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Abstract—In networked environments, adversaries may
exploit location information to perform carefully crafted
attacks on cyber-physical systems. To prevent such secu-
rity breaches, this letter develops a network localization
and navigation (NLN) paradigm that accounts for network
secrecy in the control of mobile agents. We consider a sce-
nario in which a mobile agent is tasked with maneuvering
through an adversarial network, based on a nominal control
policy, and we aim to reduce the ability of the adversarial
network to infer the mobile agent’s position. Specifically,
the Fisher information of the agent’s position obtained by
the adversarial network is adopted as a secrecy metric.
We propose a new control policy that results from an
optimization problem and achieves a compromise between
maximizing location secrecy and minimizing the deviation
from the nominal control policy. Results show that the
proposed optimization-based control policy significantly
improves the secrecy of the mobile agent.

Index Terms— Localization, Fisher information, sensor
network, secrecy, control.

I. INTRODUCTION

L
OCATION-AWARENESS plays an essential role in a
myriad of network applications, including Internet-of-

Things (IoT) [1], Internet-of-Battlefield-Things (IoBT) [2],
and autonomy [3]. The distributed nature of these systems
can be a source of vulnerability, and adversaries may exploit
location information of targets to perform crafted attacks on
these systems [4]–[7]. Therefore, studying and preventing such
security breaches by enhancing agents’ location secrecy is
vital. Location secrecy is also critical in applications such as
adversarial search-and-rescue missions and pursuit-evasion in
mobile robotic settings [8], where an agent tries to actively
avoid being detected. In this context, there is an increasing
interest in active defense where the target performs evasive
maneuvers to reduce the ability of the adversarial network to
infer its position.

The fundamental research described in this letter was supported
in part by the Office of Naval Research under Grants N00014-16-1-
2141 and N62909-22-1-2009, in part by the European Union’s Horizon
2020 Research and Innovation Programme under Grant 871249, and in
part by the Army Research Office through the MIT Institute for Soldier
Nanotechnologies, under Contract W911NF-13-D-0001. Corresponding
author: Moe Z. Win (e-mail: moewin@mit.edu).

M. J. Khojasteh, A. A. Saucan, and Z. Liu are with the Wireless
Information and Network Sciences Laboratory, Massachusetts Institute
of Technology, Cambridge, MA 02139, USA.

A. Conti is with the Department of Engineering and CNIT, University
of Ferrara, Via Saragat 1, 44122 Ferrara, Italy.

M. Z. Win is with the Laboratory for Information and Decision Sys-
tems, Massachusetts Institute of Technology, Cambridge, MA 02139,
USA.

The scope of this letter lies at the intersection of network
localization and navigation (NLN) [9], control of mobile
robotic systems [10], and wireless network secrecy [11]. We
consider a scenario in which a mobile agent is tasked with
maneuvering through an adversarial network. The adversarial
sensing nodes attempt to infer the location of the mobile agent
(robot) through measurements, e.g., range-only measurements.
In particular, we consider a static network of adversarial
sensing nodes and a mobile robot described with known
system dynamics.

The fundamental limits of NLN provide performance bench-
marks and assist the design of the signal processing chain and
the architecture of the network [12]–[14]. In particular, the
work in [12] determines the Fisher information matrix (FIM)
of agents’ positions with different types of measurements
without considering the control of agents. Related works on
the design of control policies or optimal way-points for mobile
sensing nodes can be found in [15], [16]. We aim to design
a control policy for the mobile agent to enhance its location
secrecy.

The literature has considered entropy regularized reinforce-
ment learning (RL), which finds policies with the highest
entropy, to improve exploration strategies utilized in RL [17].
In the context of networked control systems, metrics based on
Fisher information and mutual information were used in [18],
[19] to improve the secrecy of the system dynamics parameters
by hampering the adversary’s learning process. A two-player
game modeling the adversarial information acquisition in
robotics was investigated in [20], where each robot aims to
design a control policy that maximizes information gain while
minimizing information loss with respect to the adversary
robot. In particular, the setup of [20] suffers from curse of
dimensionality and can be computationally expensive. Secure
linear-quadratic optimal control for systems in the absence of
disturbances was considered in [21], where the controller aims
to drive the system to a set of final states while deteriorating
the adversary’s ability to estimate the final state.

This work considers a hierarchical control design [22], [23]
for the agent in which a nominal control policy is given for a
robot in accordance with a specific task. This nominal control
policy can be calculated by a high-level planner, such as model
predictive control (MPC) [24], RL [25], or motion planning
via a neural control contraction metric [26]. This high-level
planner is usually computationally expensive and operates
at a low frequency. We aim to modify the nominal control
policy, during online operation, in a minimum invasive manner
to improve the location secrecy of the agent. This requires
identifying and solving a tractable optimization problem to



Fig. 1. The agent (blue dot) moves in a network consisting of static
adversarial sensing nodes (red hexagons). The trajectory of the agent
with nominal control policy is represented by the dashed black curve.
We modify the control policy of the mobile agent to reduce the Fisher
information obtained by the adversarial network, where the agent follows
the path showed by the solid blue curve.

reduce the ability of the adversarial network in inferring the
agent’s position as it maneuvers through the network.

This letter considers a localization network consisting of a
mobile agent and static adversarial sensing nodes. The agent
knows its own dynamics as well as the number and the
positions of the sensing nodes. The goal is to design policies
for controlling the movement of the agent in order to improve
its secrecy in a minimally invasive manner during online
operation. To achieve this goal, we design an optimization-
based controller that reduces the Fisher information obtained
by the adversarial network. The key contributions of this letter
are as follows:

• we characterize the impact of control policies on the
Fisher information of the position for a mobile agent
obtained by a network of adversarial nodes;

• we design optimization-based control policies, which can
be solved efficiently, for improving agent secrecy with
minimal modifications to its nominal control policy; and

• we define a secrecy parameter and quantify the trade-
off between the adversary’s Fisher information and the
change in control policy.

Notations: Random variables are displayed in sans serif,
upright fonts; their realizations in serif, italic fonts. Vectors
and matrices are denoted by bold lowercase and uppercase
letters, respectively. For a square matrix A, notations A−1

and det
(

A
)

represent its inverse and determinant, respectively.
diag

(

x1, x2, . . . , xn

)

represents an n-by-n diagonal matrix
with xi being the entry on its ith row and column. Expression
A ! B represents that matrix A−B is positive semidefinte.
The zero and identity matrices are denoted by 0 and I, respec-
tively. The notation N (µ,σ2) denotes a Gaussian distribution
with mean µ and variance σ2.

II. PROBLEM FORMULATION

Consider a 2D localization network comprised of Ns

adversarial sensing nodes that are static. Let set Ns =
{1, 2, . . . , Ns} represent the indices of the adversarial sensing
nodes with the position of node j represented by q(j) =
[q(j)x , q(j)y ]". As depicted in Figure 1, the objective of the
adversarial sensing nodes is to estimate the position pt =
[xt, yt]" of an agent of interest at time t, which is a robot,
based on the following range measurements

rt =
[

d(1)t , d(2)t , . . . , d(Ns)
t

]"
+ nt (1)

where d(j)t = ‖pt−q(j)‖ represents the true distance between
the agent and the j-th sensing node, and nt represents the
measurement noise. In particular, the discrete-time process
{nt}t!1 consists of independent, identically distributed (IID)
zero-mean Gaussian random vectors with covariance matrix
diag

(

σ2
1 ,σ

2
2 , . . . ,σ

2
Ns

)

. The number and the positions of the
sensing nodes in the adversarial network are known to the
mobile agent.1 The agent tries to avoid being detected by
the adversarial sensing nodes, and estimates its location via a
separate authenticated and secure network of sensing nodes or
using prior knowledge and intra-node measurements obtained
by inertial measurement units (IMUs).

The agent dynamics are modeled as
[

pt+1

vt+1

]

=

[

I ∆sI
0 I

] [

pt
vt

]

+

[

0

I

]

ut +wt (2)

where ∆s is the sampling period, which is set to be 1 s for ease
of exposition, and meter is used as the measurement unit for
the position. Here, ut is the control input applied to the agent at
time t, vt = [vx,t, vy,t]" represents the velocity of the agent
at time t, and {wt}t!1 represents the dynamic disturbances
modeled as IID zero-mean Gaussian random vectors with
covariance matrix Q. Also, for k ∈ {1, 2, 3, 4}, wk,t represents
the kth entry of wt. As discussed in [28], such dynamics are
capable of modeling general robot kinematics.2

A. Fisher Information Inequality

Let p̂ be any unbiased estimator of the unknown determin-
istic position p. Under regularity assumptions [29, Ch.3], the
non-Bayesian Fisher information inequality (FII) [12] states
that

E
{

(p− p̂)(p− p̂)"
}

! J−1(p)

where the FIM J(p) is given by

J(p) "
∑

j∈Ns

λ(j)
[

cos2(φ(j)) cos(φ(j)) sin(φ(j))
cos(φ(j)) sin(φ(j)) sin2(φ(j))

]

.

Here, λ(j) represents the range information intensity (RII)
between the agent and the j-th adversarial sensing node, and
φ(j) is the relative angle between the agent and the same node.

Several criteria for assessing the performance of the local-
ization network can be written as a function of the eigenval-
ues of J−1(p) [30, p. 387]. In particular, the D-optimality
criterion corresponds to the minimization of det

(

J−1(p)
)

,
the A-optimality criterion corresponds to the minimization
of tr

(

J−1(p)
)

, while the E-optimality criterion corresponds
to the minimization of the largest eigenvalue of J−1(p).
Specifically, the mean-square error (MSE) of the position
estimator is lower bounded by tr

(

J−1(p)
)

[13]; hence, the

1By relying on robust optimization techniques [13], [27], extensions of
the proposed method are possible in the case when the agent has only soft-
information on the localization of the adversarial nodes (e.g., their belonging
to a finite union of compact sets) as opposed to exact knowledge of their
positions.

2For ease of exposition, we consider the linear dynamics of (2). Lineariza-
tion can easily be employed to extend our proposed method to more general
nonlinear dynamics.



P1 : minimize
δt−1

(

δx,t−1(ρ̂t−1)
)2

+
(

δy,t−1(ρ̂t−1)
)2

+ αE
{

det
(

J(pt+1)
)
∣

∣ p̂t−1 = p̃t−1, v̂t−1 = ṽt−1

}

(5)

A-optimality criterion is related to the MSE of the position
estimator.

Let λ be the maximum of {λ(j), j ∈ Ns}. To consider a
more favorable scenario for the adversarial sensing nodes (and
a less favorable scenario for the mobile agent), according to
the A-optimiality criterion, we assume that RIIs between the
agent and all sensing nodes are equal to λ, that is λ(j) = λ for
all j ∈ Ns. In this case, the D-optimality, A-optimality, and
E-optimality are equivalent [16]. Moreover, from Theorem 1
of [31] (see also [15]), it follows

det
(

J(p)
)

= λ2
∑

(i,j)∈S

sin2
(

φ(j) − φ(i)
)

(3)

where S "
{

(i, j) : i, j ∈ Ns, j > i
}

. The above results are
obtained in a non-Bayesian setting. In Bayesian settings, an
average information metric can be obtained by averaging the
quantity in (3) across the distribution of the possible agent’s
location. Other metrics can be constructed directly from the
agent’s posterior distribution, such as posterior covariance, or
posterior entropy (cf. [32]). In the following, E

{

det
(

J(p)
)}

is adopted as the performance metric for localizing the agent.

Given the network of adversarial sensing nodes, the agent
modifies its trajectory in a minimally invasive manner to
enhance its location secrecy. Let p̂t and v̂t denote the esti-
mators of the agent position pt and its velocity vt at time
t, respectively, constructed by the adversarial network. That
is, the estimators p̂t and v̂t are constructed using the range
measurements (1), up to time t, by the adversarial sensing
nodes. We also let ρ̂t be the agent’s estimator of its own
position. The estimator ρ̂t may be constructed using prior
knowledge and intra-node measurements obtained by IMUs,
or it could be provided to the agent by a separate authenticated
and secure network of sensing nodes.

We consider a hierarchical control design as follows. The
agent is assumed to follow a nominal control policy π(ρ̂t).
The policy π(ρ̂t) can be provided by a high-level planner
which is usually computationally expensive and operates at a
low frequency. The goal is to minimally modify the nominal
policy for improving the secrecy of the agent during online
operation. At time t, the nominal control policy π(ρ̂t) =
(

πx(ρ̂t),πy(ρ̂t)
)

is modified as follows:

ux,t = πx(ρ̂t) + δx,t(ρ̂t)

uy,t = πy(ρ̂t) + δy,t(ρ̂t) (4)

where δx,t(ρ̂t) and δy,t(ρ̂t) represent the change of the control
at time t along the x-axis and the y-axis, respectively. The
compact notation is introduced δt(ρ̂t) "

(

δx,t(ρ̂t), δy,t(ρ̂t)
)

.
As the agent aims to reduce the localization accuracy achieved
by the adversarial network, it will maximize the uncertainty of
the location perceived by the adversarial network by minimiz-
ing E

{

det
(

J(p)
)}

. In general, p̂t−1 and v̂t−1 are not available
to the mobile agent. In this case, we assume the agent to be

capable of simulating or approximating the inference process
of the adversarial network and to quantify the localization
information obtained by it. Let p̃t−1 and ṽt−1 denote the
simulated values by the mobile agent when mimicking the
inference process of the adversarial network.3 To increase
the location secrecy, the optimization-based refinement for
the control policy is formulated in the optimization Problem
P1 at the top of this page. In other words, the Fisher
information obtained by the adversarial network is minimized
in a regularized fashion ensuring that the squared L2-norm of
the change δt(ρ̂t) is minimal, where δt(ρ̂t) is defined after (4).
The secrecy parameter α # 0 adjusts the trade-off between
the Fisher information obtained by the adversarial network
of sensing nodes and the deviation from the nominal control
policy. For more discussions on the effect of the secrecy
parameter α on our design see Section IV. Based on the
control policy obtained by P1, the agent proceeds to estimate
its own position and to alter its trajectory in order to reduce the
localization information obtained by the adversarial network.
In the next section, we present the proposed online controller
that addresses Problem P1.

III. OPTIMIZATION-BASED CONTROLLER FOR FISHER

INFORMATION REGULARIZED NAVIGATION

Using (2) and (4), at time t + 1, the j-th relative angle is
random and it can be calculated as

φ
(j)
t+1 = tan−1

(

c
(j)
y,t − δy,t−1(ρ̂t−1)

c
(j)
x,t − δx,t−1(ρ̂t−1)

)

(6)

where

c
(j)
x,t " q(j)x − xt − vx,t−1 − πx(ρ̂t−1)− w3,t−1 − w1,t (7a)

c
(j)
y,t " q(j)y − yt − vy,t−1 − πy(ρ̂t−1)− w4,t−1 − w2,t . (7b)

Here, c
(j)
x,t and c

(j)
y,t are the distances between the agent and the

j-th sensing node at time t along the x-axis and the y-axis,
respectively, if the system follows the nominal control policy
π. Using (3) and (6), the determinant of the FIM as a function
of the control input is found to be

det
(

J(pt+1)
)

= λ2
∑

(i,j)∈S

h(

c
(j)
y,t,c

(j)
x,t,c

(i)
y,t,c

(i)
x,t

)

(

δt−1(ρ̂t−1)
)

(8)

where

h(a,b,c,d)(r1, r2)

" sin2
(

tan−1
(a− r2
b− r1

)

− tan−1
( c− r2
d− r1

))

. (9)

3In Section IV, a particle filter [33] is employed by the network of
adversarial sensing nodes to estimate the agent’s position and velocity; and
the agent is capable of emulating these calculations.



h̆(

c
(j)
y,t,c

(j)
x,t,c

(i)
y,t,c

(i)
x,t

)(0, 0) " h(

c
(j)
y,t,c

(j)
x,t,c

(i)
y,t,c

(i)
x,t

)(0, 0) + sin

(

2

[

tan−1

(

c
(j)
y,t

c
(j)
x,t

)

− tan−1

(

c
(i)
y,t

c
(i)
x,t

)

])

[

δx,t−1(ρ̂t−1)

(

c
(j)
y,t

(c(j)y,t)2 + (c(j)x,t)2
−

c
(i)
y,t

(c(i)y,t)2 + (c(i)x,t)2

)

+ δy,t−1(ρ̂t−1)

(

c
(i)
x,t

(c(i)y,t)2 + (c(i)x,t)2
−

c
(j)
x,t

(c(j)y,t)2 + (c(j)x,t)2

)]

(10)

zx,t(ρ̂t−1) " λ2
∑

(i,j)∈S

(

ĉ(j)y,t

(ĉ(j)y,t)2 + (ĉ(j)x,t)2
−

ĉ(i)y,t

(ĉ(i)y,t)2 + (ĉ(i)x,t)2

)

sin

(

2

[

tan−1

(

ĉ(j)y,t

ĉ(j)x,t

)

− tan−1

(

ĉ(i)y,t

ĉ(i)x,t

)

])

(11)

zy,t(ρ̂t−1) " λ2
∑

(i,j)∈S

(

ĉ(i)x,t

(ĉ(i)y,t)2 + (ĉ(i)x,t)2
−

ĉ(j)x,t

(ĉ(j)y,t)2 + (ĉ(j)x,t)2

)

sin

(

2

[

tan−1

(

ĉ(j)y,t

ĉ(j)x,t

)

− tan−1

(

ĉ(i)y,t

ĉ(i)x,t

)

])

(12)

Note that det
(

J(pt+1)
)

is a highly non-linear function of
the variable δt−1(ρ̂t−1). Hence, a first-order Taylor approx-
imation of det

(

J(pt+1)
)

is undertaken with respect to the
change δt−1(ρ̂t−1) in the control policy. The Taylor series
approximation is denoted by T

(

δx,t−1(ρ̂t−1), δy,t−1(ρ̂t−1)
)

and is given by

det
(

J(pt+1)
)

≈ T
(

δx,t−1(ρ̂t−1), δy,t−1(ρ̂t−1)
)

" λ2
∑

(i,j)∈S

h̆(

c
(j)
y,t,c

(j)
x,t,c

(i)
y,t,c

(i)
x,t

)(0, 0) .

Here, h̆(

c
(j)
y,t,c

(j)
x,t,c

(i)
y,t,c

(i)
x,t

)(0, 0) is the first order Taylor

series of h(

c
(j)
y,t,c

(j)
x,t,c

(i)
y,t,c

(i)
x,t

) around point (0, 0) and is

given by (10) (at the top of this page). The func-
tion det

(

J(pt+1)
)

is highly non-linear with respect to
the measurement noise and system disturbance. Hence,
E
{

det
(

J(pt+1)
)
∣

∣ p̂t−1 = p̃t−1, v̂t−1 = ṽt−1

}

is approxi-
mated by using methods such as certainty equivalence or
Monte Carlo simulations [25]. Here, certainty equivalence is
employed, where the expected determinant is replaced with the
determinant evaluated at the predicted position of the agent,
obtained by simulating the inference process of the adversarial
network.

Conditioned on a value of ρ̂t−1 and after combining the
Taylor series approximation of (10) with the principle of
certainty equivalence, P1 has the following surrogate problem

P2 : minimize
δt−1

(δx,t−1)
2 + (δy,t−1)

2

+αλ2
∑

(i,j)∈S

h(

ĉ
(j)
y,t,ĉ

(j)
x,t,ĉ

(i)
y,t,ĉ

(i)
x,t

)(0, 0)

+α δx,t−1 zx,t(ρ̂t−1) + α δy,t−1 zy,t(ρ̂t−1)

subject to |δx,t−1| $ D, |δy,t−1| $ D . (13)

The constraints in P2 are required to ensure that the total
modification in each coordinate of the control policy does not
exceed D which is a parameter that limits the error in the
Taylor approximation. Also, zx,t and zy,t are defined in (11)
and in (12) (at the top of this page). Given the simulated values

p̃t−1 and ṽt−1, the instantiations of c
(j)
y,t and c

(j)
x,t ∀j ∈ Ns

(defined by (7)) are estimated as follows

ĉ(j)x,t = q(j)x − E
{

xt

∣

∣ p̂t−1 = p̃t−1, v̂t−1 = ṽt−1

}

− ṽx,t−1 − πx(ρ̂t−1)

= q(j)x − x̃t−1 − 2ṽx,t−1 − πx(ρ̂t−1)

ĉ(j)y,t = q(j)y − E
{

yt

∣

∣ p̂t−1 = p̃t−1, v̂t−1 = ṽt−1

}

− ṽy,t−1 − πy(ρ̂t−1)

= q(j)y − ỹt−1 − 2ṽy,t−1 − πy(ρ̂t−1) .

Also, from (9), it follows that h(

ĉ
(j)
y,t,ĉ

(j)
x,t,ĉ

(i)
y,t,ĉ

(i)
x,t

)(0, 0) =

sin2
(

tan−1
(

ĉ(j)y,t/ĉ
(j)
x,t

)

− tan−1
(

ĉ(i)y,t/ĉ
(i)
x,t

)

)

. In P2, the

Fisher information obtained by the adversarial network of
sensing nodes is minimized in a regularized fashion ensuring
that the squared L2-norm of the modification of the control
policy is minimal. Problem P2 is an instance of quadratic
programming (QP), which can be efficiently solved via, e.g.,
interior-point methods [30, Ch. 11]. Solving P2 is a tractable
alternative to solving P1.

IV. CASE STUDIES

This section shows the improvements provided by the
proposed control policy refinement method via simulation.
The agent evolves according to the dynamics of (2) in a
2D network consisting of three adversarial sensing nodes.
The three adversarial sensing nodes are located at positions
q(1) = [5, 3]", q(2) = [5, 10]", and q(3) = [10, 10]", and
the covariance matrix of the noise in range measurements (1)
is I. Also, the dynamic disturbances {wt}t!1 are modeled
as IID zero-mean Gaussian random vectors with covariance
matrix 10−4 I. Each simulation runs for 10 time steps. From
time 0 s to time 5 s, the nominal control policy is π =
(πx,πy) = (0.5, 0.5), while from time 6 s to time 10 s, it is set
to π = (πx,πy) = (0.9,−1.8). Moreover, the agent path is
initiated with zero velocity at the point (0, 0). The numerical
results reported in this work were obtained by averaging over
100 independent Monte Carlo simulations. In the following
case studies, the QP is solved via the quadprog function in
the optimization toolbox of MATLAB.
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Fig. 2. The average trajectories of the agent and the average FIM determinant of the adversarial sensing nodes for the nominal and modified
polices. The nominal policy, defined before equation (4), is the default policy implemented by the agent when no secrecy enhancing controller is
applied. (a) The average trajectories (measured in meters) in the xy-plane for the nominal and modified policies. The positions of the adversarial
sensing nodes are shown by red hexagons. (b) The average of det

(

J(p)
)

for the mobile agent as a function of time.

In this case study, the control policy π is a function of
time and not a function of ρ̂t. Hence, for solving P1, we also
assume the change in the control policy δt is only a function
of time. In this way, there is no need for calculating ρ̂t to
solve P1. A particle filter [33] is employed by the adversarial
sensing nodes to construct the estimations (p̂t, v̂t) given a his-
tory of range measurements r1:t " (r1, r2, . . . , rt). Moreover,
consider that the agent can also replicate these estimators to
construct p̃t and ṽt. Given instantiations of estimations for
the agent’s position and velocity (p̃t, ṽt), the particle filter

constructs a set {(ω(n)
t , (p̃(n)

t , ṽ(n)
t )}Nn=1 of particles with as-

sociated weights that approximate the posterior distribution of
(p̃t, ṽt)|r1:t. The weights of the particles are normalized, i.e.,
∑N

n=1 ω
(n)
t = 1 and based on this weighted particle set, we

consider the minimum-mean-square-error (MMSE) estimator

for the state of the mobile agent as p̃t "
∑N

n=1 ω
(n)
t p̃

(n)
t and

ṽt "
∑N

n=1 ω
(n)
t ṽ

(n)
t .

Figure 2(a) shows the average of the mobile agent trajec-
tories in the xy-plane based on the nominal and modified
policies. Figure 2(b) shows the average of det

(

J(p)
)

for the
mobile agent as a function of time. In addition to the nominal
policy, a random policy and two optimized policies, with
different values for the secrecy parameter α = 1 and α = 4.5,
are considered. In case of the random policy, IID samples of
Gaussian random variables N (−0.5, 0.25) and N (0, 0.01) are
added to πx(t) and πy(t), respectively. To solve P1 efficiently,
we approximate it as P2, which can be solved as a QP.
Here, D = ∞ is used. The proposed optimization-based
design modifies the agent trajectory to reduce the average of
det
(

J(p)
)

. This improves the location secrecy of the agent
as the designed control policy reduces the capabilities of the
adversarial sensing nodes to localize the agent. By contrast,
when the random policy is applied, the average of det

(

J(p)
)

has mostly increased even though the agent trajectory has

changed significantly compared to the nominal one.

The proposed optimization-based refinement for the control
policy aims to reduce the determinant of the FIM, and conse-
quently improve the location secrecy of the agent. As it can be
seen from Figure 2(b), this is not true for the modified policy at
all time steps. For instance, toward the end of the simulation,
where α = 1, the nominal trajectory leads to lower values
of the FIM determinant. There are different ways to improve
the performance of our optimization-based approach. Firstly,
P1 is myopic in the sense that it tries to refine the control
policy solely based on the immediate future. In fact, larger
look-outs may improve the performance of our optimization-
based solution. Secondly, improvements or alternatives for the
employed approximations, i.e., the Taylor series and certainty
equivalence, may also enhance the efficacy of the proposed
optimization-based solution.

The secrecy parameter α in P1 regulates the trade-off be-
tween the change in the control policy and the localization in-
accuracy of the adversarial network. To understand this trade-
off, the case study of Figure 2 is repeated for different values
of α = 1, 2, . . . , 5, where the effect of the secrecy parameter
α is illustrated in Figure 3. The right y-axis of Figure 3 shows
the maximum change in the expected value of the agent tra-
jectory χ(po,pn) " maxt

√

(E{xot − xnt })2 + (E{yot − ynt })2

versus the secrecy parameter α. Here, the superscript o stands
for the optimized and superscript n refers to nominal. Also,
the left y-axis of Figure 3 illustrates the change in the
localization accuracy of the adversarial network versus the
secrecy parameter α. The left y-axis of the Figure 3 represents
the largest reduction in the expected value of the determinant
of FIM, ψ(po,pn) " maxt E

{

det
(

J(pn
t )
)

− det
(

J(po
t )
)}

.
In this example, as the secrecy parameter α gets larger, the
proposed controller leads to a larger reduction in the FIM
determinant and, consequently, to a higher obfuscation of
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Fig. 3. Effects of secrecy parameter α: the largest reduction in the
expected determinant of the FIM is represented by the dashed red curve
with values indicated by the left y-axis; and the maximum change in the
average trajectories of the agent (measured in meters) is shown by the
solid blue curve with values indicated by the right y-axis.

the agent’s location with respect to the adversarial network.
Alongside the improvement in secrecy, increasing α leads to
larger deviations in the agent’s position from the trajectory
generated by the nominal policy. In safety-critical applications,
additional constraints could be added to our optimization-
based solution to guarantee proprieties such as stability and
collision-free navigation [34], [35].

V. CONCLUSION

This letter developed an NLN paradigm to enhance the
secrecy of a mobile agent maneuvering through an adversarial
network of sensing nodes. We designed optimization-based
control policies for improving the location secrecy of an
agent by reducing the Fisher information obtained by the
adversarial network with minimal modifications of the nominal
control. Case studies are presented to validate the proposed
control policy for the agent as it maneuvers in the adversarial
network. The results confirmed the efficacy of performing
evasive maneuvers in reducing the ability of the adversarial
network to infer the agent’s position.
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