack phases.

loop gain of the plant. At time k, the controller observes the feedback signal Yk and generates a
control signal Uk as a function of Y1:k = {Y1, . . . , Yk}. The initial state X0 is known to both the
controller and the attacker, and is independent of the disturbance sequence {Wk}∞k=1, where Wk is
i.i.d. Gaussian noiseN (0, σ2IM ) with PDF known to both the parties, and IM is the identity matrix
of dimension M ×M . Our results can also be extended to the scenario where the PDF of the noise
known to the attacker is different from the actual PDF of the noise (or PDF known to the controller).
With a slight loss of generality, we assume that U0 = W0 = 0 for analysis.

The controller attempts to detect the presence of the attacker based on the observations Y1:k.
When the controller detects an attack, it shuts the system down and prevents the attacker from
causing further “damage” to the plant. The controller is aware of the plant dynamics in (1), and
knows the gain A. This is justified because one can assume that the controller is tuned to the plant
for a long duration and thus has knowledge ofA to a great precision. On the other hand, the attacker
only knows the form of the state evolution equation (1), but does not know the gain matrix A.

4. Learning based Attacks

We consider learning based attacks that evolve in two phases.
Phase 1: Exploration. Let L be the duration of the exploration phase. For all k ≤ L, as

illustrated in Fig. 1(a), the attacker passively eavesdrops on the control input Uk and the plant state
Yk = Xk with the objective of learning the open loop gain of the plant. We let Âk be the attacker’s
estimate of A at time step k. The duration L can be considered as the cost incurred by the attacker,
since its actions are limited to eavesdropping during this phase.

Phase 2: Exploitation. The exploration phase is followed by the exploitation phase. For all
k ≥ L + 1, as illustrated in Fig. 1(b), the attacker hijacks the system and feeds a malicious control
signal Ũk to the plant in order to destroy the plant. Additionally, the attacker may continue to learn
about A, and utilizes its estimate Âk to design a fictitious feedback signal Yk = Vk in Fig. 1(b) to
deceive the controller, namely

Vk+1 = ÂkVk + Uk + W̃k, (2)

where for all k ≥ L + 1, W̃k are i.i.d. with fW̃ = fW = N (0, σ2IM ) . Let R denote an attack
strategy whose feedback signal satisfies (2). Thus, for all L > 0, our class of learning based attacks

4



LEARNING BASED ATTACKS IN CYBER PHYSICAL SYSTEMS

is

A(L) = {R : for all k ≤ L, Yk = Xk and for all k ≥ L+ 1, Yk = Vk}. (3)

Note that in the class A(L), the learning of A may or may not continue during the exploitation
phase. Additionally, the attacker may use different learning algorithms in the two phases.

If the attacker learns A perfectly, i.e. Âk = A, then (2) will perfectly mimic the plant behavior,
making it impossible for the controller to detect the attacker. Otherwise, the controller can attempt
to detect the presence of the attacker by testing for statistical deviations from the typical behavior
in (1). The following example illustrates this point.

Example 1 Let R∗ ∈ A(L) be an attack whose learning is only limited to the exploration phase,
namely Âk = ÂL for all k ≥ L+ 1. Also, let ‖ · ‖op be the operator norm induced by the Euclidean
norm ‖ · ‖2 when applied to a matrix. In the exploration phase there is no interference from the
attacker and for all k ≤ L, the observation Yk = Xk satisfies

Yk+1 −AYk − Uk = Wk ∼ i.i.d. fW . (4)

In the exploitation phase, for all k ≥ L+ 1, the controller observation Yk = Vk satisfies

Vk+1 −AVk − Uk = Vk+1 −AVk + ÂLVk − ÂLVk − Uk = W̃k +
(
ÂL −A

)
Vk, (5)

where (5) follows from (4). Since W̃k and Wk have the same distribution and ‖Ax‖2 ≤ ‖A‖op‖x‖2
holds, the controller can test the statistical deviation of (4) from (5). In this case, the detection of
the attack is controlled by two factors: the estimation error ‖ÂL−A‖op and the fictitious signal Vk.

At the controller’s side, the detection becomes easier when the error ‖ÂL − A‖op increases.
Thus, at the attacker’s side it is desirable to reduce the error ‖ÂL − A‖op. This can be done by
increasing the duration L, and incurring an additional learning cost.

The detection is also easier if the energy of the fictitious signal Vk is large. Since Vk is a function
of the control signal Uk−1, it follows that the energy spent by the controller can help in the detection
of the attacker.

We then conclude that the probability of successful detection (or the time required to detect the
attacker with a given confidence) should reveal a trade-off between the duration L of the exploration
phase (or the estimation error ‖ÂL−A‖op), and the energy of the fictitious signal (or of the control
signal). In this paper we quantify both upper bound and lower bound on this trade-off.

4.1. Performance Measures

Definition 1 The decision time τ is the time at which the controller makes a decision regarding the
presence or absence of the attacker.

Definition 2 The probability of deception is the probability of the attacker deceiving the controller
and remaining undetected at the decision time τ , namely P τDec , P(Θ̂τ = 0|Θτ = 1), where Θ̂τ

denotes the decision of the controller at the decision time τ , and the hijack indicator Θk at time k is

Θk ,

{
0, ∀j ≤ k : Yj = Xj ;

1, otherwise.
(6)

Likewise, the probability of false alarm is the probability of detecting the attacker when it is not
present at the decision time τ , namely P τFA , P(Θ̂τ = 1|Θτ = 0).
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In the class A(L) in (3), for all k ≤ L, we have that Θk = 0 (exploration phase); and for all
k ≥ L+ 1, we have Θk = 1 (exploitation phase).

Definition 3 For all attacks in the classA(L) and 0 < ε < 1, the ε-deception time T (ε) is the time
required by the controller to make a decision, with P τDec ≤ ε log(1/ε), where τ = L+ T (ε) + 1.

Thus, T (ε) is the largest possible duration during which the attacker can deceive the controller, and
remain undetected with confidence at least 1 − ε log(1/ε), namely for all L + 1 ≤ k ≤ T (ε) + L,
we have

P(Θ̂k = Θk|Θk = 1) = P(Θ̂k = 1|Θk = 1) < 1− ε log(1/ε). (7)

Definition 4 For all n > L, the expected deception cost of the attacker until time n is defined as

C(n) ,
1

n
E
[ n∑
k=L+1

V T
k−1(Âk−1 −A)T (Âk−1 −A)Vk−1

2σ2

]
. (8)

4.2. Main results

We start with defining a non-divergent learning algorithm.

Definition 5 A learning algorithm is non-divergent if its estimation error is non-increasing in the
duration of the learning, namely for all k2 > k1, we have ‖Âk2 −A‖op ≤ ‖Âk1 −A‖op.

We introduce the following notation. Let p0(y1:τ ) be the conditional probability of y1:τ given the
attacker did not hijack the system, namely Θ1 = . . .ΘL = ΘL+1 = . . .Θτ = 0, where y1:τ denotes
the realization of the random variables Y1, . . . , Yτ . Likewise, let p1(y1:τ ) be the conditional proba-
bility of y1:τ given the attacker has hijacked the system, namely Θ1 = . . . = ΘL = 0 and ΘL+1 =
. . .Θτ = 1. The following proposition characterises the KL divergence D(p1(Y1:τ )||p0(Y1:τ )) be-
tween p1(Y1:τ ) and p0(Y1:τ ), and is useful to derive our main results.

Proposition 1 For all attacks in the class A(L) and n > L, the cumulative KL divergence is

D(p1(Y1:n)||p0(Y1:n)) = nC(n). (9)

The KL divergence between the distributions p0 and p1 is characterized by C(n), and is the key
quantity to establish both the lower bound and the upper bound on T (ε). If the PDF of the noise
known to the attacker is different from the actual PDF of the noise (or the PDF known to the con-
troller), Proposition 1 can be modified to include this discrepancy, and an additional non-negative
term would be added to C(n). The bounds on T (ε) will follow along the same lines.

The following theorem presents a lower bound on E[T (ε)] that holds for any detection strategy.
The bound is expressed in terms of C(n), which depends on the attacker’s learning algorithm, the
fictitious signal and the control signal in (2).

Theorem 1 For all attacks in A(L) and τ > L, if

P τDec = O(|ε log ε|) and P τFA = O(|ε log ε|), as ε→ 0, (10)

then the deception time T (ε) = τ − L− 1 is

E[T (ε)] ≥ log(1/ε)

C(n0)
+ o(log(1/ε)) as ε→ 0, (11)

where n0 = max {n > L : nC(n) < log(1/ε)} .
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It follows that for any detection strategy with probability of error O(|ε log ε|), the expected ε-
deception time is at least Ω (log(1/ε)/C(n0)). The next theorem establishes that the lower bound
in Theorem 1 is tight.

Theorem 2 There exists an attack in A(L) and a detection strategy such that at τ > L, we have

P τDec = O(ε) and P τFA = O(ε), as ε→ 0, (12)

and the deception time T (ε) = τ − L− 1 is

E[T (ε)] ≤ log(1/ε)

C(n0 + 1)
+ o(log(1/ε)), as ε→ 0. (13)

In Theorems 1 and 2, as ε → 0, we have that C(n0) → C(n0 + 1), and |ε| ≤ |ε log ε|. Thus,
the lower bound and the upper bound in Theorems 1 and 2 are tight. It turns out that the attack
achieving the upper bound on E[T (ε)] in Theorem 2 learns about A in the exploration phase only,
and focuses on destabilizing the system in the exploitation phase. The corresponding detection
strategy is a classic sequential probability ratio test (Wald et al. (1948)), which computes the ratio of
the posterior probability of the two hypotheses, namely the attacker is present or absent, and makes
a decision when this ratio crosses the threshold log(1/ε). While this strategy has been previously
studied under the assumption that the samples y1:n are identically and independently distributed
(i.i.d) (Chernoff (1959); Rangi et al. (2018b,a, 2020a)), here we extend the analysis to the samples
dependent on both the control input and the state of the feedback signal at the controller.

We point out that to extend these results to non-linear systems, a key step would be finding an
analogue of Proposition 1 in a non-linear setting. This proposition relates the KL divergence to
the expected deception cost C(n), which is a function of the fictitious signal and the error in the
estimation of A. For non-linear systems, an equivalent relationship needs to be derived between the
KL divergence, the fictitious signal and the error in the estimation of non-linear system dynamics.
The proof of the Theorems 1 and 2 can then be obtained using a similar argument, given an analogue
of Proposition 1 for non-linear systems.

Next, we derive some useful implications of Theorems 1 and 2. For simplicity of presentation,
in the following we restrict the class of learning algorithms in the exploration phase, although results
can also be extended to more general settings.

Definition 6 A learning algorithm is said to be convergent if there exists an α ≥ 1 such that for all
η > 0 and time step k > 0, we have

P(‖Âk −A‖op > η) ≤ c

(η2k)α
. (14)

It follows that any convergent learning algorithm provides an unbiased estimate ofA as the learning
time k → ∞, and the operator norm of the estimation error converges to the interval [−η,+η] at
rateO(1/(η2k)α). There are many convergent learning algorithms. For example, for scalar systems
and measurable control policy, the Least Squares (LS) algorithm in Rantzer (2018) satisfies

P(|Âk − a| > η) ≤ 2

(1 + η2)k/2
. (15)
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For the vector case sufficiently large learning time k, if the control input is Uk = −K̄Xk andA−K̄
is a marginally stable matrix, then the LS algorithm in Simchowitz et al. (2018) satisfies

P(‖Âk −A‖op > η) ≤ c1

eη2k
, (16)

where c1 > 0 is a constant.
The following theorem provides a lower bound on the duration of the exploration phase for the

attacker to achieve a given expected ε-deception time.

Theorem 3 For all 0 < δ < 1 and D > 0, and all attacks in A(L) using a convergent learning
algorithm in the exploration phase and a non-divergent learning algorithm in the exploitation phase,
if E[T (ε)] ≥ D + o(1) as ε → 0, then with probability at least 1 − δ the following asymptotic
inequality holds

L ≥ DC̃(n0)

log(1/ε)

(
c

δ

)1/α

+ o

(
1

log(1/ε)

)
, as ε→ 0, (17)

where C̃(n) = E
[∑n

k=L+1 V
T
k−1Vk−1

]
/(2σ2n).

The following theorem establishes that the lower bound on L in Theorem 3 is order optimal,
and a matching order-optimal bound on L holds for the LS algorithm in Simchowitz et al. (2018).

Theorem 4 For all 0 < δ < 1 and D > 0, using the LS algorithm in Simchowitz et al. (2018)
in the exploration phase only, and assuming the control input is Uk = −K̄Xk, where A − K̄ is a
marginally stable matrix, if

L = DC̃(n0) log(c1/δ)/ log(1/ε) + o(1/ log(1/ε)) as ε→ 0, (18)

then, with probability at least 1− δ we have

E[T (ε)] ≥ D + o(1), as ε→ 0. (19)

The choice of the control policy can play a crucial role in the reduction of the deception time.
However, this can occur at the expense of the energy used to construct the control signal Uk. The
following theorem provides a lower bound on the amount of energy that the controller needs to
spend to achieve a desired expected ε-deception time.

Theorem 5 For all D > 0, and for all attacks in A(L) using a non-divergent learning algorithm
in the exploitation phase, if E[T (ε)] ≤ D + o(1) as ε → 0, and for all k > L, the control policy
satisfies

E[V T
k Â

T
k ÂkVk] + σ2 + 2E[V T

k Â
T
kUk] ≤ 0, (20)

then the expected energy of the control signal is

R(n0) ≥ 2σ2 log(1/ε)

‖ÂL −A‖2opD
+ o(log(1/ε)), as ε→ 0, (21)

where R(n0) , E
[∑n0−1

k=L UTk−1Uk−1

]
/n0.

Theorem 5 shows that the expected energy of the control signal until a time betweenL ≤ k ≤ n0

is inversely proportional to the upper bound D on the deception time. Since L is unknown to the
controller, it follows that the controller should maintain a high level of expected signal energy E[U2

k ]
at every time instance k to ensure a small deception time.
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5. Simulations

In this section, we provide two numerical examples. Although our theoretical results are valid for
a large class of learning algorithms and any detection strategy chosen by the controller, we validate
them here using LS algorithm and a covariance detector.

First we start with an example for scalar system, where we use the empirical performance of
a variance-test to illustrate our results. Specifically, at a decision time τ , the controller tests the
empirical variance for unexpected behaviour over a detection window [0, τ ], using a confidence
interval 2γ > 0 around the expected variance. More precisely, at decision time τ , Θ̂τ = 0 if

1

τ

τ∑
k=0

[Yk+1 − aYk − Uk]2 ∈ (Var[W ]− γ,Var[W ] + γ), (22)

otherwise Θ̂τ = 1. In this case, since the system disturbances are i.i.d. Gaussian N (0, σ2), using
Chebyshev’s inequality, we have

P τFA ≤
Var[W 2]

γ2T
=

3σ4

γ2T
. (23)

In our simulations, the attacker learns in the exploration phase only, and uses the LS learning algo-
rithm. At the end of the exploration phase, we have

ÂL =

∑L−1
k=1 (Xk+1 − Uk)Xk∑L−1

k=1 X
2
k

. (24)

Our simulation parameters are the following: γ = 0.1, decision time τ = 800, A = 1.1, and
{Wk} are i.i.d. GaussianN (0, 1). Using (23), the false-alarm rate is negligible for these parameters.

Fig. 2(a) compares the attacker’s success rate as a function of the duration L of the exploration
phase for three different control policies Uk = −AYk + Γk such that for all k, I) Γk = 0, II) Γk are
i.i.d. GaussianN (0, 9), III) Γk are i.i.d. GaussianN (0, 16). As illustrated in Fig. 2(a), the attacker’s
success rate increases as the duration of exploration phase increases. This is because the attacker’s
estimation error |ÂL−A| reduces as L increases, which makes it difficult for the controller to detect
the attacker. This is in accordance with the theoretical findings in Theorem 3. Also, for a fixedL, the
attacker’s success rate decreases as the input control energy increases. The increase in the control
energy increases the energy of the fictitious signal which increases the probability of detection, and
is in accordance with Theorem 5.

Next, we provide an example of vector system, and analyze the empirical performance of the
covariance test against the learning-based attack. In vector systems, the error matrix is

∆ , Σ− 1

τ

τ∑
k=1

[Yk+1 −AYk − Uk] [Yk+1 −AYk − Uk]>

Similar to (22), at decision time τ , we have Θ̂τ = 0 if ‖∆‖op ≤ γ, and Θ̂τ = 1, otherwise. Similar
to the scalar system, the attacker learns in the exploration phase only, and uses the LS learning
algorithm, which implies that

ÂL =


0n×n, det(GL−1) = 0;
L−1∑
k=1

(Xk+1 − Uk)X>k G
−1
L−1, otherwise,

(25)
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(a) Attacker’s success rate versus L (b) Attacker’s success rate versus τ

Figure 2: Simulations Result.

whereGτ ,
∑τ

k=1XkX
>
k . Our simulation parameters are the following: γ = 0.1,A = [1 2 ; 3 4],

Σ = [1 0 ; 0 1], and Uk = −0.9AYk.
Fig. 2(b) compares the attacker’s success rate, as a function of sizes of detection window τ for

different duration L of the exploration phase. The false-alarm rate decreases to zero as the duration
of the τ detection window tends to infinity, similarly to the argument for scalar systems. Thus, as
the size of the detection window grows, the success rate of learning-based attacks increases. Finally,
as as seen in Fig. 2(b), as the duration of the exploration phase L increases, the attacker’s success
rate increases, since the attacker improves its estimate of A as L increases. This is in line with the
theoretical findings in Theorem 3.

6. Conclusions and Future Directions

We have presented tight lower and upper bounds on the expected deception time for learning based
MITM attacks, as the probability of correct detection tends to one. Additionally, we provided an
order-optimal characterization of the length of the attacker’s exploration phase and computed a
lower bound on the control cost. In the future, we plan to study online phase learning based attacks,
where the attacker can choose to switch between exploration and exploitation phases dynamically.
We also plan to study methods to mitigate these attacks and render the system secure. The extension
of our results to partially-observable linear vector systems where the input (actuation) gain is un-
known, and the characterization of securable and unsecurable subspaces, similar to Satchidanandan
and Kumar (2018), is another possible research direction. Further extensions to nonlinear systems
are also of interest.
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Appendix A. Proof of Proposition 1

Proof: Since the attacker does not intervene before k ≤ L, we have that for all k ≤ L,

D(p1(Y1:k)||p0(Y1:k)) = 0. (26)

Thus, for all k > L, using the chain rule, we have

D(p1(Y1:n)||p0(Y1:n)) =
n∑

k=L+1

D(p1(Yk|Y1:k−1)||p0(Yk|Y1:k−1)). (27)

Also, if Θk = 1, then for all k > L, we have

Yk|(Yk−1, Uk−1, Âk−1) ∼ N (Âk−1Yk−1 + Uk−1, σ
2IM ), (28)

since Yk = Vk for all k > L. Similarly, if Θk = 0, then for all k > L, we have

Yk|(Yk−1, Uk−1, Âk−1) ∼ N (AYk−1 + Uk−1, σ
2IM ). (29)

The result now follows by using the fact that for all k > L, we have Yk = Vk .
We continue by noticing that the control inputUk lies in sigma field of past observations, namely

Uk is measurable with respect to sigma field generated by Y1:k−1. Thus, combining (27), (28) and
(29), for all k > L, we have that

D(p1(Yk|Y1:k−1)||p0(Yk|Y1:k−1)) = E
[
Y T
k−1(Âk−1 −A)T (Âk−1 −A)Yk−1

2σ2

]
. (30)

Using (27) and (30), for all n > L, we have

D(p1(Y1:n)||p0(Y1:n)) = E
[ n∑
k=L+1

Y T
k−1(Âk−1 −A)T (Âk−1 −A)Yk−1

2σ2

]
. (31)

�

Appendix B. Proof of the Theorem 1

Proof: The proof of the theorem consists of two parts. First, for all attacks in the class A(L) and
0 < c < 1, we show that if the probability of error is small, namely P(Θ̂τ 6= Θτ ) = O(|ε log ε|),
then the log-likelihood ratio log(p1(y1:τ )/p0(y1:τ )) should be greater than (1 − c) log(1/ε) with
high probability as ε→ 0, namely

log
p1(y1:τ )

p0(y1:τ )
≥ (1− c) log(1/ε) (32)

must hold with high probability, as ε → 0. Second, we show that there exists 0 < c̄ < 1 such that
for all 0 < c ≤ c̄ and T (ε) < (1 − c) log(1/ε)/C(n0), it is unlikely that the inequality in (32) is
satisfied.
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Using (10), for all k ≥ L+ 1, we have that both type I and type II errors of the hypothesis test
Θk = 1 vs. Θk = 0 are O(|ε log ε|). Thus, using (Chernoff, 1959, Lemma 4), for all 0 < c < 1, we
have

P
(
Sτ ≤ −(1− c) log ε

)
= O(−εc log ε), (33)

where

Sn = log
p1(y1:n)

p0(y1:n)
=

n∑
k=1

log

(
p1(yk|y1:k−1)

p0(yk|y1:k−1)

)
. (34)

Therefore, as ε→ 0, the probability in (33) tends to 0, which concludes the first part of the proof.
Now, we show that for all 0 < c < 1, we have

lim
n′→∞

P
(

max
1≤k≤n′

Sk ≥ (D(p1(y1:n′)||p0(y1:n′)) + n′c)

)
= 0, (35)

where D(p1(y1:n′)||p0(y1:n′)) denotes the KL divergence between the distributions p1 and p0 of
Y1:n′ . We have

Sn =
n∑
k=1

(
log

(
p1(yk|y1:k−1)

p0(yk|y1:k−1)

)
−D(p1(Yk|Y1:k−1)||p0(Yk|Y1:k−1))

)

+

n∑
k=1

D(p1(Yk|Y1:k−1)||p0(Yk|Y1:k−1))

= Mn
1 +Mn

2 ,

(36)

where

Mn
1 =

n∑
k=1

(
log

(
p1(yk|y1:k−1)

p0(yk|y1:k−1)

)
−D(p1(Yk|Y1:k−1)||p0(Yk|Y1:k−1))

)
, (37)

is a martingale with mean 0 with respect to filtration Fk = σ(Y1:k−1), and

Mn
2 =

n∑
k=1

D(p1(Yk|Y1:k−1)||p0(Yk|Y1:k−1)),

(a)
= D(p1(Y1:n)||p0(Y1:n)),

(38)

where (a) follows from the chain rule of KL-Divergence. Now, if the event in (35) occurs for a fixed
n1, namely

Mn1
1 +Mn1

2 ≥ D(p1(Y1:n1)||p0(Y1:n1)) + n1c, (39)

then it implies thatMn1
1 ≥ n1c. Since Yk|Y1:k−1 has a normal distribution using (28) and (29), there

exists a constant b > 0 such that the probability in (35) simplifies as

P
(

max
1≤k≤n′

Sk ≥ (D(p1(y1:n′)||p0(y1:n′)) + n′c)

)
≤ P( max

1≤k≤n′
Mk

1 ≥ n′c)
(a)

≤ b/n′c2, (40)

where (a) follows from the Doob-Kolmogorov extension of Chebyshev’s inequality in Doob (1953),
and the fact that Mk

1 is a martingale with 0 mean. Hence, we have that (35) follows.
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Now, we have
n0C(n0) < log(1/ε). (41)

Therefore, there exists 0 < c̄ < 1 such that

n0C(n0) + n0c̄ = (1− c̄) log(1/ε). (42)

Now, using Proposition 1, for all 0 < c ≤ c̄, we have

P(N ≤ n0) ≤ P
(
N ≤ n0 and SN ≥ n0(C(n0) + c)

)
+ P

(
SN ≤ n0(C(n0) + c)

)
≤ P

(
max

1≤k≤n0

Sk ≥ n0(C(n0) + c)
)

+ P
(
SN ≤ n0(C(n0) + c)

)
,

(43)

and the first and the second terms at the right-hand side of (43) approach zero by (35) and (33),
respectively. �

Appendix C. Proof of the Theorem 2

Proof: In A(L), consider an attack R∗ such that for all k > L, we have Âk = ÂL. For all k > L,
if Θk = 1, then we have

Yk|Y1:k−1 ∼ N (ÂLYk−1 + Uk−1, σ
2IM ). (44)

Similarly, if Θk = 0, then

Yk|Y1:k−1 ∼ N (AYk−1 + Uk−1, σ
2IM ). (45)

Consider a the following detection strategy, also known as Sequential Probability Ratio Test
(SPRT), at the controller as follows. At time n, if

n∑
k=1

log

(
p1(yk|y1:k−1)

p0(yk|y1:k−1)

)
≥ log(1/ε), (46)

then Θ̂n = 1, and if
n∑
k=1

log

(
p0(yk|y1:k−1)

p1(yk|y1:k−1)

)
≥ log(1/ε), (47)

then Θ̂n = 0. Otherwise, n is not a decision time and the test continues.
We will show that for the attackR∗ and the detection strategy SPRT, the statement of the theorem

holds.
For SPRT, the probability of error, both P τDec and P τFA, is at most O(ε), and the proof is along

the same direction as (Rangi et al., 2018c, Theorem 1). Now, let us prove the bound on T (ε). Given
the system is under attack, let the decision time τ of SPRT be

T = min

{
n :

n∑
k=1

log

(
p1(yk|y1:k−1)

p0(yk|y1:k−1)

)
≥ log(1/ε)

}
. (48)
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Using (Chernoff, 1959, Lemma 2), for system under attack A(L) and for all c > 0, there exist a
b > 0 such that

P
( n∑
k=1

log

(
p1(yk|y1:k−1)

p0(yk|y1:k−1)

)
< (D(p1(Y1:n)||p0(Y1:n))− nc)

)
≤ e−bn. (49)

Using the definition of n0, for all n̄ > n0 we have

log(1/ε) ≤ n̄C(n̄) = D(p1(Y1:n̄)||p0(Y1:n̄)), (50)

where the equality follows from Proposition 1. Using (49) and (50), For all c > 0 and n ≥ (1 +
c)(n0 + 1) log(1/ε)/D(p1(Y1:n0+1)||p0(Y1:n0+1)), we have

P
( n∑
k=1

log

(
p1(yk|y1:k−1)

p0(yk|y1:k−1)

)
< log(1/ε)

)
≤ e−bn. (51)

Then, using Proposition 1, the statement of the theorem follows. �

Appendix D. Proof of Theorem 3

Proof: If the learning algorithm in the exploration phase is a convergent algorithm, the learning
algorithm in the exploitation phase is a non-divergent algorithm, then for all 0 < δ < 1, we have

C(n0)
(a)

≤ ‖ÂL −A‖2op
1

n0
E
[ n0∑
k=L+1

V T
k−1Vk−1

2σ2

]
,

(b)

≤
(
c1/α

Lδ1/α

)
C̃(n0),

(52)

with probability at least 1− δ, where (a) follows from the fact that

||Ax||2 ≤ ||A||op||x||2, (53)

and the learning algorithm in the exploitation phase is non-divergent, and (b) follows from Defini-
tion 6 of convergent algorithms. Thus, we have

log(1/ε)

C(n0)
≥ log(1/ε)

C̃(n0)

(
Lδ1/α

c1/α

)
, (54)

with probability at least 1− δ. Using Theorem 1 and (54), if

(1 + o(1))
log(1/ε)

C̃(n0)

(
Lδ1/α

c1/α

)
> D(1 + o(1)), as ε→ 0, (55)

then E[T (ε)] > D + o(1) as ε→ 0. This along with (54) implies that

L ≥ (1 + o(1))DC̃(n0)

log(1/ε)

c1/α

δ1/α
, as ε→ 0, (56)

with probability at least 1− δ. �
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Appendix E. Proof of Theorem 4

Proof: Consider the LS learning algorithm in Simchowitz et al. (2018) which satisfies

P(‖Âk −A‖op > η) ≤ c1

eη2k
, (57)

For η =
√

log(c1/δ)/L, similar to (52), we have that

C(n0) ≤ log(c1/δ)

L
C̃(n0), (58)

with probability at least 1− δ. Thus, we have

log(1/ε)

C(n0)
≥ log(1/ε)

C̃(n0)

L

log(c1/δ)
, (59)

with probability at least 1 − δ. Thus, for L = (1 + o(1))DC̃(n0) log(c1/δ)/ log(1/ε) as ε → 0,
using Theorem 1, we have that

E[T (ε)] ≥ (1 + o(1)) log(1/ε)

C(n0)
≥ D(1 + o(1)) = D + o(1), as ε→ 0, (60)

with probability at least 1− δ. The statement of the theorem follows. �

Appendix F. Proof of Theorem 5

Proof: Since W̃k is independent of Uk and Vk and E[W̃k] = 0, we have

E[V T
k+1Vk+1]− E[UTk Uk] = E[V T

k Â
T
k ÂkVk] + σ2 + 2E[V T

k Â
T
kUk]. (61)

Using (20), we have

E[V T
k+1Vk+1] ≤ E[UTk Uk], (62)

which implies

C(n0)
(a)

≤
‖ÂL −A‖2op

n0
E
[ n0∑
k=L+1

V T
k−1Vk−1

2σ2

]
(b)

≤
‖ÂL −A‖2op

n0
E
[ n0−1∑
k=L

UTk−1Uk−1

2σ2

]
,

(63)

where (a) follows from the fact that ||Ax||2 ≤ ||A||op||x||2, and (b) follows from (62). Since
E[T (ε)] ≤ D + o(1) as ε→ 0, using Theorem 1 and (63), we have that

D + o(1) ≥ (1 + o(1))2σ2 log(1/ε)

‖ÂL −A‖2opR(n0)
, as ε→ 0. (64)

Hence, the statement of the theorem follows. �
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