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Taking robots 1nto the real world

Brittle hand-designed dynamics models work for lab
operation but fail to account for the complexity and
uncertainty of real-world operation
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Learning tor dynamics and control

Physical

learning online relying on control objectives and
streaming data guaranteeing safe operation
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I'xample: space missions

We need to address

1. mdividual safety: e.g. avoiding the obstacles
2. jomt safety: e.g. avoiding the collision with other agents
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Fxample: sandtrap

Mars Rover Spirit
Sol 2092 thru 2165
Nov 21, 2009 thru
Feb 4, 2010
attempts to free itself

from sandtrap

Train 1s a major source of risks for Mars rovers:

Spirit —— embeded 1n sand
Opportunity —— got stuck 1n soft sand for 6 weeks
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Problem formulation

goal ;osition

start position

o =0

x = f(x) +9(x)u
= (169 900 |,
= F(x)u

driftterm  f : R" — R"

input gain g : R™ — R"»*™

We study the problem of
enforcing probabilistic salety
when f and g are unknown
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Problem formulation

goal ;osition

start position

o =0

x = F(x)u

vec(F(x)) ~ GP (vec(Mp(x)), Ko(x,x"))

baseline control policy

1

miny, ey [[ur — (%2 @

s.t. P(safety) > pg

user-specified risk
tolerance
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Approach

I. Bayesian learning

2. Propagate uncertainty to the safety condition

3. Self-triggered control: extension to continous time
4. Extension to higher relative degree systems
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Gaussian processes for machine learning

x = F(x)u

vec(F(x)) ~ GP (vec(My(x)), Ko(x,x"))
The controller observes K1k 1= :X(tl)’ oo X (b)) without noise,
Ul:k — _u(tl)a <. Ju(tk)]
but the measurements X = %(t1),...,x(tx)] might be noisy.

In general, there may be a correlation among
different components of f and g.

Thus, we need to develop an efficient factorization of

Ko (x,x').
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Matrix variate Gaussian processes (MVGP)

vec(F(x)) ~ GP (vec(Mp(x)), Ko(x,x))

Loulzos and Welling (ICML 2016)

Bo(x,X") ® A =" ¢ | ctal. (AISTATS 2017)

The above parameterization 1s elficient because we need to learn smaller
matrices Bo(x,x’) € RmTDx(m+1) and A € R"*", Also, this parameterization

preserves 1ts structure during inference.

Inference

vec(F(x4)) ~ GP(vec(Mg(x4)), Br (x4, X,) ® A)

P(x)u, = f(x.) + g(x)u. ~ GP(My(x.)u,, 1) Bi(x,, x\)u, ® A)

M (x4) and Bg (X4, X)) are calculated in our paper
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‘Two alternative approaches

I. Develop a decoupled GP regression per system dimension:

Does not model the dependencies among different components of f and g

Inference computational complexity:

decoupled GP  O((1 4+ m)k?) + O(k?) MVGP O((1 +m)?k?) + O(k?)

2. Coreglonalization models [Alvarez et al. (FT'ML 2012)]:

Ky (x,x") = Xko(x,x’)
!

scalar state-dependent kernel

The nice matrix-times-scalar-kernel structure 1s not preserved 1 the posterior
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Approach

1. Bayesian learning

2. Propagate uncertainty to the safety condition

3. Self-triggered control: extension to continous time
4. Extension to higher relative degree systems

MJ Khojasteh
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Control Barrier Functions (CBF)

Previously, CBF are used to dynamically

goal;osition enforce the safety for known dynamics

Ames et al. (EECC 2019)

unsafe
h(x) <0 Control Barrier Condition (CBC)
unsafe CBC(x,u) := Lh(x) + L h(x)u + ah(x)> 0
h(x) <0
unsafe Vxh(X‘)'F (x)u o > 0
h(x) <0

start position A lower bound on the derivative
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Uncertamity propagation to CBC

CBC(x,u) = Lsh(x) + L h(x)u + ah(x)

l l

Vxh(x)F(x)u o >0

vec(F(x4)) ~ GP(vec(Mp(x4)), Br (x4, X,) ® A)

We have shown given Xj and ug, CBC(xg, uy) 1s a Gaussian
random variable with the following parameters

E[CBCk] = Vxh(Xk)TMk (Xk)gk —+ th(Xk)

Var[CBCk] = ng,Bk(Xk, Xk)gkvxh(xk)TAVxh(xk)

Note: mean and variance are Affine and Quadratic in u respectively.
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Deterministic conditton for controller

Miny, ey |[Ur — W(Xk)HQ

s.t. P(CBC(xk,ui) > ¢ > 0|xg,ug) > py

Kh-Dhiman-Franceschetti-Atanasov 2020

(E[CBC(xg,u;)] — ¢)? > 2Var[CBC(xy, uy )] (erf_l(l — 29k))?
E[CBC(xg,ux)] — ¢ >0

A safe optimization-based controller which 1s a Quadratically Constrained

Quadratic Program (QCQP)
This QCQP might not be convex

Second Order Cone Program (SOCP)
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Approach

1. Bayesian learning

2. Propagate uncertainty to the safety condition

3. Sell-triggered control: extension to continous time
4. Extension to higher relative degree systems

MJ Khojasteh
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Satety beyond triggering times

Uk Uk41
0. 0

Tl :?

Safety at triggering times

Miny, e [[ur — () |

s.t. P(CBC(xg,uy) > ¢ > 0|xg, ur) > pi

Safety during the mter-triggering times

u(t) = Uy zero-order hold (ZOH) control mechanism YVt € :tk, tp. + 7 k)

=7 P(CBC(x(t),ux) > 0) > pp  Vt € [t + 1)
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Self-triggered Control with Probabilistic Satety Constraints

We assume the sample paths of the GP used to model the dynamics are
locally Lipschitz with sufficiently large probability g

QCQP QCQP
P(safety) > pg P(safety) > pri1
L1 tk+1

Q o

L ¢
77«::< ]1’1 (1 + (XkLk—I—Lkaoh)”}.(k”)

The parameters are calculated 1n our paper

P(CBC(x(t),ux) > 0) > pr. = prqr YVt € [ty ) + 1)
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Approach

1. Bayesian learning

2. Propagate uncertainty to the safety condition

3. Self-triggered control: extension to continous time
4. Extension to higher relative degree systems

MJ Khojasteh
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Higher relative degree CBFs

U

x=[0,w]"
x = f(x) +g(x)u
| S f(x) = [uJ, —% Sin(@)} i g(x) = [O, LJ !

We want to avoid a radial region [0, — A¢, 0. + A.]
CBF: h(x) = cos(A.) — cos(6 — 6..)

Notice L,h(x) =Vh(x)g(x) =0

CBC(x,u) = Lh(x) + L,h(x)u + ah(x) 1s independent of u
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Exponential Control Barrier Functions (ECBF)

Let " 2 1 be the relative degree of h(x), that is, Egﬁgf_l)h(x) # 0
and L,L Vh(x) =0, Yk € {1,...,r — 2},

ECBC:
- h(x) T
Lyh(x)
CBC") (x,u) := LY h(x) + L,V Vh(x)u + K, :
£V Vh(x).

If K, is chosen appropriately, CBC(") > () enforce the safety for

known dynamics. — Ames et al. (KCC 2019)
Nguyen and Sreenath (ACC 2016)
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Chance constraint over ECBC

miny, ey [[u — (x|

s.t. P(CBCY) (x4, uz,) > ¢ > 0[xp, ug) > pr

Cantelli’s mequality

(E[CBC™) (x5, up)] — €)% > L2 Var[CBC") (x4, uy)]

1—p

E[CBC") (x5, u)] — ¢ > 0

We proved ]E[CBC(T)(Xk,uk)] and Var[CBC(T)(X;C,uk)]

are Affine and Quadratic in Ug respectively.

QCQP (might be non-convex)
—— Second Order Cone Program (SOCP)

MJ Khojasteh
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Sate controller using ECBF

Miny, ey [[ur — 7(X)||
s.t. (E[CBC(T)(X;@, ug)| — ¢)? > Pk Var[CBC(T)(Xk,uk)]
E[CBC™ (x4, uz)] — ¢ >0

Solving this program requires the knowledge of the mean and variance of
CBC(T) (Xk, uk)

In general, Monte Carlo sampling could be used to esimate these quantities.
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Relative degree two (r = 2)

We also explicitly quantified E[CBC(2) (Xg, ug)] and Var[CBC(z) (Xg, ug)]

in our paper for relative-degree-two systems.

Algorithm 1: Algorithm to compute Mean and variance Blpedal and Car-like I’Ob()ts are
of CBF of relative degree 2
Data: Training data X, U, at discretization interval 7. eXamplCS Of these systems.

Gaussian process priors A and By(x,x’). Test
state x, and u,.
Result: E[CBC® (x;u)] and Var(CBC? (x;u))
1 Compute approximate state time derivative
Xt =X forall t € [1,...,d—1].
2 Collect X = [x7,...,%x)_,]7.
3 Compute My, (x,) and B (x.,x,) from (12).
4 Compute mean and variance of
Ly, h(x) = Vh(x)" f(x) using Corollary 2
5 Compute mean, variance and covariance of VLj, h(x)
using Lemma 3,
6 Compute mean, variance and covariance of
V(L h(x)]" F(x)u using Lemma 2,
7 Plug the above values into Theorem | to get
E[CBC® (x;u)] and Var(CBC® (x;u)).
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I'xample
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Navigation 1n Unstructured Environment

The robot (blue) tries to
navigate from a start position
to random goal position
( star) while avoiding
collisions with other agents

(red)
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Navigation 1n Unstructured Environment

Approximately half of the
other agents blindly travel
towards their own randomly
chosen goal, while the rest
exhibit varying degrees of
collision-avoidance behavior
(the robot does not know their
behavior aprior:)
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Navigation 1n Unstructured Environment

[
o 8. o
o o Example 1: Sample path of a
P < P multi-agent system based on
® the nominal CBF

Borrmann et al. IFAC 2015)
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Navigation 1n Unstructured Environment

.O
® 0
@ @
o0

Sample path of a multi-agent system based on the nominal

CBF

https://voutu.be/hXgbhkZO861.w

MJ Khojasteh
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https://youtu.be/hXg5kZO86Lw

Navigation 1n Unstructured Environment

|
[
@
©q ®
@ . ®
Example 2: Sample path of a
O o multi-agent system based on

our proposed Robust CBF
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Navigation 1n Unstructured Environment

® o
® o
g
O
o
o o ®

Sample path of a multi-agent system based on our
proposed Robust CBF

https://voutu.be/hXgbkZO861.w

MJ Khojasteh
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Overview of the the control structure

Hyperparameter Optimization

Bayesian

Trajectory
Database

i Trajectory

Generator

v

Udes

> Inference
t (MVG)

d(xagents)

Y

Robust

CBF

xagents

Multi-Agent System  r----¥-----

e
o
o
o
—

___________
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Approach

1. Multi-agent CBF
2. Incorporating Robustness ito CBF

3. Learning Uncertity bound

Hyperparameter Optimization

Trajectory
Generator

Uges

A 4

Bayesian
Inference
(MVG)

d (xagents)

A 4

Robust
CBF

xagent

Multi-Agent System

___________

___________
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Multi-agent system

Our robot dynamics

Lt41 —

(Dri1) fo(x¢) Ip(¢) dp(¢)
Vg1 | = fo(@e) | + [go(ze) | u+ [do(zy)
_Zt_|_1_ fz ($t) gz($t) dZ('rt)
f(:;t) 9(;;) d(;;)
f and g are known
d 1s unknown
p € R?  position ullz < Umaa
actuation bound
veR?  velocty

gp(x) = O2x2

n—4 .
z € R other states system has relative

degree 2 w.r. position
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Multi-agent system

Other agents

o] [Ee] [
v = |vi | = [ A7 @) | + [d (@)
_zgzl_ I () Tt) _d,(;) Tt)
£ (0) 4 (a)
f 1is known
d 1s unknown
®

We assume the control mput for other agents are a
function of their state (we do not show their control
mputs explicitly)
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Multi-agent control barrier functions (MA-CBF)

L ApTAU
h(z) = S5 + Vamas (| Ap] — Ds)
A Av
Ap=1p— p(’ﬂ) positional difference between the agents
Av = v — (@) velocity difference between the agents

A?} — APTA’U

127l velocity porojected 1 the direction of collision

Umax our robot's max acceleration 1n the collision direction

D, collision margin

M. J. Khojasteh 38



Multi-agent control barrier functions (MA-CBF)

collision can be avoided if we match the other agents velocity
by the time we reach them

Amax our robot's max acceleration m any direction

amaa:

We can achieve Av = 0 within time 7, =

collision avoidance 1s guaranteed:

Ad(z)Te + || Ap| > D

}

h() = Db+ /aaz (15p] — Dy) > 0

provided the acceleration 1s suthiciently large Gz (umam) > c’(d)
The parameter ¢’ is calculated in our paper
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Approach

1. Multi-agent CBF
@ 2. Incorporating Robustness mto CBF
3. Learning Uncertity bound

‘ ‘ Hyperparameter Optimization

Bayesian
Inference

(MVG)

X agents

Trajectory | Udes Robust
Generator CBF
Hsafe
Multi-Agent System  r---- ¥oomor .
' Robot

MJ Khojasteh
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Robust multi-agent CBF

h(z) = Av + \/ama:c(HAp” — Dy)
CBC(wt,ur) = h(wig1(ue)) + (n — 1)h(z:)

min||u — Uges|
U

s.t. C]éI(liIl) CBC (x4, u,dy) > 0| == nonlinear (not convex)

where d(x;) € D

||uH < Umaa

polytopic bounds on the uncertainties: {d e R" | Gd < g}

lower bound on CBC:
CBC(ZUt, Uy, dt) Z kc(.’lﬁt) — H1 (.”L’t)dt - ’U/;I,HQ(CUt)dt - Hg(.’l?t)ut

The parameters are calculated in our paper

MJ Khojasteh
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Robust multi-agent CBF

polytopic bounds on the uncertainties:

lower bound on CBC:

{deR" | Gd < g}

CBC((Bt, U, dt) Z kc(ajt) — Hl (.’L’t)dt — ’UJ?HQ(CUt)dt — Hg(.’l?t)ut

min||u — Uges|
Uu

s.t. (1;1(1111) CBC(x¢,u,ds) >0

where d(x;) € D

||uH < Umax

u,§

min ||u — Uges||2

s.t. Hs(zy)u+ &g < ke(xy)

Hi(z;) +ul Hy(zy) = G
£>0
[u]| < Umaa

MJ Khojasteh
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Approach

1. Mult-agent CBF
2. Incorporating Robustness into CBF
3. Learning Uncertity bound

Trajectory
Generator

Uges

B
>

Bayesian
Inference
(MVG)

d (xagents )

A 4

Robust
CBF

X agents

Multi-Agent System

___________

___________
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Hyperparameter optimization

Bayesian learning (Matrix-Variate Gaussian Process)

vee(d(x1),...,d(xn)) ~ N(0, X(x) ® Q)

some agents might behave predictably and

2 = k(xi,x j) others might behave more erratically, and
) hyperparameter optimization 1s necessary to
K(zi,25) = 0% exp (_||x;l_2xj : ) capture these uncertainty profiles in our
Bayesian inference
We optimize kernel parameters ®
1,9 °,
g, t, ® LIPS o
® .

to obtain better prior.
(We learn them oftline from data) © ®
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Learning Uncertity bound (online)

Bayesian learning (Matrix-Varnate Gaussian Process)

vee(d(x1),...,d(xn)) ~ N(0, X(x) ® Q)

Posterior mean  Posterior variance QP
(d—pa)" 257 (d—pa) ~ x% Iglgn v — Uges||2
* s.t. Hz(xi)u+ €9 < ke(xy)
(d = pa)"251(d = pa) < ks - Hy(z4) +u' Hy(xy) = €G
with probability 1 — & >0
* [u]| < Umaa
Polytopic bounds l

High-Confidence Safety Guarantee
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Overview of the the control structure

Hyperparameter Optimization

Trajectory
Database

A
1
1

Trajectory | Udes

Bayesian
Inference
(MVG)

d(xagents)

Y

Robust

v

Generator

CBF

Multi-Agent System

xagents

=
@)
S
o
—

___________
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Navigation 1n Unstructured Environment

® o
® o
7
O
®
o o Y

Sample path of a multi-agent system based on our
proposed Robust CBF

https://voutu.be/hXg5kZO861 w

By running 1000 simulated tests in
randomized environments, we show that
our robust CBF avoids collision 1 98.5%
of cases performing much better than the
nominal mult-agent CBF, which avoids

collisions 1 85.0% of cases.
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Part I: Safety
1. Probabilistic Safety Constraints for Learned High Relative Degree System
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Cloud robots and automation systems

MJ Khojasteh
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Security

Smart Home

)
N

We need to address physical security in addition to cyber security

MJ Khojasteh
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News reports

Port of San Diego suffers cyber-attack,
second port in a week after Barcelona

Hacker jailed for revenge sewage HACKERS REMOTELY RILL A
attacks JEEP ON THE HIGHWAY—WITH

Job rejection caused a bit of a stink ME IN IT
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News reports

The Stuxnet outbreak The

A worm in the centrifuge

Economist

An unusually sophisticated cyber-weapon is mysterious but important

Computer virus Stuxnet a ‘game changer,’

DHS official tells Senate CCNW'

j K“It has changed the way we view the security threat”

Symantec.
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The man in the maddle

{ Plant ]=

A fictitious plant for
the controller

. [Controller]

A malicious controller

for the plant

MJ Khojasteh
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Mathematical formulation

Linear dynamical system

Xi+1 = aXy + U + Wy
{Wi} are i.id. N(0,Var[W])

The controller, at timek, observes Y% and generates a control signal
U as a function of all past observations Ylk.

Y, = X Under normal operation

Y. = Vi Under attack

The attacker feeds a malicious mput Uy to the plant.

How can the controller detect that the system 1s under attack?

MJ Khojasteh 54



Anomaly detection

e The controller 1s armed with a detector that tests for anomalies 1n
the observed history Y%

X1 = aXg + U + Wy {Wi} are i.id. N(0,Var[W])

e Under legitimate system operation (Yx = X&) we expect
Yk:—l—l — CLYk — Uk (Ylk) ~ 1.1.d. N(O, VCLT[W])

e The detector performs the variance test

Var[W] = E[W?]

55
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Anomaly detection

* Under legitimate system operation we expect

Yk_|_1 — aYk — Uk(Ylk) ~ 1.1.d. N(O, VCL’I“[W])
e The controller performs a threshold-based detection

% Z Vit —aYy — Uk(Ylk)}Q e (Var|W]—46,VarW]+9).
k=1

e What kind of attacks can we detect?

MJ Khojasteh
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'The man 1in the middle attack types

Replay attack

Learning-based attack

Xiy1 = aXy + U + Wy

MJ Khojasteh

M]J Khojasteh et al.
(2019)
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Comparison with a replay attack

o
(00]
]

0.6 1

o
o
1

Attacker's success rate
=
N

0.0 A

——- Replay attack M] Khojasteh et al.
—— Learning-based attack (2019)

109 101 102 103

Size of the detection window
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Delense against learning-based attack

Xkt1 = aXy + U + Wh.

e The attacker has access to both Xz and Ug and knows the
distribution of W3 and of the initial condition Xo, but it should learn
the open loop gain a of the plant.
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‘T'wo phases of the learning-based attack

Learning (exploration) Hiyacking (exploitation)

Favesdropping and learning Hiyjacking the system
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‘T'wo phases of the learning-based attack

Learning (exploration)
phase

Uk =| Plant | Xk;

__
Public | U 4 X (“Public
Channel Channel
| Controller |=

Uk L JYk:Xk

Favesdropping and learning

MJ Khojasteh

Hyacking (exploitation)
phase

e
X

-

=

Uk

"

Hyacking the system
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Delense against learning-based attack

Impede the learning process of the attacker

Uk — modify((_fk)

=

Nominal control policy

The controller, by potentially sacrificing the optimally of the control task,
can act in an adversarial machine learning setting

+ 00T x 8

noise
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Delense against learning-based attack

[Controller] minUk HUk o U’f H

knows the dyanamics
1 xt.up)|

E to enhance the dyanamics

wants to Learn the dyanamics privacy
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Privacy-enhancing signal

Attacker's success rate

1.0 A
,.| MJ Khojasteh et al.
(2019)
0.2 - === Unauthenticated controller
R R ERREPPrY Authenticated controller, N(0, 9)
—— Authenticated controller, N(0, 16)
10! 102

Duration of the learning phase
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Learning-based attack: vector systems

A — A:{‘?]

Var e Cov

0.40 -
— Replay, L=50 .

0.354 ——- Learning-based, L=450 w KhQ]aStCh et al.
—— Learning-based, L=40 (2019)

<
w
o

o
N}
u

Attacker's success rate
o o
= N
N =

o
=
o

©
o
a

Suxnet

000 - e ——————————

100 101 102
Size of the detection window
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Nonlinear learning-based attack

A w— ( X, U ) & Reproducing Kernel Hilbert Space (RKHS)

Linear regression s Bayesian learning: Gaussian processes (GP)

Vulnerable region

..... f(z2)
% Samples

1 —— Learned dynamics

I 95% confidence interval

Lower attacker's
success rate
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