

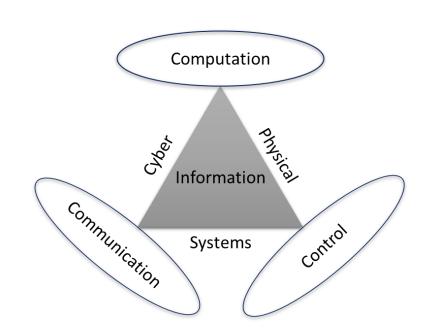



# Event-triggered Stabilization over Digital Channels

Mohammad Javad Khojasteh

Wireless Information and Network Sciences Laboratory
Laboratory for Information and Decision Systems
Massachusetts Institute of Technology
mkhojast@mit.edu




### Outline

- Preliminaries
  - cyber-physical systems
  - data-rate theorem
- Event-triggered stabilization over digital channels
  - scalar systems
  - experimental Validation
  - Zeno Behavior
  - event-triggered vs. time-triggered
  - vector systems
  - exponential convergence
- Discussion and future work



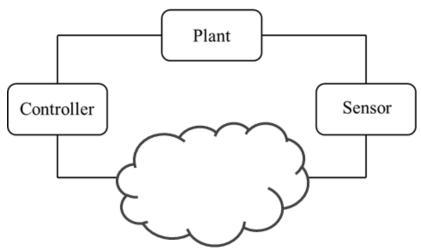
# Cyber-Physical Systems (CPS)

- Largely regarded as the next-generation engineering systems
- Integration of computing, communication, and control
- Arising in diverse areas such as robotics, energy, and transportation



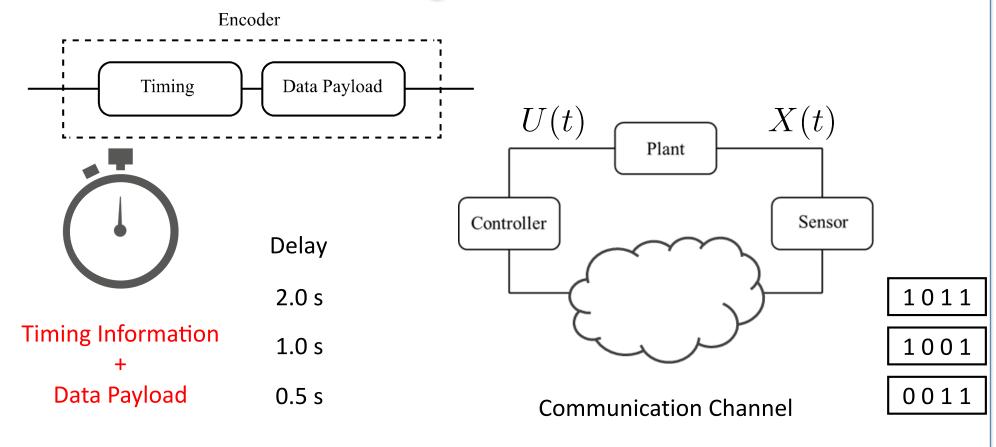
### **Cloud Robots and Automation Systems**

- An example of CPS
  - an emerging field in robotics and automation
  - cloud enables robots to use shared resources
  - feedback loop is closed over a communication channel
    - noisy and subject to delay




### **Networked Control Systems**

Plant is scalar


$$\dot{X} = aX(t) + bU(t) + W(t)$$
$$|W(t)| \le m$$

- Plant is unstable
- Communication channel is subjected to a finite data rate and bounded unknown delay

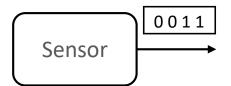


**Communication Channel** 





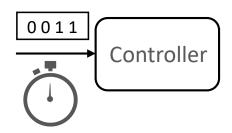
# Transmission with Delay


- ullet Packet transmission time  $t_s$
- ullet Packet reception time  $\,t_c$
- Delay  $t_c-t_s \leq \gamma$

$$t_c - t_s \le \gamma$$

### **Information Rate**

- $b_s(t)$  number of bits in data payload transmitted up to time t
  - information transmission rate


$$R_s = \limsup_{t \to \infty} \frac{b_s(t)}{t}$$



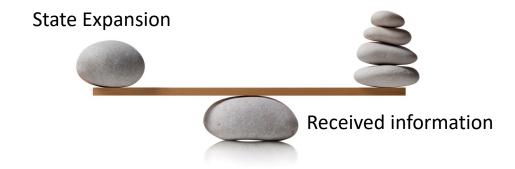
- the rate at which the sensor transmits data payload
- $b_c(t)$  be the amount of information measured in bits included in data payload and timing information received at the controller until time t
  - information access rate

$$R_c = \limsup_{t \to \infty} \frac{b_c(t)}{t}$$

- the rate at which controller receives information



### Data-rate Theorem


• We can stabilize the system if and only if the information access rate

$$R_c > \frac{a}{\ln 2}$$
 — entropy rate of the plant

state uncertainty  $e^a \longrightarrow 2^{-R_a}$ 

### Data-rate Theorem

• Balance between production and consumption of information



• This information can be supplied to the controller by data payload as well as timing

$$R_c > \frac{a}{\ln 2}$$

$$R_s$$
?



## **Event-triggering Review**

• Periodic control is the most common and perhaps simplest solution for digital systems.

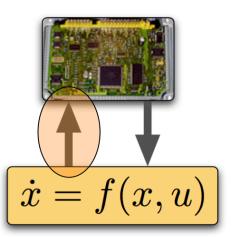
– Step 1: Good Dog

- Step 2: Good Dog

- Step 3: Bad Dog

- Step 4: Good Dog

.


•



Genibo SD Robot Dog

# **Event-triggering Review**

- In CPS we need to use the shared resources efficiently
  - periodic control can be inefficient
  - event-triggered control transmit sensory data in an opportunistic manner



# **Event-triggering Review**

• The main concept of event-triggered control is to transmit sensory data only when needed

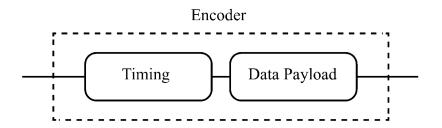
- Step 1: --

- Step 2: --

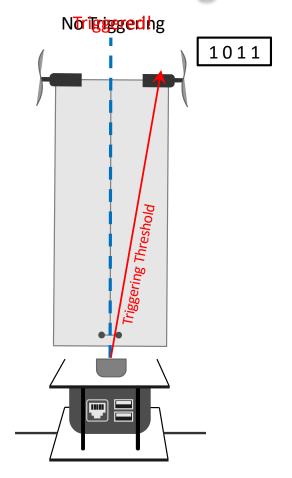
- Step 3: Bad Dog

- Step 4: --

•


•




• "Wise men speak because they have something to say" — Plato

## **State Dependent Timing Information Encoding**

 Our goal is to propose an event-triggering strategy that utilizes timing information by transmitting in a state-dependent fashion.



- intuitive example
  - stabilization of an inverted pendulum over a digital communication channel



## Input-to-state Practical Stability (ISPS)

 Encoding-decoding scheme, which encodes information in timing via event-triggering, to achieve ISpS

$$|X(t)| \leq \beta (|X(0)|, t) + \psi (|W|_t) + \chi(\gamma) + \zeta(|W|_t, \gamma).$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\beta \in \mathcal{KL} \qquad \psi \in \mathcal{K}_{\infty}(0) \quad \chi \in \mathcal{K}_{\infty}(d) \quad \zeta \in \mathcal{K}_{\infty}^2(0, d')$$

$$|W|_t = \sup_{s \in [0, t]} |W(s)|$$

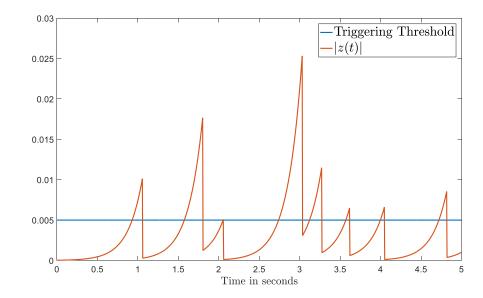
- for a fixed  $\gamma$ , this definition reduces to the standard notion of ISpS (Z-P Jiang, A. R. Teel, L. Praly- 94 and Sharon, Liberzon- 12)
- given that the initial condition, delay, and system disturbances are bounded, ISpS implies that the state must be bounded at all times

### **State Estimation Error**

• Plant

$$\dot{X} = aX(t) + bU(t) + W(t)$$

- $oldsymbol{\hat{X}}(t)$  the state estimation constructed at the controller
  - inter-triggering times

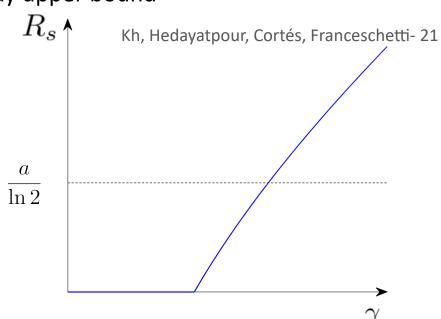

$$\dot{\hat{X}}(t) = A\hat{X}(t) + BU(t), \quad t \in (t_c^k, t_c^{k+1})$$

- We assume the sensor can also compute the same estimate  $\hat{X}(t)$  via a feedback acknowledgment
  - communication via control input
  - control input is known at the sensor and it jumps only at each reception times
- State estimation error

$$Z(t) = X(t) - \hat{X}(t)$$

# **Triggering Strategy**

- Triggering criterion  $|Z(t_s)| = J$ 
  - triggering threshold J
  - $-|Z(t_c^+)|$  is always below the triggering threshold
  - -|Z(t)| is bounded




### **Information Transmission Rate**

- Required information transmission rate vs delay upper bound
  - small values of delay
    - timing information is substantial
    - $R_s$  is arbitrarily close to zero
  - as delay increases
    - timing information becomes out of date
    - ullet  $R_s$  begin to increase



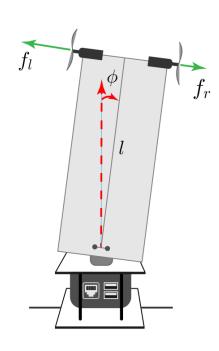
- uncertainty at the controller increases
- state estimation error should be below the threshold at the reception time
- ullet  $R_s$  exceeds the rate imposed by the data-rate theorem



# Challenges

- Packet size
  - necessary Condition

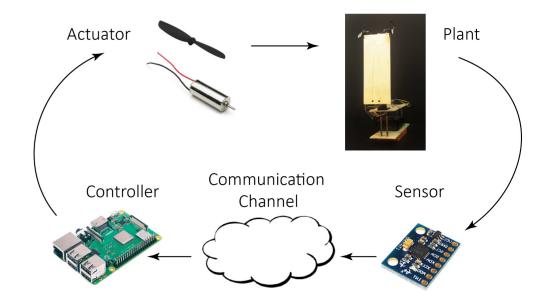
#bits 
$$\geq \log \frac{m(\text{uncertainty set})}{m(\text{covering ball})}$$


- sufficient condition
  - we designed an encoding-decoding scheme
    - encode a quantized version of the triggering time in the data payload and timing
- Triggering rate

Frequency = 
$$\limsup_{N \to \infty} \frac{N}{\sum_{k=1}^{N} k^{th} \text{inter-event time}}$$

- necessary Condition: lower bound
- sufficient condition: upper bound

# **Experimental Validation**


- Laboratory-scale inverted pendulum
  - using linearized model
  - stabilization around unstable equilibrium point





## **Experimental Validation**

- Off-the-shelf components
  - raspberry Pi model 3
  - two small DC motors
  - two identical propellers
  - MEMS sensor
    - 3-axis accelerometer
    - 3-axis gyroscope
  - complimentary filter
  - details of these experiments
    - Kh, Hedayatpour, Franceschetti- 19



- Delay upper bound
  - 2 sampling times
- Packet size
  - -1 bit
- Number of samples
  - -6541
- Number of triggering
  - -170
- Information transmission rate

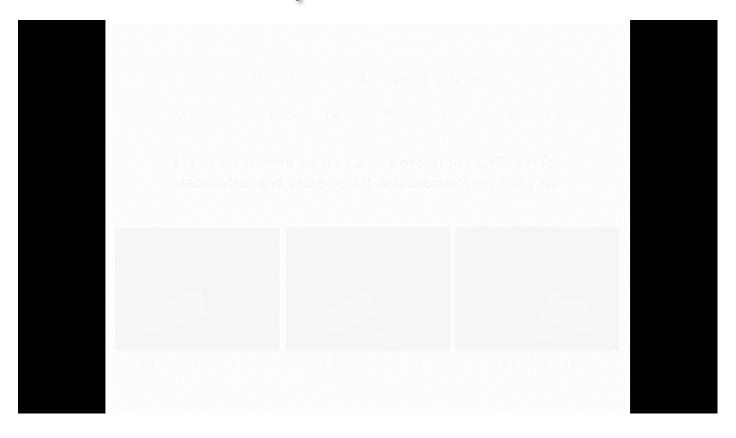
8.6633 bit/sec



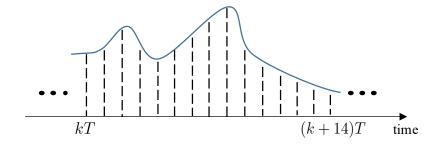
Entropy rate of the system

10.5461 bit/sec

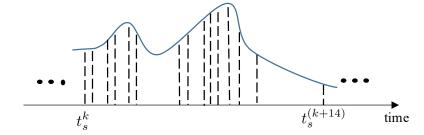
- Delay upper bound
  - 3 sampling times
- Packet size
  - -3 bit
- Number of samples
  - -6333
- Number of triggering
  - -146
- Information transmission rate


23.0526 bit/sec

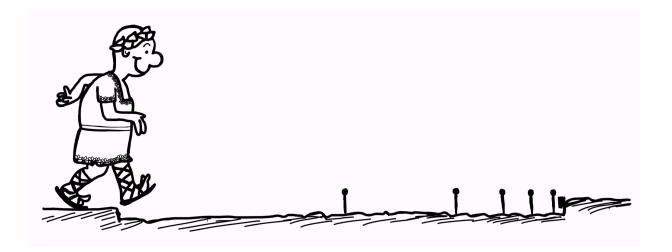



Entropy rate of the system

10.5461 bit/sec

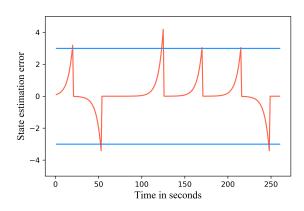

- Delay upper bound
  - 7 sampling times
- Packet Size
  - sufficient packet size:
    - 5 bit
  - necessary packet size:
    - 1 bit
- In this experiment we start with a packet size sufficient for stabilization and decrease it in subsequent experiments

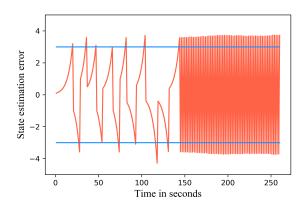



- Periodic control
  - Equal-distance sampling



- Event-triggered control
  - sporadic sampling
  - hybrid phenomenon
    - Zeno behavior



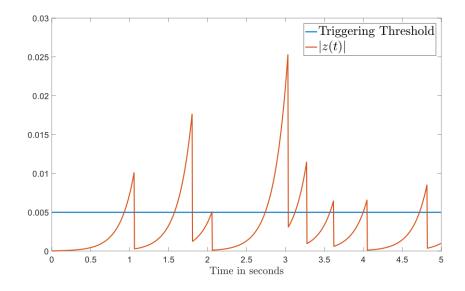


- A paradox by ancient Greek philosopher Zeno of Elea
  - "That which is in locomotion must arrive at the half-way stage before it arrives at the goal."
  - We should never be able to reach any destination!



Normal realization

- Zeno realization
  - degenerate behavior of some event-triggering strategies
  - infinite number of triggering events
     occurring in a finite amount of time






- Event-triggering strategies
  - guarantee stability
  - rule out the Zeno behavior
- Design packet size

$$-$$
 for  $0 < \rho_0 < 1$ 

$$|z(t_c^+)| \le \rho_0 J$$

uniform lower bound on the inter-triggering times



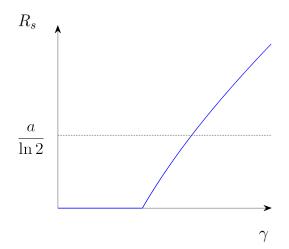
31

## Time-triggering vs Event-triggering

- We compared our results against information access rate  $R_c > rac{a}{\ln 2}$
- In a time-triggered strategy  $R_s$ ?
  - time-triggered strategy

$$t_s^0 = 0, \quad t_s^{k+1} = t_s^k + (\lfloor \Delta_k / T \rfloor + 1)T$$

 similar to our event-triggering setup a packet is transmitted only after the previous packet is received.


# Time-triggering vs Event-triggering

- Time-triggering strategies
  - delay dependent
  - does not exploit timing information

- Event-triggering strategies
  - state and delay dependent
    - transmit sensory data only when needed
    - exploit timing information

$$R_s \ge \frac{a(\lfloor \frac{\gamma}{T} \rfloor + 1)}{\ln 2}$$

Kh, Tallapragada, Cortés, Franceschetti- 17



## **Vector Systems**

• Data-rate theorem

$$R_c > \frac{Tr(A)}{\ln 2}$$

• Time-Triggering

$$R_s \ge \frac{Tr(A)(\lfloor \frac{\gamma}{T} \rfloor + 1)}{\ln 2}$$

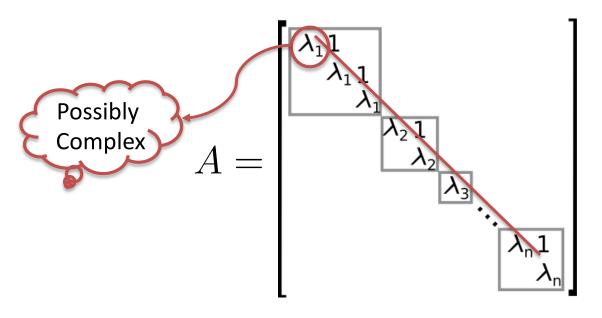
• Event-Triggering



## **Vector Systems**

- Triggering criterion
  - various ways  $||z(t_s)||_2 = v(t_s)$




- ullet coordinate by coordinate analysis  $|z_i(t)|=J_i$ 
  - this corresponds to treating the n-dimensional system as n scalar coupled systems.

## **Vector Systems: Communication Channel**

• We assume that there are n parallel finite-rate digital communication channels between each coordinate of the system and the controller, each subject to unknown, bounded delay

• In the case of a single communication channel, we can consider the same triggering strategy, but an additional  $\lceil \log n \rceil$  bits should be appended at the beginning of each packet to identify the coordinate it belongs to

## Vector Systems: Jordan Block



- off-diagonal ones make coupling between states
  - Kh, Tallapragada, Cortés, Franceschetti- 20

## **Extension to Complex Linear Systems**

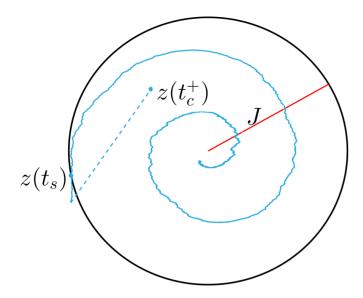
• Plant

$$\dot{X} = aX(t) + bU(t) + W(t)$$

bounded disturbances

$$||W(t)|| \le m$$

data-rate theorem extension


$$R_c > \frac{2Re(a)}{\ln 2}$$

• this information can be supplied to the controller by data payload as well as timing

$$R_s$$
?

# **Triggering Strategy**

- Triggering criterion  $\; \|Z(t_s)\| = J$ 
  - triggering radius  $\,\, J\,$
  - $-\|Z(t_c^+)\|$  is always inside the triggering circle
  - $-\|Z(t)\|$  is bounded

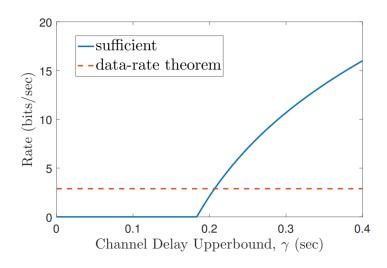


### The Encoding

100010101010011010010

101010100101101010100101000




A uniform quantization of the phase at which the state estimation error hits the triggering circle



A quantized version of triggering time which is constructed like our encoding process for linear scalar systems.

#### **Information Transmission Rate**

- Required information transmission rate for stabilization
  - similar to scalar real plant
    - ullet for small values of the delay, is smaller than the rate required by the data-rate theorem  $R_s$



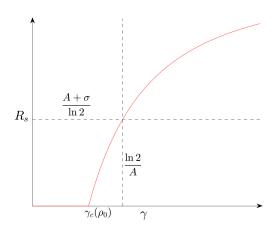
Kh, Hedayatpour, Cortés, Franceschetti- 21

### **Exponential Convergence**

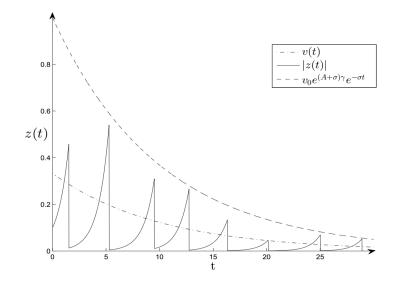
• Exponential convergence of the estimation error or the plant state

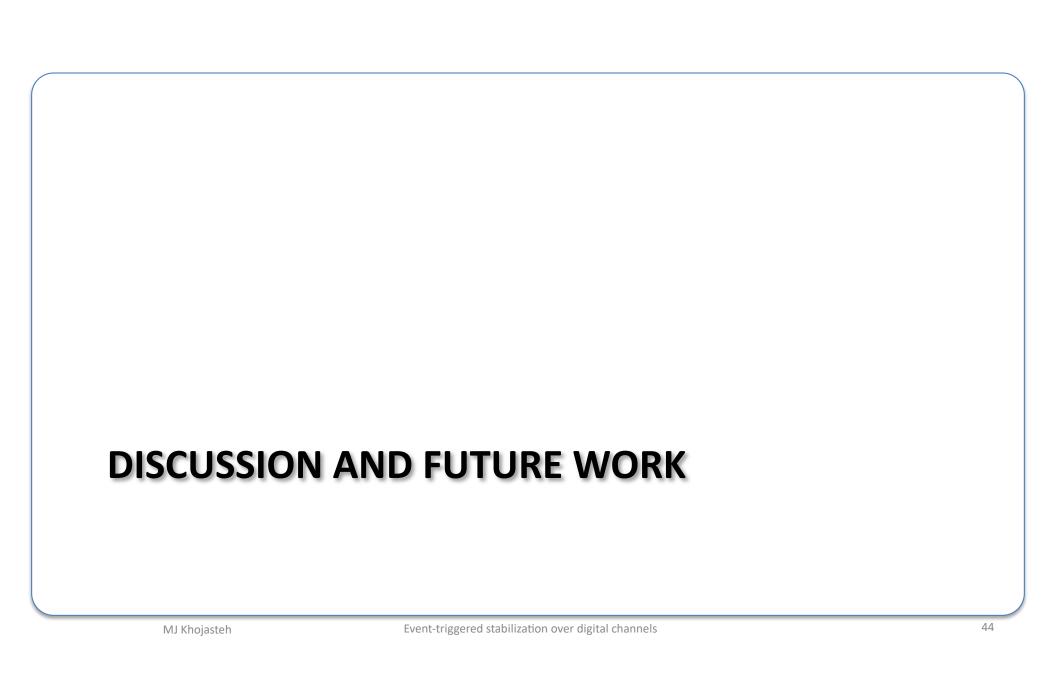
$$-\forall t>0$$
  $|z(t)|\leq |z(0)|\ e^{-\sigma t}$  or  $\forall t>0$   $|x(t)|\leq |x(0)|\ e^{-\sigma t}$ 

$$R_c \ge \frac{A + \sigma}{\ln 2}$$


- the access rate should be larger than entropy rate of the plant + convergence rate
  - Kh, Tallapragada, Cortés, Franceschetti- 17
  - estimation entropy (Liberzon, Mitra -17)

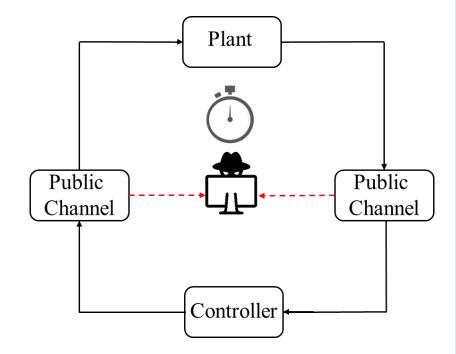
## **Exponential Convergence**


• Time-triggering


$$R_s \ge \frac{(a+\sigma)(\lfloor \frac{\gamma}{T} \rfloor + 1)}{\ln 2}$$

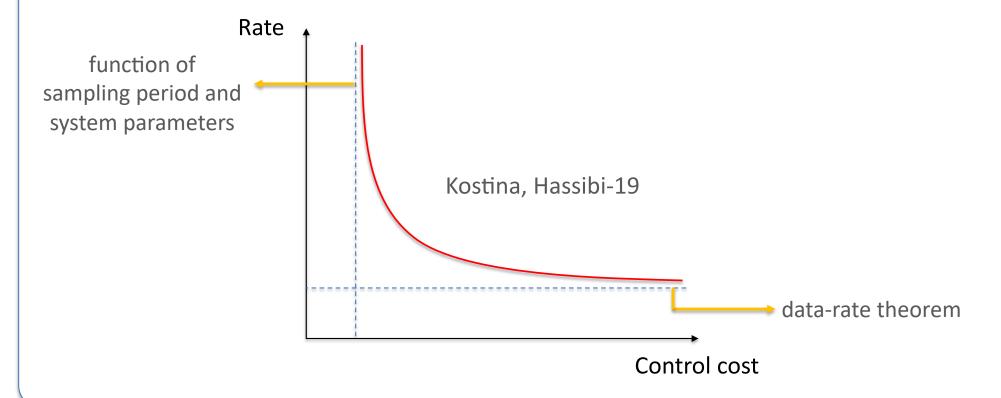
• Event-triggering




• Kh, Tallapragada, Cortés, Franceschetti- 20

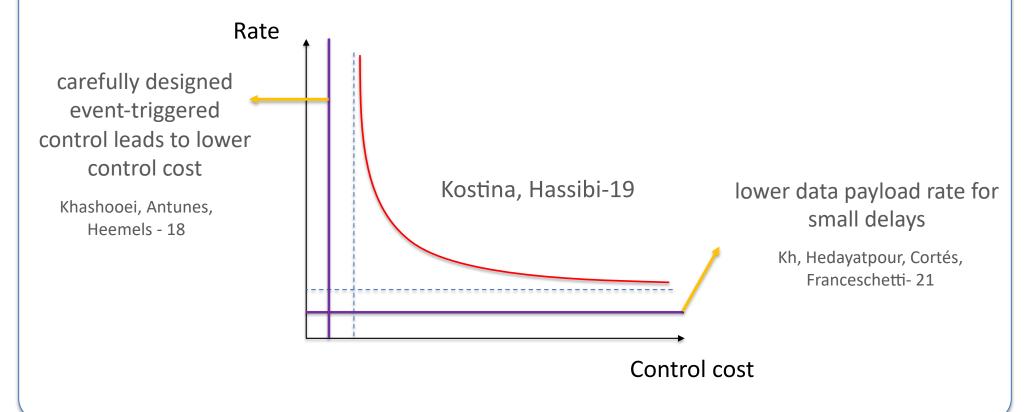





### Security and Privacy Issues

- Adversaries might take advantage of the inherent timing information in even triggering
- In context of
  - differential privacy
    - Cortes et al, CDC 2016
  - learning-based attacks
    - Khojasteh et al, TCNS 2021.




#### Rate-cost Tradeoffs in Periodic Control

• Appropriate communication rate to achieve a control objective



#### Rate-cost Tradeoffs in Event-based Control

• The event-triggering can improve this results in two aspects



## **Nonlinear Systems**

Plant

$$\dot{X} = f(X(t), U(t), W(t))$$

bounded disturbances

$$|W(t)| \le m$$

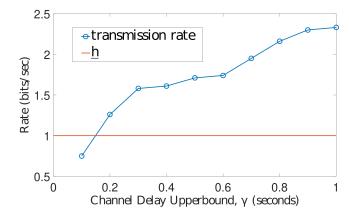
– locally Lipschitz

$$|f(X, U, W) - f(\hat{X}, U, 0)| \le L_x |X - \hat{X}| + L_w |W|$$

### **Nonlinear Systems**

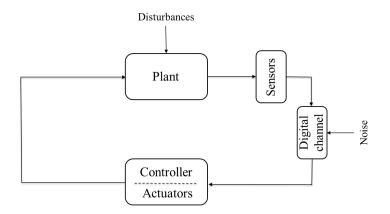
• There exists a control policy which renders the dynamic ISS with respect to estimation error and system disturbances.

$$|X(t)| \leq \beta' (|X(0)|, t) + \Pi' (|Z|_t) + \psi' (|W|_t)$$


$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

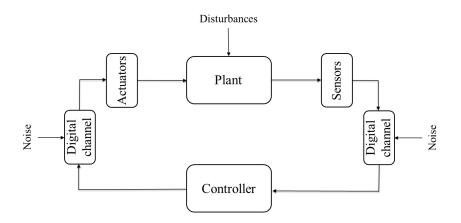
$$\beta' \in \mathcal{KL} \qquad \Pi' \in \mathcal{K}_{\infty}(0) \quad \psi' \in \mathcal{K}_{\infty}(0)$$

$$Z(t) = X(t) - \hat{X}(t)$$


$$|W|_t = \sup_{s \in [0,t]} |W(s)|$$

- similar to linear plant
  - for small delay, we are below data-rate theorem
    - Kh, Hedayatpour, Franceschetti- 19
- extension to vector system
- relaxing the above assumption
  - similar to Hespanha, Liberzon, Teel 08 for periodic control




### **Uplink and Downlink Channels**

- Data-rate theorems focused on Uplink
  - main bottleneck in mobile robots
    - week on-board transmitter
  - controller is co-located with the actuators
  - serve as causal feedback
    - acknowledge the received symbol to the sensor
    - plant is the communication medium
      - communication via control input



## **Uplink and Downlink Channels**

- A digital channel in the downlink between the controller and the plant
  - extension of theses data-rate results



#### References

- Franceschetti M, Khojasteh M J, Win M Z
  - Information Flow in Event-Based Control of Cyber-Physical Systems
    - Book chapter (Computation-aware Algorithmic Design for Cyber-Physical Systems), In progress
- Khojasteh M J, Hedayatpour M, Cortes J, Franceschetti M
  - Exploiting timing information in event-triggered stabilization of linear systems with disturbances
    - IEEE Transactions on Control of Network Systems, 2021
- Khojasteh M J, Tallapragada P, Cortes J, Franceschetti M
  - The value of timing information in event-triggered control
    - IEEE Transactions on Automatic Control, 2020
- Khojasteh M J, Hedayatpour M, Franceschetti M
  - Theory and implementation of event-triggered stabilization over digital channels
    - IEEE 58th Annual Conference on Decision and Control, 2019
- Khojasteh M J, Tallapragada P, Cortes J, Franceschetti M
  - Time-triggering versus event-triggering control over communication channels
    - IEEE 56th Annual Conference on Decision and Control, 2017