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Abstract—Network localization performance depends on the
network geometry and, therefore, node deployment methods are
critical for high-accuracy localization. Optimal node deployment
is challenging in practical problems due to various uncertainties
present in the position knowledge of the deployed nodes. In
this paper, we propose a node-deployment method for network
localization that accounts for such uncertainties. We develop a
framework for the optimal deployment of location-aware net-
works under bounded disturbances in the positions of the sensing
nodes. More specifically, by considering bounded discrepancies in
the network geometry, we characterize the optimal deployment
according to the D-optimality criterion and assert its implications
for the A-optimality and E-optimality criteria. Results show that
the proposed optimization-based design achieves a significative
improvement according to the D-optimality criterion.

Index Terms—network localization, node deployment, Fisher
information, sensor network

I. INTRODUCTION

Location-awareness is vital for the operation of wireless
networks and their applications [1]–[3], including factory of
the future (FoF) [4]–[6], smart environments [7]–[9], asset
tracking [10]–[12], autonomy [13]–[16], crowdsensing [17]–
[19], and Internet-of-Things (IoT) [20]–[23]. The localization
performance strongly depends on the wireless environment
and the network’s geometry. In applications such as ocean-of-
things (OoT) [24] or indoor positioning [25], due to external
disturbances and obstacles, inaccuracies appear between the
desired and the actual deployed position of the nodes. These
position inaccuracies may also occur in adversarial scenarios
such as Internet-of-Battlefield-Things (IoBT) [26], where an
adversary aims to hamper the localization process of legitimate
nodes by forcing them to move from their initial or desired
positions. Therefore, these emerging applications require the
investigation of node-deployment methods that account for
uncertainties in the positioning of the nodes.

The fundamental limits of network localization and navi-
gation (NLN) provide performance benchmarks and are es-
sential for network design [27], [28]. There are a few crite-
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ria for assessing the optimal network geometry that can be
written as a function of the eigenvalues of the inverse of
the Fisher information matrix (FIM), including A-optimality,
D-optimality, and E-optimality criteria [29]–[32]. The D-
optimality, A-optimality, and E-optimality criteria correspond
to minimizing determinant, trace, and the largest eigenvalue
of the inverse FIM, respectively.

The optimal network geometry for high-accuracy localiza-
tion has been studied in [33]–[38], where the optimal sensor
arrangement encircles the target. In many applications, such as
radar and sonar, the target is far away from the sensors. In this
case, it might not be possible to surround the target with sen-
sors. Hence, the recent work in [32] investigates the case where
the sensors’ positions might be restricted. The A-optimality,
D-optimality, and E-optimality criteria are equivalent for 2-
D target localization when the range information intensity
(RII) [28] are fixed. In this context, in [32] it was shown that
the optimal sensor configuration follows a symmetric pattern
with respect to the target of interest. In practical problems,
such a pattern is difficult to achieve due to the uncertainty in
the positions of deployed nodes. The work in [31] also consid-
ers the localization of a single target using two mobile sensors
and provides optimal way-points that the moving sensors need
to reach. Moreover, the work in [39] studied spatiotemporal
signal reconstruction with node position uncertainty. The work
in [40] studied the Bayesian Cramér-Rao lower bound for
localization and under additive uncertainty in the deployment
of sensors. However, optimization-based, robust, and practical
node deployment algorithms for the design of location-aware
networks are still lacking.

In this paper, we develop a node deployment method for
NLN under uncertainty in the positions of the deployed nodes.
We employ the criteria of A-optimality, D-optimality, and E-
optimality to optimize network geometry in the presence of
discrepancies between the desired deployment and the actual
positioning of nodes. Our approach is based on optimization
theory and sets the basis for the study of robust NLN in the
presence of uncertainties in the positioning of the nodes. The
key contributions of this paper can be summarized as follows:

• we develop a framework for optimal node deployment by
introducing the concept of relaxed sensor pairing;

• we characterize upper and lower bounds on functions of
FIM corresponding to the D-optimality, A-optimality, and
E-optimality criteria; and

• we demonstrate that the optimal design could be obtained
via solving a bilinear program.



(a) perfect paring (b) (∆λ,∆φ)-pairing

Fig. 1: Perfect paring between sensor nodes j and j′ = Nb/2 + j is showcased in (a), where φj′ = −φj and λj′ = λj

for j ∈ N e
b . In this case, the determinant of FIM (3) is equal to its upper bound #̄d (4). However, in practice, there are

discrepancies between the desired network geometry and its actual implementation. Imperfect pairing of nodes is depicted in
(b), where λj′ = λj +∆λj and φj′ = −φj +∆φj according to the Definition 1.

Notations: Random variables are displayed in sans serif,
upright fonts; their realizations in serif, italic fonts. Vectors
and matrices are denoted by bold lowercase and uppercase
letters, respectively. For example, a random variable and its
realization are denoted by x and x; a random vector and its
realization are denoted by x and x, respectively; a random
matrix and its realization are denoted by X and X , respec-
tively. Notation AT represents the transpose of matrix A.
For a square matrix A, notations A−1, tr(A), and det(A)
represent its inverse, trace, and determinant, respectively. No-
tation diag(A1,A2, . . . ,An) denotes a block diagonal matrix
with the arguments on its main diagonal. Expression A ! B
represents that matrix A−B is positive semidefinite.

II. PROBLEM FORMULATION

Consider a localization network comprised of Nb sensing
nodes, with index set Nb = {1, 2, . . . , Nb}, at positions
{qj}j∈Nb

. Assuming Nb is even, let N e
b = {1, 2, . . . , Nb/2}.

The objective is to estimate the position p of a target of interest
via the following ranging measurements

r = [d1, d2, . . . , dNb
]T +w

where dj = ‖p−qj‖ is the distance between the target and j-th
node, and w is a multivariate noise with a normal distribution
N (0Nb×1, diag(σ1, . . . ,σNb

)).
Let p̂ be any unbiased estimator of p, then under some

mild regularity conditions, the Fisher information inequality
(FII) [27] states that

E
{

(p− p̂)(p− p̂)T
}

! J−1

where J is the FIM. In 2D scenarios, J is given by

J "
∑

j∈Nb

λj

[

cos2(φj) cos(φj) sin(φj)
cos(φj) sin(φj) sin2(φj)

]

.

Here, λj is the RII of the j-th node. In particular, λj is equal
to the signal-to-noise ratio (SNR) of the signal transmitted by
the jth node and received by the target in scenarios where the
network is synchronized. Symbol φj represents the relative
angle of the j-th node with respect to the target [28].

According to the literature of optimal designs [29, p. 387],
there are several criteria for assessing the network geometry
that can be written as functions of the eigenvalues of J−1.
The D-optimality criterion corresponds to the minimization of
det(J−1), the minimization of tr(J−1) is the goal of the A-
optimality criterion, while the E-optimality criterion aims to
minimize the largest eigenvalue of J−1. In a 2-D network,
J−1 is a 2× 2 non-singular matrix, and it follows that

tr(J−1) =
tr(J)

det(J)
(1)

and the largest eigenvalue is given by

v(J−1) =
tr(J) +

√

tr2(J) − 4 det(J)

2
. (2)

Due to the considered sensing setup [28], note that tr(J) =
∑

j∈Nb
λj is not a function of the relative angles and

det(J) =

(

∑

j∈Nb

λj cos
2(φj)

)(

∑

j∈Nb

λj sin
2(φj)

)

−
(

∑

j∈Nb

λj cos(φj) sin(φj)

)2

. (3)

In the following, we characterize the optimal node de-
ployment according to the D-optimality criterion, which is
equivalent to maximizing the FIM determinant of (3). Subse-
quently, we discuss its implications for the A-optimality and E-
optimality criteria. Our network design is based on the pairing
of nodes as described next. First, notice that det(J) is upper
bounded by the first summand in (3) as

det(J) # #̄d "
(

tr(J) −Π
)

Π (4)

where

Π "
∑

j∈Nb

λj sin
2(φj) .

If φj = −φj+Nb/2 and λj = λj+Nb/2 for all j ∈ N e
b , the

second summand in (3) vanishes and det(J) becomes equal to
its upper bound #̄d (4) (see Fig. 1a). When the RII of the nodes



are given and equal, this symmetric pattern with respect to the
target of interest has been studied in [32]. However, in many
applications, such as indoor positioning systems or IoBT, it is
not possible to deploy the nodes such that φj = −φj+Nb/2

and λj = λj+Nb/2 for all j ∈ N e
b . Also, in applications

such as OoT, the positions of nodes might change due to
environmental disturbances such as wind and ocean currents.
In this case, det(J) will not be equal to #̄d.

Definition 1: For each node j, consider a node j′ = j+Nb/2
such that λj′ = λj+∆λj and φj′ = −φj+∆φj . Given ∆λ $
0 and ∆φ $ 0, a set of nodes is called (∆λ,∆φ)-paired, if
nodes can be partitioned into pairs such that |∆λj | # ∆λ and
|∆φj | # ∆φ, for j ∈ N e

b . In the special case ∆λ = ∆φ = 0,
the nodes are referred to as being perfectly paired.

With the above definition, pairs of nodes are constructed
such that the absolute value of the difference in their RIIs can
be upper bounded by ∆λ, and the absolute value of the sum of
their relative angles is less than ∆φ, see Fig. 1. Next, we study
the optimal network geometry for (∆λ,∆φ)-paired nodes.

III. BOUNDS ON THE DETERMINANT OF FIM
FOR RELAXED NODE DEPLOYMENT

Assuming (∆λ,∆φ)-paired nodes, we will find upper and
lower bounds on det(J). These bounds will serve to identify
points or regions in which det(J) is maximized, and will
help to provide an efficient optimization-based guideline for
practical algorithm design as explained in the next section.

The upper bound #̄d in (4) is concave in Π, and the max-
imum occurs at Π = tr(J)/2. Using trigonometric identities
it can be seen that the equation Π = tr(J)/2 is equivalent
to

∑

j∈Nb
λj cos(2φj) = 0. Thus, #̄d is maximized if it is

possible to set φj = ±π/4, and the upper bound #̄d is bounded
from above by the perfect-pairing bound #̄∗d " (tr(J))2/4.
Given a set of (∆λ,∆φ)-paired nodes, in the next theorem,
we derive a lower bound on det(J) and bound its distance to
#̄d, and also bound the distance of #̄d with its upper bound #̄∗d.

Theorem 1: Assuming an even number Nb of nodes that
admits a (∆λ,∆φ)-pairing according to Definition 1, det(J)
is bounded from below by #d " #̄d − ε, where

ε "

(

∣

∣

∣

∑

j∈N e

b

λj sin
2(∆φj) sin(2φj)

+
1

2

∑

j∈N e

b

λj sin(2∆φj) cos(2φj)
∣

∣

∣
+

Nb∆λ

4

)2

(5)

and #̄d is the upper bound on det(J) defined in (4). Further-
more, the difference between #̄d and its upper bound #̄∗d is not
larger than δ, that is #̄∗d − #̄d # δ, where

δ "

(

∣

∣

∣

∑

j∈N e

b

λj cos
2(∆φj) cos(2φj)

+
1

2

∑

j∈N e

b

λj sin(2∆φj) sin(2φj)
∣

∣

∣
+

Nb∆λ

4

)2

. (6)

Proof: To find a lower bound on det(J), we aim to find
an upper bound on the last summand of (3) as follows. Using
the trigonometric identity and Definition 1 it follows that

∑

j∈Nb

λj cos(φj) sin(φj) =
1

2

∑

j∈N e

b

(

λj sin(2φj)

+λj′ sin(2φj′ )
)

. (7)

Moreover, using trigonometric identities and Definition 1,

λj sin(2φj) + λj′ sin(2φj′)

= 2λj sin(∆φj)
(

cos(2φj) cos(∆φj) + sin(2φj) sin(∆φj)
)

+∆λj sin(2φj′ ) . (8)

Combining (7) and (8), using | sin(2φj′ )| ≤ 1, and the double-
angle trigonometric identity, we obtain
∣

∣

∣

∑

j∈Nb

λj cos(φj) sin(φj)
∣

∣

∣
#

∣

∣

∣

1

2

∑

j∈N e

b

λj sin(2∆φj) cos(2φj)

+
∑

j∈N e

b

λj sin
2(∆φj) sin(2φj)

∣

∣

∣
+

1

2

∑

j∈N e

b

|∆λj | . (9)

Using (3), (4), (9), and the paring property, we obtain (5).
Next, we prove (6). As discussed before Theorem 1, #̄d

is concave in Π, and the maximum occurs at Π = tr(J)/2.
Moreover, given η $ 0, if Π = tr(J)/2 ± η, that is,

∣

∣

∣

1

2

∑

j∈Nb

λj cos(2φj)
∣

∣

∣
= η (10)

then #̄d = #̄∗d − η2. Using Definition 1, we have
∑

j∈Nb

λj cos(2φj) =
∑

j∈N e

b

(

λj cos(2φj) + λj′ cos(2φj′ )
)

(11)

also using the sum-to-product and the angle-difference trigono-
metric identity, similar to (8), it follows that

λj cos(2φj) + λj′ cos(2φj′ )

= 2λj cos(∆φj)
(

cos(2φj) cos(∆φj) + sin(2φj) sin(∆φj)
)

+∆λj cos(2φj′ ) . (12)

By combining (11), (12), and the double-angle trigonometric
identity, we obtain

1

2

∑

j∈Nb

λj cos(2φj) =
∑

j∈N e

b

λj cos
2(∆φj) cos(2φj)

+
1

2

∑

j∈N e

b

λj sin(2φj) sin(2∆φj)

+
1

2

∑

j∈N e

b

∆λj cos(2φj′ ) . (13)

Hence, using (10), (13), and since | cos(2φj′ )| # 1, we obtain
the following upper bound

η #
∣

∣

∣

∑

j∈N e

b

λj cos
2(∆φj) cos(2φj)

+
1

2

∑

j∈N e

b

λj sin(2∆φj) sin(2φj)
∣

∣

∣
+

Nb∆λ

4
(14)



which results in (6).

Figures 2a and 2b show det(J) as well as its upper and
lower bounds derived in Theorem 1 as functions of ∆λ and
∆φ, respectively. In the two figures, a scenario with six nodes
Nb = 6, λ1 = λ2 = λ3 = 1, φ1 = 0, φ2 = π/4, and φ3 = π/4
is considered. In Figure 2a, λj+Nb/2 = λj +∆λ, where ∆λ
is represented on the X-axis of the figure, and φj+Nb/2 =
−φj + 0.01 for j ∈ N e

b . It can be seen from Fig. 2a that all
the bounds are increasing with ∆λ. This can be attributed to
the fact that the SNR increases with ∆λ. It can also be noticed
that the gap between the different bounds increases with ∆λ.
This is because the pairing error is increasing with ∆λ. In
Fig. 2b, φj+Nb/2 = −φj +∆φ, where ∆φ is represented on
the X-axis of the figure, and λj+Nb/2 = λj +0.1 for j ∈ N e

b .

The following corollaries discuss the implications of The-
orem 1 on the A-optimality and E-optimality criteria. Their
proofs are straightforward and follow via (1), (2), and Theo-
rem 1, that are omitted due to the space constraints.

Corollary 1: Under the assumptions of Theorem 1, the
tr(J−1) is lower and upper bounded by #t " tr(J)/#̄d and
#̄t " tr(J)/#d, respectively. Here, #̄t− #t # (tr(J)ε)/(#d(#d+
ε)) and #∗t + (16δ)/(tr(J))3 $ #t $ #∗t " 4/tr(J).

Corollary 2: Under the assumptions of Theorem 1, the
v(J−1) is lower and upper bounded by #v " 0.5

(

tr(J) +

2
√

#̄∗d − #̄d
)

and #̄v " 0.5
(

tr(J) + 2
√

#̄∗d − #d
)

, respectively.

Here, #∗v+
√
δ $ #v $ #∗v " tr(J)/2 and, provided

√

#̄∗d − #̄d+
√

#̄∗d − #d '= 0, we have #̄v − #v # ε/
(√

ε+ δ +
√
δ
)

.

IV. OPTIMIZATION-BASED RELAXED NODE DEPLOYMENT

In many applications, such as radar and sonar, the target is
far away from the nodes. In this case, it might not be possible
to encircle the target with nodes, and the range of relative
angles for the nodes with respect to the target is constrained.
From the D-optimality and the pairing design described in
Section II, the optimization problem of finding the optimal
network geometry can be stated as follows

P1 : maximize
λe,φe

det(J)

subject to 0 # λj # λ̄ , ∀j ∈ N e
b

ι1 # φj # ι2 , ∀j ∈ N e
b

where ι1 ∈ R, ι2 ∈ R, λ̄ ∈ (0,∞), λe " [λ1,λ2, . . . ,λNb/2],
and φe " [φ1,φ2, . . . ,φNb/2]. By considering λe,φe in
Problem P1, we only need to optimize one half of the sensing

nodes, whereas the other half is placed such that the entire set
of nodes forms a (∆λ,∆φ)-pairing according to Definition 1.

As det(J) in (3) is not a straightforward objective for
optimization purposes, we will find a relevant optimization
program to Problem P1, which can be efficiently solved.
Theorem 1 states that the distance between the lower and upper
bounds of det(J) is less than ε, and also the distance between
the upper bound #̄d and its upper bound #̄∗d is less than δ.
Thus, to maximize det(J) we now investigate an optimization
program that minimizes ε and δ, and maximizes #̄∗d. In fact,
for simplicity, we focus on the case where ι1 = 0, ι2 = π/4,
and the upper bound on discrepancies in the relative angles is
∆φ # π/4. In this case, ε in (5) and δ in (6) can be bounded
from below by ε̄ in (15) and δ̄ in (16), respectively, which
are given at the bottom of this page. Using (15) and (16),
minimizing ε̄+ δ̄ is equivalent to minimizing

Υ " α
∑

j∈N e

b

λj cos(2φj) + β
∑

j∈N e

b

λj sin(2φj) (17)

where α " 1+ 1
2
sin(2∆φ) and β " sin2(∆φ) + 1

2
sin(2∆φ).

Also, according to Theorem 1, minimizing ε̄ + δ̄ leads to
the minimization of the distance between the lower and
upper bounds of det(J). Thus, we consider the following
optimization program

P2 : maximize
λe,φe

∑

j∈N e

b

λj −Υ

subject to 0 # λj # λ̄ , ∀j ∈ N e
b

ι1 # φj # ι2 , ∀j ∈ N e
b .

Here, by maximizing
∑

j∈N e

b

λj we are maximizing #̄∗d, which

is an upper bound on det(J), and by minimizing Υ, we are
minimizing the distance of det(J) with #̄∗d.

Using the harmonic addition theorem and (17), it follows
that

Υ =
√

α2 + β2
∑

j∈N e

b

λj cos
(

2φj + tan−1
(

− β

α

))

. (18)

Thus, by letting ζj " cos
(

2φj + tan−1
(

− β
α

)

)

, the Problem

P2 can be re-written as

P3 : maximize
λe,ζe

∑

j∈N e

b

λj

(

1− ζj
√

α2 + β2

)

subject to 0 # λj # λ̄ , ∀j ∈ N e
b

ζ # ζj # ζ̄ , ∀j ∈ N e
b

ε̄ "

(

sin2(∆φ)
∑

j∈N e

b

λj sin(2φj) +
1

2
sin(2∆φ)

∑

j∈N e

b

λj cos(2φj) +
Nb∆λ

4

)2

(15)

δ̄ "

(

∑

j∈N e

b

λj cos(2φj) +
1

2
sin(∆φ)

∑

j∈N e

b

λj sin(2φj) +
Nb∆λ

4

)2

(16)
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Fig. 2: Showcasing the FIM determinant det(J) and its upper #̄d and lower #d bounds derived in Theorem 1 as functions of:
(a) ∆λ, the upper bound on the mismatch in the RII, and (b) ∆φ, the upper bound on the mismatch in the relative angles.

The perfect-pairing bound is given by #̄∗d =
(

tr(J)
)2
/4.

where ζe " [ζ1, ζ2, . . . , ζNb/2]. As 0 # ∆φ # π/4,
tan−1(−β/α) ∈ [− tan−1(2/3), 0]. Also, 0 # 2φj # π/2 for
all j ∈ N e

b ; hence, in P3, ζ̄ = 1, and ζ = sin(tan−1(α/β)).
In fact, P3 is an instance of bilinear programming with
efficient solvers given in [29].

A. Special Case: Fixed RIIs

This section presents the special case where the RIIs
{λj}j∈Nb

are fixed, and we optimize over the relative angles
{φj}j∈Nb

. In this case, the Problem P2 reduces to

P4 : minimize
φe

Υ

subject to ι1 # φj # ι2 , ∀j ∈ N e
b .

The work in [32] considered this special case, where the
nodes are perfectly paired, that is ∆λ = ∆φ = 0. Letting
∆φ = 0 in (17), then P4 reduces to the minimization of
∑

j∈N e

b

λj cos(2φj). By trigonometric identities, it is easy to

check that this is equivalent to the criterion derived in [32].

Figure 3 shows det(J) as a function of ∆φ achieved by
the node-deployment method with the perfect-pairing of [32]
and the method with (∆λ,∆φ)-pairing proposed in this paper.
Here λj = 1 for all j ∈ Nb. A Monte Carlo simulation
with 250 independent simulations was performed. We assumed
φj = φ∗

j +0.5 θj ∆φ and φj+Nb/2 = −φ∗
j − 0.5 θj ∆φ for all

j ∈ N e
b , where φ∗

j is the optimal node deployment according
to either the nominal method of [32] or our design. Also, θj ,
for all j ∈ N e

b , are three independent samples from a truncated
normal distribution with mean 1, variance 4, and support set
[0, 1]. Fig. 3 shows that when ∆φ tends to zero, our approach
has the same performance as the method presented in [32],
which is based on perfect-pairing. Also, as ∆φ increases,
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Fig. 3: The FIM determinant det(J) achieved using the node-
deployment method with perfect-pairing of [32] and with
the proposed (∆λ,∆φ)-pairing method. The perfect-pairing

bound is given by #̄∗d =
(

tr(J)
)2
/4.

the node deployment with (∆λ,∆φ)-pairing outperforms the
nominal deployment of [32].

V. CONCLUSION

We developed a framework for optimal node deployment
that accounts for uncertainties in the positions of sensing
nodes. In particular, we characterized the upper and lower
bounds on the determinant of FIM and identified the gaps be-
tween these bounds. We developed a robust node deployment
algorithm by solving a bilinear program. Numerical results



showed the performance gain of our algorithm in the D-
optimality criterion. We noticed that disturbances in the posi-
tions of the sensing nodes could deteriorate the performance of
the NLN and demonstrated how the effect of such disturbances
is mitigated by our proposed method. The proposed framework
sets a basis for the study of robust NLN in the presence of
uncertainties in the sensing nodes’ positions.
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H. Leppäkoski, M. Z. H. Bhuiyan, S. Bu-Pasha, G. N. Ferrara,
S. Honkala, J. Lindqvist, L. Ruotsalainen, P. Korpisaari, and H. Ku-
usniemi, “Robustness, security and privacy in location-based services
for future IoT: A survey,” IEEE Access, vol. 5, pp. 8956–8977, Apr.
2017.

[22] M. Z. Win, F. Meyer, Z. Liu, W. Dai, S. Bartoletti, and A. Conti,
“Efficient multi-sensor localization for the Internet of Things,” IEEE
Signal Process. Mag., vol. 35, no. 5, pp. 153–167, Sep. 2018.

[23] S. D’oro, L. Galluccio, G. Morabito, and S. Palazzo, “Exploiting object
group localization in the Internet of Things: Performance analysis,” IEEE
Trans. Veh. Technol., vol. 64, no. 8, pp. 3645–3656, Aug. 2015.

[24] A. A. Saucan and M. Z. Win, “Information-seeking sensor selection for
ocean-of-things,” IEEE Internet Things J, vol. 7, no. 10, pp. 10 072–
10 088, 2020.

[25] B. Teague, Z. Liu, F. Meyer, A. Conti, and M. Z. Win, “Network local-
ization and navigation with scalable inference and efficient operation,”
IEEE Trans. Mobile Comput., vol. 21, pp. 1–18, 2022, to appear.

[26] T. Abdelzaher, N. Ayanian, T. Basar, S. Diggavi, J. Diesner, D. Ganesan,
R. Govindan, S. Jha, T. Lepoint, B. Marlin et al., “Toward an Internet of
battlefield things: A resilience perspective,” Computer, vol. 51, no. 11,
pp. 24–36, 2018.

[27] M. Z. Win, Y. Shen, and W. Dai, “A theoretical foundation of network
localization and navigation,” Proc. IEEE, vol. 106, no. 7, pp. 1136–
1165, Jul. 2018, special issue on Foundations and Trends in Localization
Technologies.

[28] M. Z. Win, W. Dai, Y. Shen, G. Chrisikos, and H. V. Poor, “Network
operation strategies for efficient localization and navigation,” Proc.
IEEE, vol. 106, no. 7, pp. 1224–1254, Jul. 2018, special issue on
Foundations and Trends in Localization Technologies.

[29] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK:
Cambridge University Press, 2004.

[30] C. Yang, L. Kaplan, and E. Blasch, “Performance measures of covariance
and information matrices in resource management for target state
estimation,” IEEE Trans. Aerosp. Electron. Syst., vol. 48, no. 3, pp.
2594–2613, 2012.

[31] E. Tzoreff and A. J. Weiss, “Path design for best emitter location using
two mobile sensors,” IEEE Trans. Signal Process., vol. 65, no. 19, pp.
5249–5261, Oct. 2017.

[32] M. Sadeghi, F. Behnia, and R. Amiri, “Optimal sensor placement for 2-
D range-only target localization in constrained sensor geometry,” IEEE
Trans. Signal Process., vol. 68, pp. 2316–2327, 2020.

[33] S. Martı́nez and F. Bullo, “Optimal sensor placement and motion
coordination for target tracking,” Automatica, vol. 42, no. 4, pp. 661–
668, Apr. 2006.

[34] S. Zhao, B. M. Chen, and T. H. Lee, “Optimal sensor placement for
target localisation and tracking in 2D and 3D,” Int. J. Control, vol. 86,
no. 10, pp. 1687–1704, 2013.

[35] A. N. Bishop, B. Fidan, B. D. Anderson, K. Doğançay, and P. N.
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