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Project Impact:

• Quantum tomography enabled Hamiltonian Learning (QT-HML) is proposed as an

efficient mean for identifying both internal and control Hamiltonians. This is the first

quantum tomography based HML algorithm which infers the control dynamics.

• End-to-end optimal control of quantum systems with arbitrary dynamics.

Project Objective: Learning-enabled optimal quantum control (OQC) provides a

new framework for both learning the dynamics of and controlling quantum systems in

a scalable manner. The main objective is to provide engineers with a toolset for

efficiently controlling quantum systems with unknown dynamics.

Challenges:

• Unlike classical systems, the state of a quantum system can never be measured

or known perfectly.

• The dynamics of closed quantum systems evolve unitarily, but classical system

identification strategies do not enforce this constraint.

• Existing quantum process tomography methods scale poorly to large quantum

systems.

Numerical Experiments

Part 1: Quantum tomography enabled Hamiltonian learning

QT-HML estimates the ground-truth Hamiltonians

and

as

and .

Part 2: Optimal quantum control via Hamiltonian learning

Once QT-HML has estimated the system Hamiltonians, OQC computes a control

sequence to drive a qubit in the ground state to the excited state. This sequence is

then provided to the true quantum system in an open-loop fashion. The optimized

control sequence is shown in Figure 4 and the system response in Figure 5.

The paradigm of OPC via HML

• QT-HML utilizes experimentally gathered data from quantum experiments to

estimate both the internal and control Hamiltonians with high accuracy.

• OQC utilizes the learned model (in computer simulation) to compute a control

sequence for the quantum system.

• OQC then provides the optimized control sequence to the quantum system in an

open-loop fashion.

Project Overview

Figure 4: Control signal produced by 

optimal quantum control.

Figure 5: Controlled population 

levels of the qubit over time.

Figure 1: OQC computes a control

sequence offline in simulation using

the learned Hamiltonian.

Figure 2: OQC then feeds the

optimized control sequence to the

system in an open-loop fashion.

Figure 3: Quantum tomography enabled Hamiltonian learning utilizes a probing control input and

quantum experiments to infer the internal and control Hamiltonians of the closed quantum system.

Optimal Quantum Control

Methodology:

Using estimates of the systems internal and control Hamiltonians,

OQC solves the following optimization problem in a closed-loop simulation (Figure 1)

to produce an optimal 𝑁 step discrete-time control sequence to manipulate the state

of the system:

The optimized control sequence is then provided to the real quantum system in an

open-loop fashion (Figure 2).

Methodology:

Given a set of initial quantum states

,

quantum experiments are performed with various control inputs and estimates the

output states as

.

QT-HML learns an appropriate unitary operator which maps the input to output:

,

from which it can recover estimates of the system’s internal and control Hamiltonians.

Figure 3 depicts how the control input, quantum experiments, and QT-HML procedures

are connected.

Conclusion
In this work, a novel QT-HML algorithm is proposed which is both scalable and

accurate. Together, QT-HML and OQC form a learning-based means of end-to-end

control for quantum systems.


