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ABSTRACT This work proposes an end-to-end framework for the learning-enabled control of closed
quantum systems. The proposed learning technique is the first of its kind to utilize a hierarchical design
which layers probing control, quantum state tomography, quantum process tomography, and Hamiltonian
learning to identify both the internal and control Hamiltonians. Within this context, a novel quantum
process tomography algorithm is presented which involves optimization on the unitary group, i.e., the
space of unitary operators, to ensure physically meaningful predictions. Our scalable Hamiltonian learning
algorithms have low memory requirements and tunable computational complexity. Once the Hamiltonians
are learned, we formalize data-driven model-predictive quantum control (MPQC). This technique utilizes
the learned model to compute quantum control parameters in a closed-loop simulation. Then, the optimized
control input is given to a physical quantum system in an open-loop fashion. Simulations show model-
predictive quantum control to be more efficient than the current state-of-the-art, quantum optimal control,
when sequential quadratic programming (SQP) is used to solve each control problem.

INDEX TERMS Quantum Hamiltonian learning, quantum process tomography, quantum control, quantum
consensus, quantum networks, quantum computing

I. INTRODUCTION
Quantum information science is a rapidly growing field that
seeks to utilize quantum dynamical systems to perform sens-
ing, communication, or computation [1]–[6]. The success of
many quantum devices, such as those employing quantum
bits (qubits), is dependent on precise control of their dy-
namics [7]–[17]. In fact, quantum control techniques can be
used to realize quantum gates [18]–[20], and quantum gates
have numerous applications in quantum information science
including localization, synchronization, communication, and
computing [21]–[24].

Quantum optimal control (QOC) has been of significant
research interest for the first part of the 21st century [25]–
[34]. However, much like classical systems, the dynamics of
quantum systems are not always known, which limits the
breadth of control strategies that may be used. A promis-
ing means for overcoming this uncertainty is via quantum
Hamiltonian learning (QHL). Learning quantum dynamics

from data is difficult due to the fundamental limitations of
observing quantum phenomena via classical measurement.
Measurement devices interact with quantum states and can
result in probabilistic outcomes. Quantum learning-based
system identification strategies must work with incomplete
or imperfect information about quantum states.

To overcome the obstacle of incomplete information about
quantum states, methods such as quantum state tomogra-
phy (QST) have been developed to infer quantum states
via repeated measurements of identically prepared states
[35]–[38]. Alternative to QST, quantum process tomography
(QPT) has been developed to infer a quantum process, which
maps an input state to an output state [6]. A survey on
resource consumption and measurement requirements for
various QPT algorithms is given in [39].

Both QST and QPT have been used to infer the evolution
of closed quantum systems and ultimately learn the system
Hamiltonian in [40]. The method in [40] utilizes a large
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number of initial states to perform QPT. The work in [40]
gives an explicit upper bound on the estimation error for
the learned Hamiltonian. Conventional system identification
approaches have been used to estimate the Hamiltonian [41]–
[44]. In particular, control signals are used in [43] and [44]
to infer unknown parts of the Hamiltonian. Alternatively,
learning-based approaches have been used to estimate the
Hamiltonian [45]–[47].

Inspired by learning-based control of classical systems
[48]–[51], learning-based control of quantum systems has
also been proposed [52]–[59]. These methods work in an
iterative fashion to improve the control policy used in each
quantum experiment. However, these techniques are model-
free and do not come with theoretical guarantees. On the
other hand, if a model of the quantum system is established,
one may perform model-based control. For several decades,
QOC has been the most popular approach in the model-based
quantum control literature. In addition to some early works in
this area [60]–[62], recent results have reiterated the strength
of QOC and expanded upon earlier possibilities [63]–[65].
An influential QOC technique is the so-called GRadient
Ascent Pulse Engineering (GRAPE) algorithm for computing
optimal nuclear magnetic resonance (NMR) pulses [66],
which was expanded upon in [67]–[70]. The principle of
the GRAPE algorithm is to use gradient-based solvers to
compute optimal control parameters for quantum systems.
Other highly successful QOC optimization schemes include
the Chopped RAndom Basis (CRAB) [71], [72] and Gradient
Optimization of Analytic conTrols (GOAT) [73] algorithms,
which use ansatzes of basis functions to formulate control
pulses. The purpose of these algorithms is to identify optimal
tuning parameters within the ansatz.

In the classical control literature, layering model-based
and model-free control has been shown to produce desirable
results [74]. This has been done recently in the so-called C3

technique for controlling quantum systems [75]. The term
C3 stands for “control, calibrate, and characterize.” As the
name implies, this work meshes the ideas of controlling
and identifying the dynamics of the system. The first phase
utilizes a control ansatz based on the derivative removal by
adiabatic gate (DRAG) method. The tuning parameters in
the DRAG control pulse are then optimized in a closed-loop
experimental setting with a physical quantum system in the
calibration phase. Finally, the characterization phase uses the
data generated in the previous phase to update an ansatz
model of the quantum system.

Model-predictive control (MPC) for infinite-dimensional
quantum systems has been considered in the case where the
the model of the system is fully known [76]–[78]. These
works only investigate systems with pure states governed
by the Schrödinger equation and their control designs only
consider quadratic objectives. Recently, an optimization pro-
cedure known as sequential quadratic programming (SQP)
has shown great promise to design robust quantum gates
in the context of QOC [79]. We note that SQP can also
be employed to solve MPC problems. Hence, investigating

SQP’s use in MPC for quantum systems is of interest.
Most of the methods outlined above are based on optimal

control of closed quantum systems, and additional calibration
and refinement may be needed for addressing open quantum
systems. Real-world applications of controlling closed quan-
tum systems include but are not limited to control of spin
systems in NMR [80]–[83], control of molecular systems in
physical chemistry [84]–[86], and for forming base-line con-
trol policies for manipulating superconducting qubits [87]–
[92].

Learning and control of quantum dynamics poses chal-
lenges not yet solved by the literature. There is a need to
learn both internal and control Hamiltonians. The internal
Hamiltonian describes the free evolution of the quantum sys-
tem, and the control Hamiltonian describes the system’s in-
teraction with external fields. While successful, the quantum
tomography (QT)-based QHL algorithm proposed in [40]
requires the practitioner to readily and repeatedly prepare d2

(where d is the dimension of the system) unique quantum
states to identify a system’s internal Hamiltonian and does
not address learning the effect of control on the system. In
terms of control, QOC is often computationally expensive
and closed-form solutions are only known in specific cases
with simple models or restrictive assumptions. For instance,
time-optimal control of a qubit is known to be of bang-
bang type [26]; however, such discontinuous control signals
may excite unwanted energy levels in qubit. The work-
horse GRAPE algorithm, which has become the standard
for computing optimal quantum control pulses, still takes
a significant amount of computational time [93]. Moreover,
data-driven techniques are desirable when no model of the
quantum system is known. While the C3 method [75] has
shown promising results, like [71]–[73] it utilizes a heuris-
tic ansatz for its control policy and can only improve the
efficacy of the control by tuning parameters (such as the
amplitude and frequency of the actuation) within this policy.
In summary, there is a need for scalable and efficient quantum
learning and control algorithms. The fundamental questions
related to quantum system identification are: Is it possible
to reduce the number of quantum experiments required,
computational complexity demanded, and memory storage
needed in order to properly identify a quantum process? How
can the error of various Hamiltonian identification methods
be bounded in terms of the number of quantum experiments
performed? A reduction in experimental, computational, and
memory complexity will enable the identification of higher
dimensional quantum systems—which is paramount to the
future of quantum computing. Improved error bounds on
this process will allow practitioners to design robust model-
predictive quantum control (MPQC) strategies. The goal of
this paper is to provide an entirely data-driven, end-to-end
solution to the quantum control problem.

In this paper, we attempt to bridge the gap between learn-
ing and control for quantum systems. By not relying on
manually-designed models, which can be brittle, our method
will account for the complexity of real-world applications.
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FIGURE 1: Quantum tomography enabled QHL utilizes probing control inputs and physical experiments to infer internal and
control Hamiltonians. Details of the QT-enabled QHL block are discussed in Section II and Figure 3.

The contributions of this article are two-fold. First, a new
QT-based QHL algorithm for identifying both internal and
control Hamiltonians for closed quantum systems is pro-
posed. This technique is visually summarized in Figure 1.
Given a physical system under the influence of an external
control field, our method utilizes QST and QPT to learn
the Hamiltonians of interest. Within this algorithm, a new
optimization-based QPT procedure is presented. This opti-
mization procedure is defined over the unitary group, i.e., the
set of all unitary operators, which is physically motivated
by the dynamics of closed quantum systems. An efficient
iterative method for solving this problem is presented, and,
in a special case, a closed-form solution and error bound are
given. The proposed QT-based QHL algorithm requires less
memory than the existing state-of-the-art and, in some cases,
greatly reduces the computational complexity.

The second contribution is that, for the first time ever,
we formulate data-driven MPQC, which uses the proposed
QT-based QHL algorithm to control quantum systems end-
to-end with unknown dynamics. MPQC leverages the ideas
from MPC for classical systems to produce an optimization-
based approach to controlling quantum systems. In our exper-
iments, when an SQP solver is used, MPQC is two orders of
magnitude faster at computing control sequences than QOC,
yet provides similar control performance. The MPQC formu-
lation is summarized in Figure 2. First, MPQC generates a
control sequence offline in a closed-loop simulation using a
model of the quantum system (Figure 2a). In this simulation,
the state of the quantum system can be fully known, unlike
that of a physical quantum system. Once a control sequence
has been optimized offline it may be provided to a physical
quantum system in an open-loop fashion so as to preserve
the coherence of the physical system (Figure 2b). The key
contributions of this paper are as follows:
• develop a novel data-driven QHL algorithm to estimate

both internal and control Hamiltonians;
• prove error bounds on the proposed control QHL meth-

ods, under appropriate assumptions;
• formalize a MPQC framework for learning-enabled

open-loop control of quantum systems; and
• illustrate the scalability and efficacy of the proposed

data-driven MPQC via numerical experiments.
The remaining sections are organized as follows. Section II

describes QPT and our novel approach to QPT. Section III
utilizes the proposed QPT method to perform QHL and iden-
tify both the internal and control Hamiltonians of a closed
quantum system. This is followed by Section IV, which
proposes data-driven MPQC. Numerical results are given in
Section V. Finally, Section VI gives our conclusions and final
remarks.

Notations: Sets are denoted by calligraphic font, e.g., X .
In particular, Zm:m+M is defined to be the set of integers
from m up to and including m + M . For brevity, set
ZM , Z1:M . Random variables are displayed in sans serif,
upright fonts; their realizations in serif, italic fonts. Vectors
and matrices are denoted by bold lowercase and uppercase
letters, respectively. For example, a random vector and its
realization are denoted by x and x; a random matrix and
its realization are denoted by X and X , respectively. In
the context of quantum states, complex vectors are denoted
using bra-ket notation, i.e., | i and h | denote a complex
vector and its conjugate transpose, respectively. The d-by-d
identity matrix is denoted by Id: the subscript is removed
when the dimension of the matrix is clear from the context.
The Frobenius norm and spectral norm of X are denoted by��X

��
F

and
��X

��, respectively. The Euclidean and infinity
norms of the vector x are denoted

��x
�� and

��x
��
1, respec-

tively. The notation diag(A1, A2, . . . , An) represents a block
diagonal matrix with the arguments on its main diagonal.
The trace, transpose, conjugate, and conjugate-transpose of
the matrix X are denoted by tr{X}, XT , X⇤, and X

†,
respectively. JA,B K� denotes the commutator of matrices
A and B. The Kronecker product is denoted by the symbol
⌦, and we will denote the Kronecker product of multiple state
vectors as | 1 2 · · ·  ni , | 1i ⌦ | 2i ⌦ · · ·⌦ | ni. The
notation R{·} and F{·} denote the real and imaginary parts
of the given argument, respectively. If f, g : Cp⇥d

! R are
arbitrary functionals, f is said to grow on the order O

�
g(X)

�

if there exists some numerical constant C 2 R such that��f(X)
�� 6 C

��g(X)
�� for all X 2 Cp⇥d. The magnitude

of a complex number z = a + ıb 2 C is denoted by
|z| =

p
a2 + b2 where ı =

p
�1. Notations and definitions

for important quantities used in the paper are summarized in
Table 1. Important acronyms and optimization problems are
summarized in Tables 2 and 3, respectively.
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(a) Offline optimization. (b) Online implementation.

FIGURE 2: Data-driven MPQC utilizes the trained model from the proposed quantum tomography-enabled QHL technique to
optimize a control sequence offline in simulation, (a). Then, the optimized control sequence is provided to a real-world quantum
system in an open-loop fashion, (b).

II. A SCALABLE QUANTUM PROCESS TOMOGRAPHY
ALGORITHM
In this section we present a new and scalable quantum
process tomography algorithm. For ease of exposition, Sec-
tion II-A considers systems which start from pure states
and Section II-B addresses those which start from mixed
states. If one’s experiments start from both pure and mixed
states, the method provided for mixed states will suffice
since it is possible to represent any pure quantum state as a
mixed state. The proposed QPT formulations rely on solving
an optimization problem on the unitary group, which may
be achieved via efficient iterative algorithms. Sections II-C
gives a method for computing iterative solutions to the QPT
problem. Section II-D presents a closed-form solution to the
QPT problem in a special case, which provides further insight
into the nature of the proposed method.

A. LEARNING FROM PURE STATES
We begin by considering a closed quantum system and
assume no explicit external control influence. A pure state
vector, or wave function, | (t)i 2 Cd evolves according to
the Schrödinger equation

ı~ @

@t
| (t)i = H | (t)i , (1)

where ~ is the reduced Planck constant and H 2 Cd⇥d

is the system Hamiltonian, which is an unknown Hermitian
operator. For now, H is a time-independent Hamiltonian. In
this work, we elect to use atomic units such that ~ = 1. At
any time, | (t)i is of unit length such that

�� | (t)i
�� = 1.

Given the initial state | (0)i 2 Cd, it is possible to calculate
the state at any arbitrary time in the future by directly solving
the Schrödinger equation:

| (t)i = e�ıHt
| (0)i

= U(t) | (0)i .
(2)

Here, we have defined the operator U(t) , e�ıHt. The
matrix exponential of any skew-Hermitian matrix is unitary.

Hence, U(t)†U(t) = Id. The relationship (2) highlights the
importance of closed quantum systems: since the evolution
of the state vector is unitary, the system preserves state
coherence.

The set of all unitary operators defined on the space Cd⇥d

is called the unitary group, which is denoted

U(d) ,
�
X 2 Cd⇥d : X†

X = Id

 
.

Throughout this paper, every problem for learning a quantum
system’s dynamics will be formalized as an optimization
problem defined on the unitary group. Because closed quan-
tum systems evolve unitarily, U(t) 2 U(d) for all t.

We are interested in a system identification problem of the
following form. First, let tf 2 (0,1) be some final time
where we perform a measurement and end the experiment.
The unitary operator U(tf) :

e
 1:Ni

(t0) 7!
e
 1:Ni

(tf) maps
each input state to its corresponding output state, where

e
 1:Ni

(t0) =

"
|
e
 1(t0)i |

e
 2(t0)i · · · |

e
 Ni

(t0)i

#
(3)

is a matrix of Ni initial states, whose n-th column is a state
vector |

e
 n(t0)i, and

e
 1:Ni

(tf) =

"
|
e
 1(tf)i |

e
 2(tf)i · · · |

e
 Ni

(tf)i

#
(4)

is a matrix of Ni final states, whose n-th column is a state
vector |

e
 n(tf)i. The system identification goal is to learn

the mapping U(tf), which will be accomplished via QPT.
As shown in Section III, it is possible to estimate the system
Hamiltonian H from U(tf).

It is assumed that the system is initiated in a known
state. However, it is only possible to estimate the final state
matrix e

 1:Ni
(tf), which can be accomplished via QST.1 The

1Several practical QST algorithms are given in [35]–[38]. Through re-
peated measurements across multiple experiments, QST estimates probabil-
ities associated with different measurement outcomes. Then, QST uses these
estimated probabilities to infer the final state of the quantum system.
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TABLE 1: Notations and definitions of important quantities.

Notation Definition Notation Definition

| (t)i state vector at time t ⌅(t) density operator at time t

H0 internal (free) Hamiltonian Hc control Hamiltonian
d Hilbert space dimension U(d) unitary group of dimension d

U(t) unitary evolution operator at time t �� diagonal matrix whose n-th element is eı�n

t0 the time that a quantum experiment begins tf the time that a quantum experiment ends
|
e
 n(t0)i the state of experiment n at time t0 |

e
 n(tf)i the state of experiment n at time tf

e
⌅n(t0) the density operator of experiment n at time t0

e
⌅n(tf) the density operator of experiment n at time tf

e
 1:Ni

(t0)
matrix whose n-th column is |

e
 n(t0)i for n 2

{1, 2, . . . , Ni}

e
 1:Ni

(tf)
matrix whose n-th column is |

e
 n(tf)i for n 2

{1, 2, . . . , Ni}

e
⌅1:Ni(t0)

matrix obtained by concatenating
{

e
⌅n(t0)}n2ZNi

in a row
e
⌅1:Ni(tf)

matrix obtained by concatenating
{

e
⌅n(tf)}n2ZNi

in a row

Ni
number of input-output state pairs used by
QPT Hl l-th interaction Hamiltonian

Nc number of control inputs umax maximum magnitude of control input allowed
Kp prediction horizon Kc control horizon

| (tk)i
state vector at time step k of the optimal con-
trol problem H(tk)

net Hamiltonian at time step k of the optimal
control problem

u(tk)
control vector at time step k of the optimal
control problem �t

length of ZOH used in the optimal control
problem

| di desired state | badi forbidden state
K number of control steps Â estimate of the quantity A

TABLE 2: Expansions of important acronyms.

Acronym Expansion Acronym Expansion

MPQC model-predictive quantum control QOC quantum optimal control

SQP sequential quadratic programming GRAPE GRadient Ascent Pulse Engineering

QST quantum state tomography QPT quantum process tomography

QT quantum tomography ZOH zero-order hold

QHL quantum Hamiltonian learning CQHL control quantum Hamiltonian learning

associated state estimation error can be written as

E =
ê
 1:Ni

(tf)�
e
 1:Ni

(tf) (5)

where ê
 1:Ni

(tf) is the estimate of the final states matrix,
with n-th column denoted by |

ê
 n(tf)i. The QPT methods

proposed in this paper are agnostic to the underlying QST
algorithms used to estimate the final states.

To identify U(tf), one needs a measure of distance be-
tween two quantum states. An appropriate measure is the
infidelity [94]. For two pure quantum states | i and |�i, the
infidelity between them is denoted and defined by

dI
�
| i, |�i

�
= 1�

�� h |�i
��2 .

This function takes on values in the range of zero to one. An
infidelity of one corresponds to perfectly orthogonal states
and an infidelity of zero indicates that | i and |�i are
identical up to a possible global phase difference. In fact,
the selection of the global phase is arbitrary, namely eı✓ | i
and | i are functionally equivalent in quantum dynamics
and they represent the same physical state for any global
phase ✓ 2 R. An important interpretation of the infidelity
is as follows. The term

�� h |�i
��2 is the probability that | i

will be measured to be |�i. Hence, minimizing the infidelity
between two pure quantum states translates into maximizing
the probability that one will be observed as the other.

Since U(tf) : |
e
 (t0)i 7! |

e
 (tf)i, we wish to find an

estimate Û(tf) which minimizes the distance dI
�
|
ê
 (tf)i,
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TABLE 3: Notation for Optimization Problems.

Notation Definition

P1 QPT for pure states

P2 Equivalent QPT in terms of the Brockett
cost function

P3 QPT for mixed states

P4 Problem solved at each time step by
MPQC for controlling quantum states

P5 Problem solved at each time step by
MPQC for generating unitary gates

P6 GRAPE for generating unitary gates

Û(tf) |
e
 (t0)i

�
where |

ê
 (tf)i is an estimate of the final state

obtained by using a QST algorithm. This is the distance
between the estimated final state and the one predicted by
Û(tf) |

e
 (t0)i. Hereafter, we will omit the explicit depen-

dence of Û(tf) on tf when it is clear from context. Since
there are many initial states and final states, we seek to
minimize the sum of the infidelities between all pairs of
initial conditions and final conditions. This gives rise to the
following optimization problem, which is the basis of our
proposed QPT algorithm:

P1 : minimize
X

NiX

n=1

dI
�
|
ê
 n(tf)i,X |

e
 n(t0)i

�

subject to X 2 U(d)

where the objective function sums over all state pairs in (3)
and the estimate ê

 1:Ni
(tf) of (4). Let Û denote the optimal

solution of P1. It should be emphasized that Problem 1 is
an optimization problem defined over a constraint manifold,
which is a distinct feature of our QPT formulation.

Next, Problem 1 is transformed into a simpler problem,
which can be solved efficiently. The new problem takes
similar form to the well-studied Brockett cost function from
the controls and optimization literature [95]. The Brockett
cost function fB : U(d) ! R is defined as

fB(X) =

NiX

n=1

tr
�
BnXAnX

† . (6)

where An 2 Cd⇥d and Bn 2 Cd⇥d are Hermitian positive
semi-definite matrices for all n.

Remark 1. Brockett’s original paper considered a slightly
different functional defined over the real orthogonal group.
Since then, the literature has widely referred to functions
of the form f(X) = tr

�
NXAX

† where N is diagonal
and A is real symmetric to be the “Brockett cost function.”
Our definition, with the summation, is closer to Brockett’s
definition in [95].

Define the density operators
e
⌅n(t0) , |

e
 n(t0)ih

e
 n(t0)|

and
e
⌅n(tf) , |

e
 n(tf)ih

e
 n(tf)| associated with the pure

states |
e
 n(t0)i and |

e
 n(tf)i, respectively.2 The following

proposition relates Problem 1 to the Brockett cost function.

Proposition 1. Solving Problem 1 is equivalent to solving
the following optimization problem:

P2 : maximize
X

NiX

n=1

tr
� ê
⌅n(tf)X

e
⌅n(t0)X

† 

subject to X 2 U(d) .

Proof. We prove the case for Ni = 1; the case for
Ni > 1 follows directly. First, note that to minimize the
objective function in Problem 1, we need only maximize�� h

ê
 (tf)|X |

e
 (t0)i

��2. Expanding this expression,
�� h

ê
 (tf)|X |

e
 (t0)i

��2

= h
ê
 (tf)|X |

e
 (t0)i h

e
 (t0)|X

†
|
ê
 (tf)i

= tr
�
h

ê
 (tf)|X |

e
 (t0)i h

e
 (t0)|X

†
|
ê
 (tf)i

 

= tr
�
|
ê
 (tf)ih

ê
 (tf)|X |

e
 (t0)ih

e
 (t0)|X

† 

= tr
� ê
⌅(tf)X

e
⌅(t0)X

† .

The second equality holds since the trace of a scalar is
equivalent to the scalar itself. The third equality is due to the
cyclic property of the trace. The final equality follows from
the definition of the density operator.

In the general case, we propose an iterative gradient-
based algorithm for solving Problem 2. This solver and its
efficiency will be described in Section II-C. A closed-form
solution in the special case where Ni = 1 is given in
Section II-D. In the next section, learning from mixed states
is addressed.

B. LEARNING FROM MIXED STATES
Recall from Section II-A that the density operator for a pure
state | i is denoted and defined by ⌅ = | ih |. In order to
properly represent mixed states, one should use the density
operator ⌅ instead of the state vector | i. A mixed state is
a probabilistic mixture, or classical ensemble, of pure states.
In other words, a mixed state is characterized by the density
operator

⌅ =
X

i

⌘i | iih i|

where
P

i ⌘i = 1, ⌘i > 0, and | ii is a pure state for
all i. A mixed state cannot be described by a single state
vector alone; however, both pure and mixed states can be
fully characterized by density operators. The density operator
⌅ is a Hermitian positive semidefinite matrix satisfying

2In the quantum physics literature, it is common to use the variable ⇢ to
denote the density operator. However, we elect to use ⌅ to emphasize that
this is a matrix quantity.
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tr{⌅} = 1. Mixed states in a closed quantum system evolve
according to the Liouville-von Neumann equation

ı
@

@t
⌅ = JH,⌅ K� . (7)

The solution to this equation is given by

⌅(t) = U(t)⌅(0)U †(t) (8)

where U(t) = e�ıHt as usual. This solution can also be
derived from the fact that each state in the classical ensemble
⌅ is governed by (1).

As for the case where the system starts from a pure state,
QPT for mixed states starts by fixing some sampling time
tf 2 (0,1). A matrix of Ni 2 N initial states is given

e
⌅1:Ni(t0) =

"
e
⌅1(t0)

e
⌅2(t0) · · ·

e
⌅Ni(t0)

#
.

For each initial state, quantum experiments are run and the
final states are measured at time tf . Similar to the case of
pure states, an estimate of the final state matrices is denoted
by

ê
⌅1:Ni(tf) =

"
ê
⌅1(tf)

ê
⌅2(tf) · · ·

ê
⌅Ni(tf)

#
.

As before, the state estimation error for the final states is
given by

E =
ê
⌅1:Ni(tf)�

e
⌅1:Ni(tf) (9)

The n-th block column of
ê
⌅1:Ni(tf) (i.e., the estimate of the

n-th final state) is simply
ê
⌅n(tf). Like their pure counter-

parts, estimates of mixed states are given by QST, and our
method remains agnostic to what QST method is employed.

Mixed states are defined on the Hilbert space Cd⇥d en-
dowed with the canonical Frobenius inner product, which
induces the Frobenius norm. This leads to a natural metric, or
measure of distance, between two matrices X,Y 2 Cd⇥d.
Namely, dF

�
X,Y

�
=

��X � Y
��
F

. In the case of mixed
states, we propose the following optimization problem which
minimizes the sum of the squared distances between

ê
⌅n(tf)

and X
e
⌅n(t0)X† to produce an estimate of the unitary

dynamics:

P3 : minimize
X

NiX

n=1

d 2
F

� ê
⌅n(tf),X

e
⌅n(t0)X

† �

subject to X 2 U(d)

where Û denotes the optimal solution of P3, which is an
optimization problem defined on the unitary group. This
problem minimizes the Frobenius norm of the difference
between the predicted final states, Û

e
⌅n(t0)Û †, and the QST

estimate of the final states,
ê
⌅n(tf). Like the proposed QPT

formulation for pure states, Problem 3 may be simplified into
an easier problem.

Proposition 2. Using the density representation for mixed
states, solving Problem 3 is equivalent to solving Problem 2.

Proof. We prove the case where Ni = 1, which is easily
extended to the case for any finite Ni. To begin, we observe
that
��X e

⌅(t0)X
†
�

ê
⌅(tf)

��2
F

= tr
nh

X
e
⌅(t0)X

†
�

ê
⌅(tf)

ih
X

e
⌅k(t0)X

†
�

ê
⌅(tf)

i†o

= tr
nh

X
e
⌅(t0)X

†
�

ê
⌅(tf)

i2o
.

The first equality is the definition of the Frobenius norm. The
second equality is due to the fact that

⇥
X

e
⌅(t0)X†

�
ê
⌅(tf)

⇤

is Hermitian. Expanding the argument of the prior expres-
sion,
⇥
X

e
⌅(t0)X

†
�

ê
⌅(tf)

⇤2

= X
e
⌅(t0)X

†
X

e
⌅(t0)X

†
�X

e
⌅(t0)X

† ê
⌅(tf)

�
ê
⌅(tf)X

e
⌅(t0)X

† +
ê
⌅(tf)

2 .

The cyclic property of the trace function gives

tr
�
X

e
⌅(t0)X

† ê
⌅(tf)

 
= tr

� ê
⌅(tf)X

e
⌅(t0)X

† 

and

tr
�
X

e
⌅(t0)X

†
X

e
⌅(t0)X

† 

= tr
�
X

†
X

e
⌅(t0)X

†
X

e
⌅(t0)

 
.

Combining the prior two expressions, the constraint that X
is unitary, and the linearity property of the trace function, the
following is obtained:
��X e

⌅(t0)X
†
�

ê
⌅(tf)

��2
F

= tr
� e
⌅(t0)

2
 
� 2 tr

� ê
⌅(tf)X

e
⌅(t0)X

† + tr
� ê
⌅(tf)

2
 
.

Since
e
⌅(t0) and

ê
⌅(tf) are fixed at the time of optimization

and are not functions of the variable X , only the term
tr
� ê
⌅(tf)X

e
⌅(t0)X† can be optimized. To solve the orig-

inal optimization problem, we wish to maximize this term
subject to the constraint that X is unitary, and the proposition
is proved.

Remark 2. It is a pleasing result that both Problem 1
(designed for pure states) and Problem 3 (designed for mixed
states) both simplify to Problem 2. For the remainder of this
paper we will refer to “solving Problem 2” unambiguously
as it treats both pure and mixed states equally.

C. GENERAL CASE: Ni > 1

In the case where Ni > 1, we provide a computationally
efficient algorithm which iteratively maximizes the objective
function (i.e., a Brockett cost function) and solves Problem
2. This process is equivalent to performing steepest ascent
on the unitary group. Our methodology is inspired by that of
[96], which was introduced in the context of minimizing the
Brockett cost function on the Stiefel manifold [97], [98] when
Ni = 1. We now proceed by first introducing preliminaries
required to implement the proposed iterative method. For
generality, we initially adopt the same general notation as
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in (6) for the Brockett cost and prove the main result. This
is done to emphasize the potential application of said result
to other domains and simplify the notation. At the end of this
section, the general result is used to solve Problem 2 using
the appropriate notation.

The unitary group is an example of a Lie group, which is
also a differentiable manifold [97]. The tangent space of U(d)
at any point X 2 U(d) is denoted and defined as

TX ,
�
XA : A 2 Cd⇥d, A+A

† = 0
 
.

The projection of an arbitrary matrix Z 2 Cd⇥d onto the
unitary group is denoted and defined by

PU (Z) , argmin
X2U(d)

��Z �X
��2
F
.

In fact, assuming that the singular value decomposition
(SVD) of Z is Z = U⌃V

†, then PU (Z) = UV
† [99].

For any X in either U(d), the canonical inner product on the
tangent space TX is defined as follows:

hZ1,Z2iT =
1

2
R
�
tr
�
Z

†
2 Z1

  

where Z1,Z2 2 TX . A local parameterization h : � !

U(d) around any point X 2 U(d) maps an open subset
� of the tangent space TX to the manifold U(d). Under
such parameterization, the tangent space should be sufficient
to locally characterize points on the manifold. In rigorous
terms, this translates to: for any point Y 2 U(d) sufficiently
close to X , there must exists some Z 2 TX such that
Y = h(Z). This paper uses the parameterization h(Z) ,
PU (X + Z). Associated with the local parameterization is
a local cost function g : TX ! R. In particular, we set
g(Z) , f � h(Z) = f

�
PU (X + Z)

�
. Steepest ascent

on the unitary group selects the steepest ascent direction to
maximize the local cost g(Z). The following proposition pro-
vides an analytic expression for this direction in the general
case and is a direct corollary of Theorem 14 in [96], which
computes the direction of steepest descent for the local cost
g. Noting that the direction of steepest ascent for the cost g
is the same as the direction of steepest descent for �g proves
this proposition.

Proposition 3. Given an arbitrary cost function f : U(d) !
R and the local cost function g(Z) = f

�
PU (X +Z)

�
about

any point X 2 U(d), the direction of steepest ascent of the
function g about the point Z = 0 under the inner product
h·, ·iT is given by

G = DX �XD
†
XX

where DX is any matrix on Cd⇥d satisfying

f(X +Z) = f(X) +R
�
tr
�
Z

†
DX

  
+O

�
kZk

2
F

�

for all Z 2 TX(d).

Using Proposition 3, we present a closed-form expression
for the steepest ascent direction of the local cost function
when the global cost is given by (6). This will be used in

Algorithm 1 Steepest ascent for maximizing (6) on the
unitary group.

1: Input: ✏ > 0

2: Initialize: Set X = Id, j = 1, and � , 1.
3: while hG,GiT > ✏ and j 6 C do
4: Compute the steepest ascent direction:

G = 2

NiX

n=1

BnXAn �XAnX
†
BnX

5: while fB
�
PU (X+2�G)

�
�f(X) > � hG,GiT do

6: Set � = 2�

7: while fB
�
PU (X+�G)

�
�f(X) < 1

2� hG,GiT do
8: Set � = �/2

9: Set X = PU
�
X + �G

�

10: Set j = j + 1

11: Return: X

our iterative algorithm for solving Problem 2. The proof of
the following proposition is presented in Appendix A.

Proposition 4. Let fB : U(d) ! R be the Brockett cost
function (6). Moreover, for any X 2 U(d), define the local
cost g : TX ! R to be g(Z) , fB

�
PU (X +Z)

�
. Then, the

direction of steepest ascent in the sense of Proposition 3 is

G = 2

NiX

n=1

BnXAn �XAnX
†
BnX . (10)

Exploiting this result, an iterative method for maximiz-
ing (6) may be formalized. The strategy is fully characterized
by Algorithm 1. The program starts with the initial guess
X = Id and a step-size � , 1. At each iteration, the
direction of steepest ascent is computed according to (10).
The algorithm is stopped if one of two criteria are met: (i) if,
for some (small) user-defined threshold ✏ > 0, the inequality
hG,GiT < ✏ holds, i.e., the direction of steepest ascent is
sufficiently small. This is the case when X approaches a
stationary point. Or, (ii) if the number of iterations exceeds
some maximum threshold C 2 N. Steps 5 through 8 of the
algorithm adaptively update the step-size according to the
Armijo criteria, which ensures that the algorithm converges
to a stationary point [96]. In step 9, the variable X is updated
according to the direction of steepest ascent and the step size.
As mentioned at the beginning of this section, Algorithm 1 be
used to solve Problem 2 by simply replacing An , e

⌅n(t0)
and Bn , ê

⌅n(tf).
Recall that Ni is the number of state pairs used in QPT

and d is the dimension of the quantum system. Ignoring
the complexity of computing the Armijo step length which
may be replaced with a constant step size, the worst-case
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computational complexity of our optimization procedure is
O
�
CNid3

�
. This is due to the matrix multiplication and

addition performed in Step 4 and the maximum number of
iterations C. Tuning the hyperparameters Ni and C gives
the practitioner control over the computational complexity of
our approach at the potential cost of accuracy. The current
state-of-the-art QPT method for closed systems, [40], has
computational complexity O

�
d12

�
(or O

�
d6
�

in a special
case).

In terms of memory, our method has space complexity
O
�
Nid2

�
, which is determined by the Ni matrices of di-

mension d2 that must be stored. The state-of-the-art, [40],
has space complexity of O

�
d8
�

(or O
�
d4
�

in a special case).
The number Ni of input-output state pairs used in our QPT
method may be chosen by the designer. However, one can
expect to produce better results with more samples. In our
numerical experiments, we find that Ni = d is a good choice.

Remark 3. The choice of Ni is influenced by both theoretical
and practical limitations. In [100], the use of “unitarily
informationally complete (UIC)” quantum states for QPT
was studied. It was shown that as few as d pure states or
2 mixed states are needed to uniquely identify a unitary
process. In practice, one may wish to use more states to
overcome noise and error in QST estimates. We have not
studied the use of UIC quantum states in our QPT approach;
however, this is an interesting research direction.

Remark 4. The computational complexity studied above is
that of the QPT algorithm alone. In practical scenarios,
one should also consider the complexity of QST since QPT
is dependent on state estimates. Popular QST algorithms
proposed in [36], [101], [102] have complexity O

�
d4
�

and
O
�
d3
�
. Using such algorithms, the computational burden

resides with QPT.

D. A NOTE ON THE SPECIAL CASE WHEN Ni = 1

In the special case where QPT is performed using a single
pair of initial and final states, i.e., Ni = 1, we provide a
closed-form solution and error bounds on the recovered uni-
tary operator Û(tf). To begin, note that the spectral theorem
states that the eigendecomposition of the Hermitian matrix
e
⌅(t0) may be taken to be

e
⌅(t0) = V⇤V

† (11)

where ⇤ 2 Rd⇥d is the diagonal matrix of real eigenvalues
and the columns of V 2 Cd⇥d consist of orthonormal
eigenvectors. Similarly

ê
⌅(tf) is taken to be
ê
⌅(tf) = Q̂⇤̂Q̂

† (12)

where ⇤̂,Q 2 Cd⇥d are matrices of eigenvalues and or-
thonormal eigenvectors, respectively. It is always assumed
that eigenvalues are placed in non-decreasing order. With
this setup, we are able to provide a closed-form solution for
calculating the maximizer Û for Problem 2. The proof of the
following proposition is postponed to Appendix B.

Proposition 5. When Ni = 1, Û = Q̂V
† is a solution to

Problems 1, 2, and 3.

Now that we understand the closed-form solution to Prob-
lem 2 in this special case, it is possible to bound the error
incurred by our approach. For an arbitrary vector of phases
� ,

⇥
�1 �2 · · · �d]T 2 Rd, define a diagonal unitary matrix

�� as
�� , diag

�
eı�1 , eı�2 , . . . , eı�d

�
. (13)

The following proposition gives an upper bound on the
unitary dynamics recovered in terms of the amount of error
in the QST process to obtain the estimate

ê
⌅(tf). The proof

of the following proposition is postponed to Appendix C.

Proposition 6. Let
e
⌅(t0) have simple eigenvalues. Then, let

Û be calculated according to Proposition 5 and let E be the
state estimation error defined in (9). Then, the following error
bound holds

min
�

����Û �U
��2
F
6 max

i 6=j

8d

|�i � �j |
2
kEk

2

where �i denotes the i-th eigenvalue of
e
⌅(t0).

Remark 5. A matrix is said to have simple eigenvalues
if none of its eigenvalues are repeated. For

e
⌅(t0) to pos-

sess this property, it must necessarily be a mixed state.
Interestingly, mixed quantum states with this property occur
naturally in certain quantum systems, e.g., see the model in
Section IV.A.3 of [75]. Moreover, since

e
⌅(t0) is chosen by the

designer, it may be designed so that its eigenvalues tighten
the bound stated in the previous proposition.

Proposition 6 shows that from a single initial condition it
is possible to identify U up to a diagonal unitary matrix��.
This is because the solution to Problem 2 given by Proposi-
tion 5 remains a solution when multiplied by any diagonal
unitary matrix. In the identification setting studied in [43],
which uses population measurements (which are important
in various applications including physical chemistry [27]), it
is only possible to identify unitary dynamics up to a diagonal
unitary matrix. However, in general, it may be possible to
uniquely identify a quantum system’s dynamics up to a global
phase using other measurements such as positive operator
valued measurements (POVMs) [103]. Nonetheless, since
the closed-form solution presented in Proposition 5 is non-
unique, more than one set of experimental states is necessary
to identify the quantum system’s dynamics using our QPT
formulation. The iterative solution given for the general case
of Ni > 1 can achieve this in a scalable and efficient manner.
Section V, which is devoted to numerical experimentation,
gives some examples of the number of states, Ni, needed for
obtaining “good” results.

III. HAMILTONIAN LEARNING
This section will discuss how to use the results of the pro-
posed QPT algorithm (Section II) to estimate both internal
(Section III-A) and control (Section III-B) Hamiltonians of a
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closed quantum system.

A. RECOVERING THE INTERNAL HAMILTONIAN
Once we have estimated Û(tf) using QPT, we seek to recover
an estimate Ĥ of the internal Hamiltonian. All unitary matri-
ces are diagonalizable by a unitary transformation. Suppose
that the eigendecomposition of Û(tf) is

Û(tf) = V̂ ⇥̂V̂
† .

Here, ⇥̂, V̂ 2 Cd⇥d are the diagonal matrix of eigenvalues
and the matrix of orthonormal eigenvectors, respectively.
Then, according to the relationship Û(t) = e�ıĤt, it follows
that

Ĥ =
ı

tf
log

�
Û(tf)

�

=
ı

tf
V̂ log

�
⇥̂
�
V̂

† (14)

where log (⇥̂) is just the usual logarithm applied entry-wise
to the diagonal matrix ⇥̂. In order for Ĥ to be a unique
estimate, we must limit the duration of the experiment. This
well-known result is in the spirit of the Nyquist-Shannon
theorem for digitally sampling classical signals and is due
to the fact that the logarithm of a complex variable is non-
unique.

Proposition 7 ([40], [104]). To uniquely identify H from
the unitary operator U(tf), the duration tf of the experiment
should satisfy

0 < tf <
⇡

µmax � µmin
(15)

where µmax and µmin are the maximum and minimum eigen-
values of H , respectively.

While in general the spectrum of H is unknown, choos-
ing a sufficiently short sampling time will ensure that this
condition is satisfied. If such a sampling time is employed
and the system Hamiltonian is estimated using the approach
presented above, it was shown in [40] that the following
bound holds:

��H � Ĥ
��
F
6 ⇡

2tf

��U � Û
��
F
. (16)

Hence, bounding the error in the estimate of U bounds the
error in the estimate of H .

With these results in hand, the time has come to present
the proposed QT-enabled QHL algorithm for identifying
an internal Hamiltonian. This technique utilizes both QST
and QPT, and a visual depiction is given in Figure 3. The
process is also summarized in Algorithm 2. A set of prepared
states are given to the quantum system and are measured
at time tf . Through repeated measurement across multiple
experiments, QST estimates the state of the quantum system
at the termination of each experiment and returns a matrix of
estimates

ê
⌅1:Ni(tf). QPT uses these state estimates to solve

Problem 2 and infer a unitary operator Û(tf) that best maps
the prepared input states to the experimentally measured

output states. Using the inferred unitary map, QHL is used
to reconstruct an estimate Ĥ of the system Hamiltonian.

Before concluding this section, an inequality relating the
error in QST to the error in QHL is in order. In particular,
we consider the case where Ni = 1, i.e., a single pair of
states is used in QPT. For any given �, denote Û� , ��Û

and let Ĥ� be the Hamiltonian inferred from Û� according
to (14). Then, Propositions 6 and 7 can be combined with (16)
to produce the following result.

Proposition 8. Under the assumptions of Proposition 6 and
when the sampling time tf satisfies (15), the following error
bound holds:

min
�

��H � Ĥ�

��
F
6 max

i 6=j

4⇡d

tf |�i � �j |
2
kEk

2 .

B. LEARNING THE CONTROL HAMILTONIANS
In the case of a controlled quantum system, we consider a
time-varying Hamiltonian which may be decomposed as

H(t) = H0 +Hc(t) (17)

where H0 is the internal Hamiltonian that appears in (1) and
Hc(t) is the control Hamiltonian. Further, we assume that the
control Hamiltonian has the following structure:

Hc(t) =
NcX

l=1

ul(t)Hl

where Nc 2 N, Hl is a Hermitian matrix for each l 2

{1, 2, . . . , Nc}, and ul(t) 2 R is a control input.3 Each Hl

is known as an interaction Hamiltonian and it describes the
effect of the l-th control field on the quantum system. We
emphasize that each Hl is time-independent and that the only
temporal dependence is in the real control input ul(t). The
Schrödinger equation becomes

ı
@

@t
| (t)i =

h
H0 +

NcX

l=1

ul(t)Hl

i

| {z }
H(t)

| (t)i (18)

and the von Neumann equation becomes

ı
@

@t
⌅ =

r
H0 +

NcX

l=1

ul(t)Hl , ⌅
z

�
. (19)

During the learning phase, i.e., for t 2 [0, tf ], it is assumed
that the control ul(t) can be placed under a zero-order hold
(ZOH), which removes the time-dependency in (18), (19)
and allows Algorithm 2 to be applied. This is outlined in
Algorithm 3, which we call QT-enabled CQHL. The premise
is to learn the Hamiltonians one by one via selectively turning
on the control ul(t) and placing it under a ZOH for the
duration of the sampling time. The value of ul(t) under the
ZOH hold is denoted cl 2 R. This parameter may be chosen
by the designer and is called a probing control input. First,

3It should be noted that the control input ul(t) and the unitary propagator
U(t) are separate entities despite the notational similarity.
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H

e
⌅(tf)

e
⌅(t0)
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e
⌅(tf)
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...
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e
⌅(tf)

e
⌅(t0)

Quantum Experiments

Quantum Tomography-Enabled Hamiltonian Learning

Quantum

state

tomography

Quantum

process

tomography

e
⌅
ˆ

1:Ni
(tf) Hamiltonian

learning

Û(tf) Ĥ

FIGURE 3: This figure summarizes quantum tomography-enabled QHL. State estimates from QST drive QPT which estimates
a unitary operator that maps the initial state of the quantum system to those measured at the termination of the experiment.
QHL uses QPT’s result to learn an estimate of the system Hamiltonian.

Algorithm 2 QT-enabled quantum Hamiltonian learning
(QHL).

1: Input: e
⌅1:Ni(t0)

2: Perform QST to estimate the final states:
ê
⌅1:Ni(tf)

3: Use Algorithm 1 to solve Problem 2 and produce
Û(tf)

4: Estimate Ĥ according to (14)
5: Return: Ĥ

Algorithm 3 QT-enabled control quantum Hamiltonian
learning (CQHL).

1: Input: {cl : l = 1, 2, . . . , Nc}

2: Initialize: ul = 0 for all l 2 {1, 2, . . . , Nc}

3: Learn Ĥ0 using Algorithm 2
4: for l = 1, 2, . . . , Nc do
5: Set ul = cl
6: Use Algorithm 2 to learn Ĥ =

⇥
Ĥ0 + clĤl

⇤

7: Estimate Ĥl = c�1
l

⇥
Ĥ � Ĥ0

⇤

8: Set ul = 0

9: Return:
�
Ĥ0, Ĥ1, . . . , ĤNc

 

the internal Hamiltonian is learned according to Algorithm
1 while all control inputs are set to zero. Then, the first
control input is set to c1 (the other inputs remain zero) and the
composite (internal and control) Hamiltonian is estimated by
repeating Algorithm 1. To recover the control Hamiltonian,
the estimated internal Hamiltonian from step one is sub-
tracted from the composite Hamiltonian learned in the second
step. This process is repeated for all l 2 {1, 2, . . . , Nc}. At
each step l, the sampling time tf can be arbitrarily chosen
(and possibly different across steps) as long as it satisfies Pr
oposition 7 for the composite Hamiltonian, H = H0+clHl.
The following proposition gives an error bound on the recov-

ery of the control Hamiltonians when Algorithm 3 is used.

Proposition 9. Let Ĥ0 and Ĥl, for l = 1, 2, . . . , Nc,
be estimates of the internal and l-th control Hamiltonian
produced by Algorithm 3. Further, suppose that Û0 is the
unitary operator produced by QPT for the internal dynamics
and Û is the unitary operator produced by QPT for the
dynamics governed by the composite Hamiltonian H =
H0 + clHl. Lastly, let the sampling time tf used by QPT
satisfy Proposition 7 for both the internal and composite
Hamiltonians. Then, the following error bound on the l-th
control Hamiltonian holds
��Hl�Ĥl

��
F
6 ⇡

2tf |ck|

⇣��U�Û
��
F
+
��U0�Û0

��
F

⌘
. (20)

Remark 6. Consider the special case where QPT uses a
single pair of states to estimate both Û and Û0. A corollary to
Propositions 8 and 9 could be given which bounds the error
in our estimates of the control Hamiltonians in terms of the
error in QST.

IV. DATA-DRIVEN MODEL-PREDICTIVE QUANTUM
CONTROL
Once the dynamics (Hamiltonians) of the closed quantum
system are learned, one may turn attention to controlling the
system’s behavior. MPQC is inspired by MPC for classical
systems. Traditionally, MPC works by computing optimal
controls over a short prediction horizon based on a model of
the system’s dynamics [105]. It then implements only the first
control in this optimal sequence. After executing this action,
it measures the state of the system, recomputes an optimal
control sequence based on its new knowledge of the state,
executes the first control action in this sequence, and repeats.
Unlike classical systems, state measurements of quantum
systems are not always available as measurement may cause
decoherence of their states. Hence, MPQC performs MPC
in a closed-loop computer simulation of the quantum system
where its state can be fully known (Figure 2a). Once a control
sequence is computed, it can be delivered to a physical
quantum system in an open-loop manner so as to preserve
the coherence of the quantum state (Figure 2b). Here, for
the first time, we propose the data-driven MPQC framework
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where the model of the quantum system is inferred by the
QHL algorithm proposed in the previous section.

This paper is concerned with controlling a closed quantum
system whose dynamics are of the form (18) or (19). All
systems studied in the remainder of this paper are assumed to
be controllable [28], which ensures that any control problem
considered is well-posed. For ease of exposition, the theory
of MPQC will be presented in terms of pure-states with
comments on the related formulation for mixed-states when
necessary.

The goal of the controller is to drive | (t)i to a desired
state, | di, via an appropriate control input while minimizing
a cost function. MPQC works by placing the control vector
u(t) under a ZOH on each time interval of length �t > 0.
If tk = k�t, the ZOH is realized as u(t) ⌘ u(tk) for all
t 2 [tk, tk +�t). Let | (tk)i denote the state of the system
at time step k 2 N such that | (t0)i is the initial state at
time t0 = 0. The l-th element of u(tk) is denoted by ul(tk).
Finally, H(tk) is the system Hamiltonian at time step k, i.e.,

H(tk) = H0 +

NcX

l=1

ul(tk)Hl .

The discrete time dynamics that advance state | (tk)i to
| (tk+1)i are given by the solution to the Schrödinger
equation over the time interval [tk, tk +�t):

| (tk+1)i = e�ıH(tk)�t | (tk)i . (21)

Define an arbitrary cost as g
�
| (tk)i ,u(tk), tk

�
where g :

Cd
⇥ RNc ⇥ R ! R. Examples of such a cost are given in

Table 4 and discussed later. In many cases, the cost is chosen
independently of time. Let Kp,Kc 2 N denote the prediction
horizon and control horizon, respectively, for the controller
such that Kc 6 Kp. During closed-loop quantum simulation,
at each time step tk, MPQC attempts to minimize the total
cost over the prediction horizon Kp by manipulating the
control u(tk) over the control horizon Kc. The optimization
problem performed at time step tk is given in the following:

P4 : minimize
u(ts): s2Zk:k+Kc

X

s2Zk:k+Kp

g
�
| (ts)i ,u(ts), ts

�

subject to | (ts+1)i = e�ıH(ts)�t | (ts)i ,��u(ts)
��
16 umax, 8s 2 Zk:k+Kp

where umax > 0 is the maximum control magnitude al-
lowed. If Kc < Kp, then for all s > k + Kc, MPQC
sets u(ts) ⌘ u(tk+Kc). That is, MPQC will only optimize
controls over the horizon Kc—after that, allowing the con-
trol to remain constant—while considering the cost incurred
over the longer horizon Kp. After the optimal sequence�
u(tk),u(tk+1), . . . ,u(tk+Kc)

 
is computed, only the con-

trol action u(tk) is recorded and given to the simulator,
which then returns the next state according to (21). This is
repeated until a control sequence of the desired length is
constructed or the cost g becomes smaller than a designed
threshold. At the termination of this simulation, the sequence

of recorded control actions is given to the physical quantum
system in an open loop manner.

The choice of cost function g determines the types of
control generated by MPQC, and Table 4 outlines several
different choices. In all cases, a summation over s in Ta-
ble 4 is the sum over all s 2 Zk:k+Kp . Cost g1 penalizes
the system’s state for occupying a forbidden state | badi.
Costs g2 and g3 both reward the system’s state for tending
towards the desired state | di; however, g3 promotes quick
convergence by considering the distance of the state | (ts)i
from the desired state over the entire prediction interval. Cost
g2 is the infidelity between the desired state and the system’s
state at the end of the prediction horizon. In g3, {↵s}

k+Kp

s=k is
a set of positive weighting parameters that can be designed
to put emphasis on different parts of the trajectory. If one
would like to consider the expense of control, g4 and g5 are a
good starting place. A controller utilizing g4 is called a �-
minimum norm controller. Function g4 adds a penalty for
the control expended over the prediction horizon Kp to the
state cost in g2. The term �/(Kpumax) is a scaling parameter
which ensures that the control cost is the same order of
magnitude as the state cost. Here, � 2 (0, 1] may be chosen
by the designer. An (↵,�)-minimum norm controller is given
by optimizing with respect to g5, which combines the ↵-
weighted average state cost with the �-weighted control cost.
This promotes quick convergence to the desired state while
considering the cost of actuation.

Solving the classical MPC problem has been a subject of
research interest for many years [106]. We would like to
utilize these methods to solve Problem 4; however, this is
not immediately feasible since the state | (tk)i is a complex
variable and most of these methods are designed to handle
real variables. To overcome this hurdle, we make use of the
isomorphism

| i 7!

2

4R{ | i}

F{ | i}

3

5

between Cd and R2d. The MPQC formulation (Problem 4)
can then be cast, for the purpose of optimization, into one
involving only real variables. In this paper, we make use of
SQP [107], which has been used to solve non-linear pro-
grams for classical MPC [108] and recently to design robust
quantum gates [79]. SQP solvers are part of many available
numerical optimization packages including the MPC toolbox
in MATLAB [109].

Remark 7. Many nonlinear programming routines, includ-
ing SQP, require gradients of the cost and constraint func-
tions with respect to states and controls. These may either
be computed analytically or numerically approximated. The
literature on QOC provides an exhaustive review of how these
may be computed, and the reader is referred to [66], [68],
[110] for a few examples of both analytic and approximate
methods.

Suppose one wishes to generate a control sequence of
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TABLE 4: Sample cost functions for MPQC.

Name: For pure states: For mixed states:

g1: Occupation of
forbidden state

P
s2Zk:k+Kp

�� h bad| (ts)i
��2 P

s2Zk:k+Kp

�
��⌅bad �⌅(ts)

��2
F

g2: Distance to target
state

1�
�� h d| (tk+Kp)i

��2 ��⌅d �⌅(tk+Kp)
��2
F

g3: ↵-weighted average
distance to target state

1� 1P
s ↵s

P
s2Zk:k+Kp

↵s

�� h d| (ts)i
��2 1P

s ↵s

P
s2Zk:k+Kp

↵s

��⌅d �⌅(ts)
��2
F

g4: �-minimum norm
controller

⇣
1�

�� h d| (tk+Kp)i
��2
⌘ ��⌅d �⌅(tk+Kp)

��2
F

+ �
Kpumax

P
s2Zk:k+Kp

��u(ts)
��2 + �

Kpumax

P
s2Zk:k+Kp

��u(ts)
��2

g5: (↵,�)-minimum
norm controller

1� 1P
s ↵s

P
s2Zk:k+Kp

↵s

�� h d| (ts)i
��2 1P

s ↵s

P
s2Zk:k+Kp

↵s

��⌅d �⌅(ts)
��2
F

+ �
Kpumax

P
s2Zk:k+Kp

��u(ts)
��2 + �

Kpumax

P
s2Zk:k+Kp

��u(ts)
��2

length K 2 N. If the prediction horizon and control horizon
are taken to be this entire length, i.e., K = Kp = Kc, then
MPQC reduces to QOC. Hence, MPQC can be considered
as a generalization to QOC that allows the practitioner to
simplify the optimization problem performed by breaking
it into smaller pieces. This simplification is intrinsically
dependent on the underlying optimization routine used. We
use SQP to solve the optimal control problem. Suppose, for
simplicity, that Kc = Kp in MPQC, i.e., the control horizon
and prediction horizon are the same length. The number
of decision variables used by the SQP program that solves
Problem 4 is given by Kp(d + Nc). At each iteration of
the optimization routine, SQP solves a quadratic program
which has complexity that is cubic in the number of decision
variables. That is O

�
K3

p(d +Nc)3
�
. Hence, for large values

of K and Kp < K, one can expect a speedup in the
optimization problem performed at each iteration.

Remark 8. We note that there are several different notions
of “QOC.” The one we refer to in the prior paragraph is
similar to that in which GRAPE is applied: assuming ZOH
on the control input, optimize a given cost function g over
the control horizon K. The differences are two-fold. First,
GRAPE attempts to solve this problem via gradient ascent,
which is different than SQP. Second, the cost in GRAPE is
a terminal cost—only the cost of the final state at step K is
considered. QOC, more generally defined, could incur a cost
at each time step as is done in Problem 4.

Remark 9. The implementation of MPQC in physical sce-
narios is highly dependent on the application. In the case

of superconducting qubits, high-fidelity arbitrary waveform
generators (AWGs) have enabled the physical implementa-
tion of control signals generated by QOC algorithms such
as GRAPE [69]. We therefore expect that MPQC could also
be physically implemented by such methods. In general, we
expect MPQC would perform well in any physical scenario
in which QOC has been applied previously.

So far, MPQC has been formalized. Data-driven MPQC
is the same procedure; however, the Hamiltonians learned in
Section II are used as the simulation’s model. Once a control
sequence is generated using the learned model, it can be
delivered to the physical system in an open-loop fashion. This
method is validated in Section V on numerical experiments
and the effect of error in the learned Hamiltonians on the
performance of the proposed data-driven MPQC is analyzed.

A. GENERATING UNITARY GATES
In the previous section, MPQC was used to govern the
evolution of the state of a closed quantum system. MPQC can
also be used to generate control sequences for implementing
arbitrary unitary gates. Take the Schrödinger operator equa-
tion

ı
@

@t
U(t) =

h
H0 +

NcX

l=1

ul(t)Hl

i

| {z }
H(t)

U(t) (22)

which describes the evolution of the propagator U(t). This
allows one to ignore the initial state | (0)i or density oper-
ator ⌅(0) and only consider what its net evolution is over
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time. At time zero, U(0) = I . The objective of the control
may be to generate any number of unitary gates, such as an
X-gate, Y -gate, Z-gate, or Hadamard gate. In this scenario,
the MPQC formulation becomes

P5 : minimize
u(ts): s2Zk:k+Kc

X

s2Zk:k+Kp

g
�
U(ts),u(ts), ts

�

subject to U(ts+1) = e�ıH(ts)�t
U(ts) ,��u(ts)

��
16 umax, 8s 2 Zk:k+Kp

where U(ts) is the unitary operator at time step s. A com-
monly used cost function in this control scenario is the
“infidelity” between the unitary U(ts) and a desired unitary
Ud as follows

g6
�
U(ts)

�
, 1�

1

d2

��� tr
n
U(ts)U

†
d

o���
2
. (23)

This infidelity is also referred to as the “gate error.”

V. CASE STUDIES
In this section, various simulation scenarios are presented
to validate both the proposed QT-based QHL algorithm and
data-driven MPQC. In the first experiment, the accuracy of
the QHL algorithm is assessed for estimating both internal
and control Hamiltonians. Then, data-driven MPQC is tested
and its performance is compared to QOC when the same
underlying optimization routine is used. In this section the
percent error metric,

"(H, Ĥ) ,
��H � Ĥ

��
F��H

��
F

100% (24)

is used to evaluate the recoverability properties of the pro-
posed QHL algorithm. All experiments were performed on a
basic laptop with 8GB RAM and an Intel® CoreTM i5-7300U
CPU @ 2.60GHz.

A. EXPERIMENT 1
In this experiment, the proposed QHL algorithm is used to
infer the dynamics of a four qubit network. For the remainder
of Section V, let I denote the 2-by-2 identity matrix, X

denote the Pauli-x operator, Y denote the Pauli-y operator,
and Z denote the Pauli-z operator. The internal Hamiltonian
of the network is

H0 = !1 X
(1)+ !2 X

(2) + !3 X
(3) + !4 X

(4)

+ !12 X
(12) + !13 X

(13) + !14 X
(14)

+ !23 X
(23) + !24 X

(24) + !34 X
(34) .

Here, X(1) = X⌦I⌦I⌦I represents the evolution of qubit
1 and !1 the frequency of this evolution. The term X

(12) ,
X⌦X⌦I⌦I represents the coupling between qubits 1 and 2
in the network and !12 denotes the strength of this coupling.
In general, X(i) represents the independent evolution of the
i-th qubit and is the matrix defined by a tensor product of
four matrices, which has X at the i-th element of the tensor
product and I at all other locations. The coupling between the

i-th and j-th qubits is specified by X
(ij), which is the matrix

defined as the tensor product of four matrices, which has X
at both the i-th and j-th locations in the product and I at the
other locations. The frequency of the i-th qubit is denoted !i

and the coupling frequencies between the i-th and j-th qubits
are denoted !ij . In the following experiments, !1 = 0.1GHz,
!2 = 0.025GHz, !3 = 0.075GHz, and !4 = 0.13GHz;
moreover, all qubit coupling frequencies are !ij = 0.01GHz.
Each qubit is controlled by two external fields. The control
Hamiltonian is

Hc(t) =
4X

l=1

ul(t)X
(l) +

8X

l=5

ul(t)Z
(l�4)

where Z
(l) is defined analogously to X

(l). In this exper-
iment, d = 16 is the dimension of the quantum system;
however, only Ni = 8 pairs of initial and final states are used
to infer the system’s Hamiltonians. Random initial states
were generated using quantum entanglement theory labo-
ratory (QETLAB)’s random density matrix function [111],
which generates a random density matrix uniformly accord-
ing to the Hilbert-Schmidt measure. The final states used in
this experiment were generated by evolving the initial states
forward in time according to (19). Also, the state estimation
error (9) is assumed to be a random (traceless) noise. The
sampling time of the final states is chosen as tf = 1ns.
The maximum number of iterations in Algorithm 1, which
is called by Algorithms 2 and 3, is chosen to be C = 15.

One-hundred numerical experiments were performed with
various noise intensities. The results using Algorithm 2 to
infer the internal Hamiltonian are depicted in Figure 4a. The
recovery error of our proposed QHL method is sublinear to
the level of noise in the experimental data. Next in each
experiment, Algorithm 3 was used to infer the interaction
Hamiltonians. For inferring each control Hamiltonian, Hl,
the corresponding control input was placed under a ZOH with
value cl = 1GHz. Figure 4b presents the error in recovering
the internal and control Hamiltonians over the one-hundred
experiments. The recovery error for the control Hamiltonians
is usually higher than that of the internal Hamiltonian, which
is expected due to the design of Algorithm 3. In both figures,
the y-axis denotes the percent error. In all numerical experi-
ments, the percent error in recovering any Hamiltonian was
less than 1%.

B. EXPERIMENT 2
Now, the efficacy of data-driven MPQC will be demonstrated
using the same 4-qubit network studied in the previous exper-
iment. The Hamiltonians inferred in the previous experiment,
which correspond to the worst-case error, were given to
MPQC. The goal of the control is to drive the qubit network
from the state |0011i to the consensus state |++++i, where
|+i , 1p

2

�
|0i + |1i

�
. This task is known as achieving

“consensus” in a quantum network or driving the network to a
“consensus state”, i.e., all nodes (qubits) in the network share
the same state [112]. An (↵,�)-minimum norm controller
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FIGURE 4: One-hundred numerical experiments were performed for various noise intensities. (a) plots the percent error in
recovering the internal Hamiltonian as a function of average percent noise in the experimental data (the Ni final states) used
to infer the Hamiltonian. The circles represent the outcome of each of 100 experiments and the lines represent the best linear-
approximation of the outcomes. (b) is a box chart which summarizes the recovery error for each of the nine Hamiltonians across
the one-hundred numerical experiments performed. The ‘⇥’ marks are outlying data-points, which are defined as being beyond
1.5 times the interquartile range away from their corresponding box.
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FIGURE 5: The results of Experiment 2. (a) The eight control inputs to the qubit network generated by data-driven MPQC.
Then, these controls were given to the ground-truth model of the system. (b) The infidelity between the states of the four
ground-truth qubits and their target states at each time-step of the experiment.

was used with {↵s}
k+Kp

s=k = {1, 2, . . . ,Kp} and � = 0.3
to generate a control input offline in simulation. The control
is limited with umax = 1GHz, the prediction horizon is
Kp = 4, the control horizon is Kc = 4, and the discretization
time is �t = 0.05ns. The optimized control input, which
was calculated using the learned model, was given to the
ground-truth model and the outcome recorded. As depicted in
Figure 5, data-driven MPQC quickly drove the qubit network
to a consensus state.

C. EXPERIMENT 3

In this insightful experiment, the performance of two differ-
ent MPQC controllers is analyzed in the case of a simple
qubit where the Hamiltonians are perfectly known and their
efficacy is compared to QOC. The internal Hamiltonian of
the system is H0 = !Z, the qubit frequency is ! = 5GHz,
and the interaction Hamiltonian is H1 = Y . The control is
limited with umax = 1GHz and the discretization time is
�t = 0.01ns. The system is initiated in the excited state |1i
and driven to the ground state |0i.

First, a �-minimum norm controller with � = 0.005 is
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FIGURE 6: Figure 6a shows the control input selected by (↵,�)-minimum norm QOC in blue, the �-minimum norm MPQC in
orange, and the (↵,�)-minimum norm MPQC in green. Figure 6b shows the evolution of the qubit’s state on the Bloch sphere
in response to each corresponding control input.

considered; second is an (↵,�)-minimum norm controller
with {↵s}

k+Kp

s=k = {1, 2, . . . ,Kp} and � = 0.005. A pre-
diction horizon of Kp = 5 and a control horizon of Kc = 2
are used for both of these controllers. If we allow Kp and Kc

to be the entire length of the control sequence, then MPQC is
equivalent to the QOC problem on that interval. Using this
approach, the third controller is an (↵,�)-minimum norm
quantum optimal controller. Figure 6 depicts the results of
this experiment. Figure 6a plots the control input generated
by each controller and Figure 6b depicts the evolution of the
qubit’s state along the Bloch sphere in response to each con-
trol input. Moreover, Figure 7 shows the infidelity between
the qubit’s state and the desired state at each time step for the
three scenarios.

For this simple experiment, it took the basic laptop dis-
cussed at the beginning of Section V roughly 6 seconds to
compute each MPQC control sequence and over 31 min-
utes to solve the QOC problem despite using the same
underlying optimization procedure. QOC achieved complete
population transfer in the fewest time-steps; however, the
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FIGURE 7: This figure shows the infidelity of the simulated
qubit at time-step for each of the three control scenarios.
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(↵,�)-minimum norm MPQC achieved quite similar perfor-
mance. The �-minimum norm MPQC took longer to achieve
population transfer, which was expected. While the control
sequence generated by this controller is longer than required
by the others, it appears to be more smooth. This may
be of practical interest in cases where highly-discontinuous
changes in a control field excite unwanted energy levels in a
quantum system.

D. EXPERIMENT 4
For the final experiment, the goal is to generate arbitrary
unitary gates for the qubit system studied in Experiment 3.
We compare the efficacy of MPQC and GRAPE for this task.
Let K 2 N be the total length of the control sequence.
GRAPE generates a control signal by solving the following
optimization problem4:

P6 : minimize
u(tk): k2ZK

g6 (U(tK))

subject to U(tk+1) = e�ıH(tk)�t U(tk) ,��u(tk)
��
16 umax, 8k 2 ZK

Notice that GRAPE only considers a terminal cost as opposed
to MPQC which can consider a different cost at each step in
the control sequence. For this comparison, Problem 5 uses
the gate error, g6, at each time step as its objective function.
The control and prediction horizons are set to Kc = 4 and
Kp = 12, respectively. Problem 5 optimizes the variable
U(tk), which is of dimension d2, at each time step as op-
posed to Problem 4, which optimized the variable | (tk)i of
dimension d at each time step. Thus, the number of decision
variables optimized at each step of SQP in MPQC is greater
than that of Experiment 3. Hence, longer computation time
can be expected. Our GRAPE implementation follows that
of [61], which uses a gradient-based procedure for solving
Problem 6. For this comparison, the control is limited to
umax = 2GHz. The iterative optimization procedures of
both MPQC and GRAPE were set to terminate after the gate
error reached a pre-defined threshold of 10�3. The qubit
dynamics are the same as in Experiment 3. Unlike MPQC,
the number of control steps, K, must be defined prior to
solving Problem 6 (GRAPE), and there are no established
rules for choosing this parameter. However, MPQC is de-
signed to iterate through time, solving Problem 5 at each
step, until a desired gate error is achieved. Hence, for this
experiment, MPQC was performed first and K was recorded.
Then, Problem 6 (GRAPE) was solved using the same value.
Table 5 summarizes the results. For all gates studied, we
found that MPQC offered a significant speedup over GRAPE
and that both methods achieved low gate errors.

Next, the robustness of the control signals generated by
MPQC and GRAPE is studied. Previously, control signals for

4The original GRAPE paper [61] considers several optimization prob-
lems. In one scenario, they attempt to maximize the gate fidelity. This is
equivalent to minimizing the gate infidelity, which we consider here. The
hallmark of GRAPE is the optimization procedure used rather than the cost
function.

0

0.1

0.2

0.3

0.4

0.5

4.7 4.8 4.9 5 5.1 5.2 5.3

Qubit Frequency (GHz)

G
at
e
E
rr
or

MPQC Hadamard
MPQC Pauli-X
MPQC Pauli-Y

GRAPE Hadamard
GRAPE Pauli-X
GRAPE Pauli-Y

FIGURE 8: Gate error as a function of qubit frequency for
the three single-qubit gates studied in Experiment 4. Control
signals optimized by MPQC (denoted by �’s) and GRAPE
(denoted by ⇥’s) for a nominal 5GHz qubit were given to a
qubit with each new frequency and the resulting gate error
was recorded. In most cases, the control generated by MPQC
is more robust to uncertainty in the qubit frequency than that
of GRAPE.

three single-qubit gates were optimized under the assumption
that the qubit’s frequency was 5GHz. These control signals
were then provided to qubits whose frequency differs from
the 5GHz value. Figure 8 plots the resulting gate errors as a
function of qubit frequency. In this figure, circles represent
data points for MPQC and crosses represent data points for
GRAPE. These points are color-coded to indicate which
unitary gate they correspond to. We observe that, in almost
all cases, MPQC generated gates which are more robust to
uncertainty in the qubit frequency.

VI. CONCLUSION
This paper introduced the concept of data-driven MPQC to
control general closed quantum systems where no nominal
model is provided. To this end, a novel and efficient ap-
proach for QHL was proposed. To learn the internal and
control Hamiltonians, a novel quantum process tomography
algorithm was developed which involves optimization on the
unitary group. The learned Hamiltonians were then used by
MPQC to compute quantum control sequences. The pro-
posed QHL algorithm allows for inferring the Hamiltonians
of high-dimensional quantum systems due to its low memory
requirement. Also, the MPQC framework is flexible and
works for a variety of control costs. In our experiments,
when an SQP solver is used, MPQC is observed to be much
faster at computing control sequences than the current state-
of-the-art, quantum optimal control. The success of many
quantum technologies depends on the ability to precisely
characterize and control quantum systems, and our results
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TABLE 5: Comparison of MPQC and GRAPE for generating quantum gates.

Hadamard Pauli-X Pauli-Y

K = 157 K = 476 K = 301

Controller MPQC GRAPE MPQC GRAPE MPQC GRAPE

Run Time (s) 8.3212 16.3905 19.6201 70.7177 13.2996 51.0152

Fidelity Error 2.7860 · 10�4 9.9985 · 10�4 8.7500 · 10�6 9.9958 · 10�4 2.7540 · 10�4 9.9999 · 10�4

offer a promising approach for controlling quantum systems
with uncertainty. Our results can serve as guidelines for
designing robust and efficient data-driven control policies for
the intervention in quantum dynamics such as interactions of
atoms and molecules or superconducting qubits.
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APPENDIX A PROOF OF PROPOSITION 4

Proof. Let X,Z 2 Cd⇥d be arbitrary matrices. By definition
of the cost,

fB(X +Z) =

NiX

n=1

tr
�
Bn

⇥
X +Z

⇤
An

⇥
X +Z

⇤† 

=

NiX

n=1

tr
�
BnXAnX

† +BnXAnZ
†

+BnZAnX
† +BnZAnZ

† 

= fB(X) + fB(Z) (25)

+

NiX

n=1

tr
�
BnXAnZ

† +BnZAnX
† .

Using the linearity and cyclic properties of the trace,

tr
�
BnXAnZ

† +BnZAnX
† 

= tr
�
BnXAnZ

† + tr
�
ZAnX

†
Bn

 

= 2R
�
tr
�
BnXAnZ

†  

= 2R
�
tr
�
Z

†
BnXAn

  
. (26)

Above, the second equality holds because, for any complex
number c 2 C, the relationship c + c⇤ = 2R{c} holds.
Since each An and Bn are positive semidefinite, they admit
principal square roots Pn and Ln, respectively, such that

An = P
†
nPn and Bn = L

†
nLn. Thus,

fB(Z) =

NiX

n=1

tr
�
BnZAnZ

† 

=

NiX

n=1

tr
�
LnZP

†
nPnZ

†
L

†
n

 

=

NiX

n=1

��LnZP
†
n

��2
F

6
NiX

n=1

��Ln

��2
F

��Pn

��2
F

��Z
��2
F

(27)

which shows that fB(Z) grows on the order O
�
kZk

2
F

�
. The

definition of the Frobenius norm and its submultiplicative
property were used to obtain (27). Combining (25), (26), and
(27) gives

fB(X +Z) = fB(X) + 2

NiX

n=1

R
�
tr
�
Z

†
BnXAn

  

+O
���Z

��2
F

�

= 2R
n
tr
n
Z

†
NiX

n=1

BnXAn

oo

+ fB(X) +O
���Z

��2
F

�

which holds for all X,Z 2 Cd⇥d. Hence, this expression
also holds for all Z 2 TX(d) ⇢ Cd⇥d, and using Proposition
3 the desired result follows.

APPENDIX B PROOF OF PROPOSITION 5
Proof. Let Y 2 U(d) and N ,A 2 Cd⇥d. When A is
Hermitian and N is diagonal, it is well-known that the
solution to the Brockett optimization problem

“Y = arg max
Y 2U(d)

tr
�
NY AY

† 

is given by some “Y whose rows are orthonormal eigenvectors
of A [96]. Hence, by the spectral theorem, “Y A “Y † is a
diagonal matrix whose diagonal entries are the eigenvalues
of A. Note that N “Y A “Y † is also a diagonal matrix. Hence,
the Brockett function is maximized by choosing the rows of
“Y to be an appropriate permutation of the eigenvectors of A.

Next, we consider the implications of the previous dis-
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cussion on Problem 2. Define the orthogonal transformation
Y , Q̂

†
X where Q̂ is the orthogonal matrix of eigenvectors

of
ê
⌅(tf) as defined in (12). In Problem 2, the variable X is

unitary, hence the variable Y is unitary as well. Using (12)
and the cyclic property of the trace, Problem 2 becomes

“Y = arg max
Y 2U(d)

tr
�
⇤̂Y

e
⌅(t0)Y

† 

which is an optimization problem of the form discussed at
the beginning of the proof. Once a maximizer “Y to this
problem is obtained, we can recover the unitary maximizer
to Problem 2 as “X = Q̂ “Y . Recalling the prior discussion,
since ⇤̂ is diagonal and

e
⌅(t0) is Hermitian, the solution

to this problem is obtained by choosing the rows of Y

to be some permutation of the eigenvectors of
e
⌅(t0) to

maximize tr
�
⇤̂Y ⌅0Y

† = tr
�
⇤̂⇤

 
. Since the eigenvalues

in decompositions (11) and (12) are non-negative and are in
non-decreasing order, “Y = V

† is a solution to the problem.
So, Û = “X = Q̂V

† is a solution to Problem 2. In the
case of pure states, Problem 2 is equivalent to Problem 1,
so Û = Q̂V

† solves Problem 1 as well. In the case of
mixed states, a similar conclusion is drawn for solutions of
Problems 2 and 3.

APPENDIX C PROOF OF PROPOSITION 6
Prior to presenting the proof, we provide a few remarks.
Since

e
⌅(t0) and

e
⌅(tf) are related by a unitary transforma-

tion, they share the same eigenvalues. Hence, given the as-
sumption that

e
⌅(t0) has simple eigenvalues, so does

e
⌅(tf).

The eigenspace associated to each simple eigenvalue is of
dimension one. So, the orthonormal eigenvectors of each
matrix are unique up to a shift by a complex phase. For
instance, let qk represent an arbitrarily computed unit-length
eigenvector of

e
⌅(tf) corresponding to the eigenvalue �k.

Namely, qk represents the k-th column Q from (12). Then,
all possible unit-length eigenvectors (corresponding to �k) of
e
⌅(tf) can be represented as

e
⌅(tf) e

ı�kqk = �k e
ı�kqk

for an arbitrary phase �k 2 R. It should also be noted that,
using (8) and (11),

e
⌅(tf) =

⇥
U(tf)V

⇤
⇤
⇥
U(tf)V

⇤† (28)

is a valid spectral decomposition of the final state; the or-
thonormal eigenvectors of ⌅f are the columns of the product
U(tf)V . Hence, if the error E is zero, the estimate Û of
Proposition 5 exactly recovers U(tf) up to a diagonal phase
shift ��. The proof of Proposition 6 follows below in the
general case for any estimation error E.

Proof. Suppose, without loss of generality, that U(tf) =
QV

†. Then,
����Û �U

��2
F
=
����Q̂V

†
�QV

†��2
F

=
����Q̂�Q

��2
F
. (29)

The second equality follows from the unitary invariance of
the Frobenius norm. It follows that

min
�

����Û �U
��2
F
= min

�

����Q̂�Q
��2
F
. (30)

If for each pair of columns qk and q̂k of Q and its estimate
Q̂, respectively, the following inequality holds

min
�k

��eı�k q̂k � qk

��2 6 max
i 6=j

8
���i � �j

��2
��E

��2 (31)

then,

min
�

����Q̂�Q
��2
F
=

dX

k=1

min
�k

��eı�k q̂k � qk

��2

6 max
i 6=j

8d
���i � �j

��2
��E

��2

which via (30) proves the desired result. Hence, it only
remains to show that (31) holds.

We will now prove (31) for an arbitrary k 2 {1, 2, . . . , d}.
So, qk and q̂k represent the k-th columns of Q and its
estimate Q̂, respectively. For an arbitrary angle # 2 R, note
that

��eı#q̂k � qk

��2 =
�
e�ı#

q̂
†
k � q

†
k

��
eı#q̂k � qk

�

=
�
q̂
†
kq̂k + q

†
kqk

�
� 2R

�
e�ı#

q̂kqk

 

= 2
�
1�R

�
e�ı#

q̂
†
kqk

 �
. (32)

The last equality above holds because qk and q̂k are unitary.
Fix the angle # to be #0 such that R

�
e�ı#0 hq̂k|qki

 
=�� hq̂k|qki

��. Since qk and q̂k are unit length,
�� hq̂k|qki

�� 6 1
and

R
�
e�ı#0 q̂

†
kqk

 
=
�� hq̂k|qki

��

>
�� hq̂k|qki

��2

from which (32) provides
��eı#0 q̂k � qk

��2 6 2
⇣
1�

�� hq̂k|qki
��2
⌘
. (33)

Since the columns of Q form a basis for Cd, it is possible
to rewrite q̂k as

q̂k =

dX

m=1

hq̂k|qmi qm . (34)

Next, using the orthonormality of the eigenvectors, observe
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that
���[

e
⌅(tf)� �kI]q̂k

���
2
=
���
⇥ e
⌅(tf)� �kI

⇤ dX

m=1

hq̂k|qmi qm

���
2

=
���

dX

m=1
m 6=k

hq̂k|qmi
�
�m � �k

�
qm

���
2

=

dX

m=1
m 6=k

�� hq̂k|qmi
�
�m � �k

���2

=

dX

m=1
m 6=k

�
�m � �k

�2�� hq̂k|qmi
��2

> min
i 6=j

(�i � �j)
2

dX

m=1
m 6=k

�� hq̂k|qmi
��2

= min
i 6=j

�
�i � �j

�2 �
1�

�� hq̂k|qki
��2� .

(35)

The first equality follows from (34), the second from the
eigenrelation between

e
⌅(tf) and its eigenvector qk, and the

third equality comes from applying the definition of the 2-
norm and the orthogonality of the columns of Q. The final
equality follows from the fact that q̂k is unitary and qm for
m 2 {1, 2, . . . , d} forms an orthonormal basis. On the other
hand,

��[ e
⌅(tf)� �kI]q̂k

�� =
��⇥ ê
⌅(tf)�E � �kI

⇤
q̂k

��

6
��⇥ ê
⌅(tf)� �kI

⇤
q̂k

��+
��Eq̂k

��

6
���̂k � �k

�� ��q̂k
��+

��E
�� ��q̂k

��

=
���̂k � �k

��+
��E

��

6 2
��E

�� . (36)

While deriving the previous inequality, we have used the
following facts:

1) the definition
ê
⌅(tf) =

e
⌅(tf) +E,

2) the triangle inequality,
3) the absolute homogeneity property of the 2-norm and

submultiplicative property of the operator norm,
4) the fact that q̂k is unit-length, and
5) for the perturbed Hermitian matrix

ê
⌅(tf) =

e
⌅(tf)+E,

Weyl’s celebrated eigenvalue perturbation inequality
states that

���̂k � �k

�� 6
��E

�� for all k.

Together, (35) and (36) produce

1�
�� hq̂k|qki

��2 6 max
i 6=j

4
���i � �j

��2
��E

��2 . (37)

Together, (33) and (37) give
��eı#0 q̂k � qk

��2 6 max
i 6=j

8
���i � �j

��2
��E

��2 .

Hence,

min
�k

��eı�k q̂k � qk

��2 6 max
i 6=j

8

|�i � �j |
2

��E
��2

which proves that (31) holds and the proposition is proved.

APPENDIX D PROOF OF PROPOSITION 9
Proof. Algorithm 3 estimates Hk according to

Ĥk =
1

ck

⇥
Ĥ � Ĥ0

⇤
.

Equation (16) allows the following deductions:
��Hk � Ĥk

��
F
=
��Hk �

1

ck

⇥
Ĥ � Ĥ0

⇤��
F

=
1

|ck|

��Ĥ � Ĥ0 � ckHk

��
F

=
1

|ck|

��Ĥ �
⇥
H0 + ckHk

⇤
+H0 � Ĥ0

��
F

6 1

|ck|

⇣��Ĥ �
⇥
H0 + ckHk

⇤��
F

+
��H0 � Ĥ0

��
F

⌘

6 ⇡

2tf |ck|

⇣��U � Û
��
F
+
��U0 � Û0

��
F

⌘

which proves the desired result.
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