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Cloud robots and automation systems
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Security
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We need to address physical security in addition to cyber security



News reports
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News reports

“It has changed the way we view the security threat”
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The man in the middle

Plant Controller

A malicious controller

for the plant

A fictitious plant for

the controller
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Mathematical formulation

• Linear dynamical system

• The controller, at time  , observes      and generates a control signal                     

as a function of all past observations      .

• The attacker feeds a malicious input       to the plant.

• How can the controller detect that the system is under attack?

Under normal operation

Under attack
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are i.i.d. 
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Anomaly detection

• The controller is armed  with a detector that tests for anomalies in 

the observed history     . 

• Under legitimate system operation we expect

• The detector performs the variance test

• What kind of attacks can we detect?
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i.i.d. 
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B. Satchidanandan, 

P. R. Kumar (2017)

R. S.  Smith (2011)

The man in the middle attack types 

Replay attack

Statistical-duplicate attack

Learning-based attack

9

Y. Mo, B. Sinopoli (2009)

MJ Khojasteh

MJ Khojasteh et al. 

(2020)

Stuxnet



• The attacker has access to both         and         and knows the 

distribution of         and of the initial condition      , but it should learn 

the open loop gain of the plant.

• For analysis purposes, we can assume the open loop gain of the plant 

is a random variable     with a distribution known to the attacker and 

for any event      we let

Learning-based attack
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Two phases of the learning-based attack

Learning (exploration) 

phase

Hijacking (exploitation) 

phase

Eavesdropping and learning Hijacking the system
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Learning (exploration) phase

• For                , the attacker observes the plant state and control input, 

and tries to learn the open-loop gain   .

12MJ Khojasteh



Hijacking (exploitation) phase

• For                             , the attacker feeds the fake signal      to the 

controller, reads the next input      ,  and drives the system to an 

undesired state by feeding       to the plant.
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• The controller uses        to construct an estimate       of          

according to the variance test

Detecting the attack
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• Let        be the indicator of the attack at any time before         

• Define the deception probabilities

• Assume the power of the fictitious sensor reading converges a.s.
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Results
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• We provide lower and upper bounds on the deception probability

• The lower bound is based on a given learning algorithm and holds 

for any measurable control policy

• The upper bound holds for any learning algorithm, and any

measurable control policy
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• Assuming the attacker uses a least-square learning algorithm to learn 

the plant, such that 

• This algorithm is consistent, namely

Lower bound
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Lower bound
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• On the other hand, for any fixed L the deception probability 

depends on the ability to learn the plant, and we can show

Using concentration bound 

of A. Rantzer 2018 
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Comparison with a replay attack
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Upper bound on the deception probability

• If       is distributed uniformly in               , then letting

, we have 

• The numerator represents the information revealed about      from

the observation of the random variable

• The denominator represents the intrinsic uncertainty of     when it is 

observed at resolution                   corresponding to the entropy of 

the quantized random variable 
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• In addition, if                                             is a Markov chain for all 

, then

Upper bound on the deception probability

any sequence of probability measures , provided

for all 
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• The freedom in choosing the auxiliary probability measure

make the second bound  a useful bound.

The Gaussian case 
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• Gaussian plant disturbance

• By choosing                                                 we have 

where
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Impede the learning process of the attacker

Privacy-enhancing signal
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Nominal control policy 

Privacy-enhancing signal
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• Injecting a strong noise may in fact speed up the learning process

• Carefully crafted  watermarking signals  provide better guarantees 

on the deception probability

?

Privacy-enhancing signal
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Defense against learning-based attack
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Vector systems
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Learning-based attack: vector systems
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Defense against vector learning-based attack
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Nonlinear learning-based attack
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Reproducing Kernel Hilbert Space (RKHS) 

Linear regression Bayesian learning: Gaussian processes (GP)

Vulnerable region

Lower attacker's 

success rate



References

29MJ Khojasteh

• Khojasteh MJ, Khina A, Franceschetti M, Javidi T. 

Authentication of cyber-physical systems under learning-based attacks. 

IFAC-PapersOnLine. 2019 Jan 1; 52(20): 369-74.

• Khojasteh, M.J., Khina, A., Franceschetti, M. and Javidi, T. 

Learning-based attacks in cyber-physical systems.

arXiv preprint arXiv:1809.06023, 2020.


