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Taking robots into the real world
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Brittle hand-designed dynamics models work for lab

operation but fail to account for the complexity and 

uncertainty of real-world operation



Learning for dynamics and control
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Cyber

learning online relying on 

streaming data

Physical

control objectives and

guaranteeing safe operation
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Example: space missions
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We need to address

1. individual safety: e.g. avoiding the obstacles

2. joint safety: e.g. avoiding the collision with other agents



Example: sandtrap
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Train is a major source of risks for Mars rovers:

• Spirit             embeded in sand

• Opportunity              got stuck in soft sand for 6 weeks



Outline

Part I: Safety 
1. Probabilistic Safety Constraints for Learned High Relative Degree System

2. Safe Multi-Agent Interaction through CBF with Learned Uncertainties

Part II: Security
Learning-based attacks in cyber-physical systems
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Joint work with: 

• Vikas Dhiman, UCSD

• Massimo Franceschetti, UCSD

• Nikolay Atanasov, UCSD



Problem formulation
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drift term

input gain

unsafe

unsafe

goal position

start position We study the problem of 

enforcing probabilistic safety 

when     and are unknown

MJ Khojaste

unsafe



Problem formulation
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baseline control policy

user-specified risk 

tolerance

unsafe

unsafe

goal position

start position

unsafe



Approach
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1. Bayesian learning 

2. Propagate uncertainty to the safety condition

3. Self-triggered control: extension to continous time

4. Extension to higher relative degree systems
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Gaussian processes for machine learning
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The controller observes 

but the measurements might be noisy.

without noise, 

In general, there may be a correlation among 

different components of     and    .

Thus, we need to develop an efficient factorization of
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and                     are calculated in our paper

Matrix variate Gaussian processes (MVGP)

11MJ Khojasteh

The above parameterization is efficient because we need to learn smaller 

matrices                                         and                 . Also, this parameterization 

preserves its structure during inference.

Inference

Louizos and Welling (ICML 2016) 

Sun et al. (AISTATS 2017)



Two alternative approaches
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1. Develop a decoupled GP regression per system dimension:

Does not model the dependencies among different components of     and 

Inference computational complexity:

decoupled GP                                                   MVGP                       

2.   Coregionalization models [Alvarez et al. (FTML 2012)]:

scalar state-dependent kernel

The nice matrix-times-scalar-kernel structure is not preserved in the posterior



Approach
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1. Bayesian learning 

2. Propagate uncertainty to the safety condition

3. Self-triggered control: extension to continous time

4. Extension to higher relative degree systems
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Control Barrier Functions (CBF)
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Previously, CBF are used to dynamically

enforce the safety for known dynamics             

Control Barrier Condition (CBC)

A lower bound on the derivative
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Ames et al. (ECC 2019)

unsafe

unsafe

goal position

start position

unsafe



We  have shown  given                                               is a Gaussian

random variable with the following parameters

Uncertainity propagation to CBC
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Note: mean and variance are Affine and Quadratic in     respectively.



Deterministic condition for controller
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A safe optimization-based controller which is a Quadratically Constrained 

Quadratic Program (QCQP)

Kh-Dhiman-Franceschetti-Atanasov 2020

This QCQP might not be convex                

Second Order Cone Program (SOCP) 



Approach
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1. Bayesian learning 

2. Propagate uncertainty to the safety condition

3. Self-triggered control: extension to continous time

4. Extension to higher relative degree systems
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zero-order hold (ZOH) control mechanism

Safety beyond triggering times
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Safety at triggering times

Safety during the inter-triggering times



Self-triggered Control with Probabilistic Safety Constraints
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We assume the sample paths of the GP used to model the dynamics are 

locally Lipschitz with sufficiently large probability       

The parameters are calculated in our paper

QCQP QCQP



Approach
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1. Bayesian learning 

2. Propagate uncertainty to the safety condition

3. Self-triggered control: extension to continous time

4. Extension to higher relative degree systems
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Notice

Higher relative degree CBFs
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We want to avoid a radial region  

CBF:

is independent of 



Exponential Control Barrier Functions (ECBF)
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Let             be the relative degree of         , that is,                                  

and                                ,                                    

ECBC:
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If        is chosen appropriately,                       enforce the safety for 

known dynamics. Ames et al. (ECC 2019)

Nguyen and Sreenath (ACC 2016)



Chance constraint over ECBC
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Cantelli’s inequality 

We proved                                    and                   

are Affine and Quadratic in        respectively.

QCQP (might be non-convex)               

Second Order Cone Program (SOCP) 



Safe controller using ECBF
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Solving this program requires the knowledge of the mean and variance of 

In general, Monte Carlo sampling could be used to estimate these quantities.



Relative degree two
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We also explicitly quantified                                      and 

in our paper for  relative-degree-two systems. 

Bipedal and car-like robots are 

examples of these systems.



Example
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Outline

Part I: Safety 
1. Probabilistic Safety Constraints for Learned High Relative Degree System 

2. Safe Multi-Agent Interaction through CBF with Learned Uncertainties

Part II: Security
Learning-based attacks in cyber-physical systems
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Joint work with: 

• Richard Cheng, Caltech

• Aaron D. Ames, Caltech

• Joel W. Burdick, Caltech



Navigation in Unstructured Environment
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The robot (blue) tries to 

navigate from a start position 

to random goal position 

(yellow star) while avoiding 

collisions with other  agents 

(red)
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Navigation in Unstructured Environment

29

Approximately half of the 

other agents blindly travel 

towards their own randomly 

chosen goal, while the rest 

exhibit varying degrees of 

collision-avoidance behavior

(the robot does not know their 

behavior apriori)
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Navigation in Unstructured Environment
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Example 1: Sample path of a 

multi-agent system based on 

the nominal CBF

Borrmann et al. (IFAC 2015)
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Navigation in Unstructured Environment
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https://youtu.be/hXg5kZO86Lw

https://youtu.be/hXg5kZO86Lw


Navigation in Unstructured Environment
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Example 2: Sample path of a 

multi-agent system based on 

our proposed Robust CBF
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Navigation in Unstructured Environment
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https://youtu.be/hXg5kZO86Lw

https://youtu.be/hXg5kZO86Lw


Overview of the the control structure
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Approach
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1. Multi-agent CBF

2. Incorporating Robustness into CBF

3. Learning Uncertity bound
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Multi-agent system
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Our robot dynamics

and are known

is unknown

position

velocity

other states

actuation bound

system has relative 

degree 2 w.r. position



is known

Multi-agent system
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Other agents

We assume the control input for other agents are a 

function of their state (we do not show their control 

inputs explicitly)

is unknown



Multi-agent control barrier functions (MA-CBF)
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positional difference between the agents

velocity difference between the agents

velocity porojected in the direction of collision

our robot's max acceleration in the collision direction

collision margin



provided the acceleration is sufficiently large

The parameter      is calculated in our paper

Multi-agent control barrier functions (MA-CBF)
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collision can be avoided if we match the other agents velocity 

by the time we reach them

our robot's max acceleration in any direction

We can achieve                 within time  

collision avoidance is guaranteed:



Approach
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1. Multi-agent CBF

2. Incorporating Robustness into CBF

3. Learning Uncertity bound
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Robust multi-agent CBF
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nonlinear (not convex)

polytopic bounds on the uncertainties:    

lower bound on CBC:

The parameters are calculated in our paper



Robust multi-agent CBF
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polytopic bounds on the uncertainties:    

lower bound on CBC:

QP



Approach
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1. Multi-agent CBF

2. Incorporating Robustness into CBF

3. Learning Uncertity bound

MJ Khojasteh



Hyperparameter optimization 
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Bayesian learning (Matrix-Variate Gaussian Process) 

some agents might behave predictably and 

others might behave more erratically, and 

hyperparameter optimization is necessary to 

capture these uncertainty profiles in our 

Bayesian inference

We optimize kernel parameters

to obtain better prior. 

(We learn them offline from data)



Learning Uncertity bound (online)
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Bayesian learning (Matrix-Variate Gaussian Process) 

QP

High-Confidence Safety Guarantee

Posterior mean Posterior  variance

Polytopic bounds



Overview of the the control structure
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QP



Navigation in Unstructured Environment
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By running 1000 simulated tests in 

randomized environments, we show that 

our robust CBF avoids collision in 98.5%

of cases performing much better than the 

nominal multi-agent CBF, which avoids 

collisions in 85.0% of cases.

https://youtu.be/hXg5kZO86Lw

https://youtu.be/hXg5kZO86Lw
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Joint work with: 

• Anatoly Khina, Tel Aviv University

• Massimo Franceschetti, UCSD

• Tara Javidi, UCSD



Cloud robots and automation systems
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Security
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We need to address physical security in addition to cyber security



News reports
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News reports

“It has changed the way we view the security threat”
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ff

The man in the middle

Plant Controller

A malicious controller

for the plant

A fictitious plant for

the controller
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Mathematical formulation

• Linear dynamical system

• The controller, at time  , observes      and generates a control signal                     

as a function of all past observations      .

• The attacker feeds a malicious input       to the plant.

• How can the controller detect that the system is under attack?

Under normal operation

Under attack
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are i.i.d. 
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Anomaly detection

• The controller is armed  with a detector that tests for anomalies in 

the observed history     . 

• Under legitimate system operation                    we expect

• The detector performs the variance test
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i.i.d. 

MJ Khojasteh

are i.i.d. 



Anomaly detection

• What kind of attacks can we detect?
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i.i.d. 

• Under legitimate system operation  we expect

• The controller performs a threshold-based detection



The man in the middle attack types 

Replay attack

Learning-based attack
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Y. Mo, B. Sinopoli (2009)

MJ Khojasteh

MJ Khojasteh et al. 

(2019)

Stuxnet



Comparison with a replay attack
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Stuxnet

MJ Khojasteh et al. 

(2019)



• The attacker has access to both         and         and knows the 

distribution of         and of the initial condition      , but it should learn 

the open loop gain of the plant.

Defense against learning-based attack
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Two phases of the learning-based attack

Learning (exploration) 

phase

Hijacking (exploitation) 

phase

Eavesdropping and learning Hijacking the system
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Two phases of the learning-based attack

Learning (exploration) 

phase

Hijacking (exploitation) 

phase

Eavesdropping and learning Hijacking the system
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Impede the learning process of the attacker

Defense against learning-based attack
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Nominal control policy 

The controller, by potentially sacrificing the optimally of the control task, 

can act in an adversarial machine learning setting
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Defense against learning-based attack

MJ Khojasteh

fController

knows the dyanamics

wants to Learn the dyanamics

to enhance  the dyanamics 

privacy
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Privacy-enhancing signal
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MJ Khojasteh et al. 

(2019)



Learning-based attack: vector systems
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Stuxnet

MJ Khojasteh et al. 

(2019)



Nonlinear learning-based attack
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Reproducing Kernel Hilbert Space (RKHS) 

Linear regression Bayesian learning: Gaussian processes (GP)

Vulnerable region

Lower attacker's 

success rate
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