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Cloud robots and automation systems
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Security

We need to address physical security in addition to cyber security
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News reports

Port of San Diego suffers cyber-attack,
second port in a week after Barcelona
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News reports

The Stuxnet outbreak The

A worm in the centrifuge

Economist

An unusually sophisticated cyber-weapon is mysterious but important

Computer virus Stuxnet a 'game changer,’

DHS official tells Senate CCNW'

j K“It has changed the way we view the security threat”

Symantec.
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Proot of concept, Symantec

Z.ero Days Documentary (2016)




The man 1in the middle

A fictiious plant for
the controller

. [Controller]

[ Plant ]:

A malicious controller
for the plant
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Mathematical formulation

Linear dynamical system

Xk+1 = an -+ Uk + Wk:
(W} are i.id. N(0,Var[W])

The controller, at timek, observes Y% and generates a control signal
U as a function of all past observations Ylk.

Y, = X Under normal operation

Y. = Vi Under attack

The attacker feeds a malicious mput Uy to the plant.

How can the controller detect that the system 1s under attack?
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Anomaly detection

e The controller 1s armed with a detector that tests for anomalies 1n
the observed history Y*

X1 = aXg + U + Wy {W} are i.id. N(0,Var[W])

e Under legitimate system operation (Yz = X&) we expect
Yk_|_1 — aYk — Uk (Ylk) ~ 1.1.d. N(O, VCL?“[W])

e The detector performs the variance test

Var[W] = E[W?]
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Anomaly detection

e Under legitmate system operation we expect

Yk_|_1 — a,Yk — Uk (Ylk) ~ 1.1.d. N(O, VCL”I"[W])
e The controller performs a threshold-based detection

% Z Vit —aYy — Uk(Ylk)}Q e (Var|W] —6,VarW]+9).
k=1

e What kind of attacks can we detect?
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The man 1n the middle attack types

Replay attack

Statistical-duplicate attack

B. Satchidanandan,
Xgr1 =aXp + U + Wi | P.R Kumar (2017)
R. S. Smuth (2011)

Learning-based attack

Xk—|—1 s an -+ Uk + Wk ZI(])QIZI)IOJaSteh et al.
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Comparison with a replay attack
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Delense against learning-based attack

Xkt1 = aXy + Uy + W

e The attacker has access to both Xz and U and knows the
distribution of Wi and of the initial condition Xo, but it should learn
the open loop gain a of the plant.
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‘Two phases of the learning-based attack

Learning (exploration) Hyacking (exploitation)

Favesdropping and learning Hiyjacking the system
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‘Two phases of the learning-based attack

Learning (exploration)
phase
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Favesdropping and learning
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Privacy-enhancing signal

Impede the learning process of the attacker

Privacy-enhancing signal

1
Up = U + 'y

-

Nominal control policy
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Privacy-enhancing signal

e Injecting a strong noise may 1n fact speed up the learning process

Ut Xk

e (Caretully crafted privacy-enhancing signals provide better
guarantees on the deception probability
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Privacy-enhancing signal

Attacker's success rate
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Learning-based attack: vector systems
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Defense against vector learning-based attack

Attacker's success rate
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Nonlinear learning-based attack

A — f ( X : U ) & Reproducing Kernel Hilbert Space (RKHS)

Linear regression m— Bayesian learning: Gaussian processes (GP)
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Lower attacker's
success rate
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