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PRELIMINARIES




Network Localization

* Location awareness is essential for many applications
— crowdsensing, smart cities, and Internet-of-Things

* Network localization enables the collection
of position information, where a network of
sensing nodes are used to aid in localizing
its members

— situational awareness in first
responder operations

* The localization performance strongly
depends on the wireless environment
and network’s geometry




Examples

* Ocean-of-things (OoT)

. . . . . oy . Rome
— floating devices aim to provide continuous maritime .
surveillance and ocean situational awareness

* the sensing nodes (floats) are deployed off the coast of Italy e

* Indoor positioning systems
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Network Localization

* Localization network comprised of N}, sensing nodes
— with index set My, = {1,2,..., Ny} at positions{q; }jen,
— we assume [Vy, is even, and we define NiY = {1,2,..., N, /2}

* The objective is to estimate the position p of a target of interest

— ranging measurements -
r — [dl,dg,...,d]\/‘b] + W

. dj is the distance between the target and j-th sensing node

* W is a multivariate noise with a normal distribution N(ONbxl, diag(al, e

Agent Sensing node

[ target of interest ]—. O—[ measurements




PERFORMANCE METRICS FOR NETWORK
LOCALIZATION




Fisher Information Inequality

* The fundamental limits of network localization provide performance benchmarks and
are essential for designing the network

* Let p be any unbiased estimator of p, then under some mild regularity conditions

E{(p—p)(p—p)"} = J*

where
J Z )\ [ cos (¢]) COS(¢32) Sln(¢j) Fisher information matrix

= cos(¢;) sin(¢,) sin“(¢;) (FIM)

— Aj represents the range information intensity of the j-th node
* signal-to-noise ratio (SNR) of the signal transmitted by the j-th node, in a synchronized network

— ¢; represents the relative angle of the j-th node with respect to the target




Optimal Designs

» Optimal designs in terms of a statistical criterion
— a sub-field of statistics initiated by Kirstine Smith (1918)

* There are several criteria for assessing the network geometry that can be written as
functions of the eigenvalues of J 1

— D-optimality: minimization of det(J_l)
— A-optimality: minimization of tr(J ')

— E-optimality: minimization of V(J_l), the largest eigenvalue of J 1

* We characterize the optimal deployment according to the D-optimality criterion,
and its implications for the A-optimality and E-optimality criteria are discussed
in our paper

.




D-optimality
* Minimization of det(J ') is equivalent to maximizing the FIM determinant

det(J ( > Ajcos® () )( > Ajsin®(¢; )—( >N cos(qu)sin(qu))2

JEN JENY JENY

— which is upper bounded by the first summand as follow

det(J) < g = (tr(J) — I II

where

T2 ) Xysin’(¢))

JENL




Perfect Pairing

* For each node j € Ny consider a node j' = j + N, /2 such that
Aj = Ay

—in this case, det(J) becomes

equal to its upper bound £4

— {4 is maximized if it is possible
to set ¢; = £m/4

v 2
= (tr(])) /4 is the maximum value
* the perfect-pairing bound




Node Deployment under Position Uncertainty

* The optimal sensor configuration follows the prefect pairing pattern

* In many applications, it is not possible to deploy the nodes with perfect pairing

— indoor positioning systems
» external disturbances and obstacles
— Ocean-of-things (OoT)
* environmental disturbances such as wind and ocean currents

— Internet-of-Battlefield-Things (IoBT)

* adversary aims to hamper the localization process of legitimate nodes by forcing them to move
from their initial or desired positions




Node Deployment under Position Uncertainty

* Bounded disturbances in the positions of the sensing nodes




RELAXED NODE DEPLOYMENT




Relaxed Sensor Pairing

* For each node j € N consider a node j' = j + Ny, /2 such that
A= Ajir + AN
¢j = —dj + AP;

* Given A) > 0and A¢ > 0 asetof nodes
are called(A\, A¢)paired if O

AN | < AN
[Ag;| < Ad




Bounds on Determinant of FIM

* Given (A), A¢) paired nodes
— characterize upper and lower bounds on det(.J)

— serve to identify points or regions in which det(J) is maximized

* Recall
— det(J) < g = (tr(J) —I)II where IT £ Z Aj SmQ((bj)
JEN
— perfect-pairing bound 573 = (tr(J))2/4




Bounds on Determinant of FIM

* (AN, Ag)paired nodes: £, < det(J) < g

—here £4 = £q — € where

— <| Z A Sin2(A¢j)sin(2q5j) +% Z Aj sin(QAqu)cos(ngj)‘ +

JENS

JEN

— furthermore £ — £q < §

= (

Z \; cos®(Ag;) cos(2¢;) —I—% Z Ajsin(2A¢;) sin(2¢,)

JENE

JENE
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* The FIM determinant and its upper and lower bounds as functions of

Numerical Results

— the upper bound on the mismatch in the SNR

— the upper bound on the mismatch in the relative angles
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Optimization-based Node Deployment

* Finding the optimal network geometry via optimization
— D-optimality and the pairing design

— in many applications, it is not possible to encircle the target with nodes and the range of
relative angles for the nodes with respect to the target can be constrained

— node deployment can be formulated as the following optimization problem

1 . maximize det(J)
}\e,qbe

subject to 0 < A; <A, VjeNS
<¢j<b27 VJENbe

L1

— U1 € R; L2 € Rv 5\ S (0700)7 A° = [)\17)\27' . '7)\Nb/2]7 ¢e = [¢17¢27' . '7¢Nb/2]




Optimization-based Node Deployment

1 . maximize det(J)
)\e’qbe

subject to 0 < Aj < A Vi e NS
<S¢y <w/d, VjieNy

 det(J)is not a straightforward objective for optimization purposes

— we will find a relevant optimization program, which can be efficiently solved




A Relevant Optimization Program

* Minimize €
— the distance between the lower and upper bounds of det(J)
* Minimize 0
— the distance between the upper bound ¢, and its upper bound £ = (tr(J))2/4
* Maximize £,
Py maigircr(leize Z Aj (1 —(jvVa?+ 52)
’ FENE
subject to 0K\, <A, VjeNMN

sin(tan™ ' (a/B8)) < ¢ <1, Vj€ Ny 2

— where (; £ cos (2¢; + tan™ " (—3/a)), also o and 3 are defined in our paper
— an instance of bilinear programming




Numerical Results

* The FIM determinant as a function of A¢

— fixed SNR
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FINAL REMARKS




Final Remarks

* We noticed that uncertainties in the positions of the sensing nodes could deteriorate
the performance of the localization networks

—we developed a framework for optimal node deployment that accounts for
uncertainties in the positions of deployed nodes

— we designed the efficient node deployment algorithm by solving a bilinear program

* We characterized the optimal deployment according to the D-optimality criterion

— we showed that the proposed optimization-based design achieves an improvement
in the D-optimality criterion compared to state-of-the-art methods

— we also discussed the implications for the A-optimality and E-optimality criteria in our
paper
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