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Taking robots into the real world
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Brittle hand-designed dynamics models work for lab

operation but fail to account for the complexity and 

uncertainty of real-world operation



Learning for dynamics and control
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Cyber

learning online relying on 

streaming data

Physical

control objectives and

guaranteeing safe operation
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Problem formulation
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start position We study the problem of 

enforcing probabilistic safety 

when     and are unknown
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Problem formulation
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baseline control policy

user-specified risk 

tolerance



Approach
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1. Bayesian learning 

2. Propagate uncertainty to the safety condition

3. Self-triggered control: extension to continous time

4. Extension to higher relative degree systems
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Gaussian processes for machine learning
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The controller observes 

but the measurements might be noisy.

without noise, 

In general, there may be a correlation among 

different components of     and    .

Thus, we need to develop an efficient factorization of
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and                     are calculated in our paper

Matrix variate Gaussian processes (MVGP)
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The above parameterization is efficient because we need to learn smaller 

matrices                                         and                 . Also, this parameterization 

preserves its structure during inference.

Inference

Louizos and Welling (ICML 2016) 

Sun et al. (AISTATS 2017)



Two alternative approaches
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1. Develop a decoupled GP regression per system dimension:

Does not model the dependencies among different components of     and 

Inference computational complexity:

decoupled GP                                                   MVGP                       

2.   Coregionalization models [Alvarez et al. (FTML 2012)]:

scalar state-dependent kernel

The nice matrix-times-scalar-kernel structure is not preserved in the posterior



Approach
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1. Bayesian learning 

2. Propagate uncertainty to the safety condition

3. Self-triggered control: extension to continous time

4. Extension to higher relative degree systems
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Control Barrier Functions (CBF)
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unsafe

unsafe

goal position

start position

Previously, CBF are used to dynamically

enforce the safety for known dynamics             

Control Barrier Condition (CBC)

A lower bound on the derivative
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Ames et al. (ECC 2019)



We  have shown  given                                               is a Gaussian

random variable with the following parameters

Uncertainity propagation to CBC
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Note: mean and variance are Affine and Quadratic in respectively.



Deterministic condition for controller
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A safe optimization-based controller which is a Quadratically Constrained 

Quadratic Program (QCQP)



Approach
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2. Propagate uncertainty to the safety condition

3. Self-triggered control: extension to continous time
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zero-order hold (ZOH) control mechanism

Safety beyond triggering times
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Safety at triggering times

Safety during the inter-triggering times



Self-triggered Control with Probabilistic Safety Constraints
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We assume the sample paths of the GP used to model the dynamics are 

locally Lipschitz with sufficiently large probability       

This assumption is valid for a large class of GPs, e.g., squared exponential 

and some Matérn kernels Srinivas et al. (TIT 2012) 

Shekhar and Javidi (EJS 2018)

The parameters are calculated in our paper



Approach
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2. Propagate uncertainty to the safety condition
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Notice

Higher relative degree CBFs
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We want to avoid a radial region  

CBF:

is independent of 



Exponential Control Barrier Functions (ECBF)
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Let be the relative degree of , that is,                                  

and ,                                    

ECBC:
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If  is chosen appropriately,                       enforce the safety for 

known dynamics. Ames et al. (ECC 2019)

Nguyen and Sreenath (ACC 2016)



Chance constraint over ECBC
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A safe optimization-based controller which is a Quadratically Constrained 

Quadratic Program (QCQP)

Cantelli’s inequality 



Safe controller using ECBF
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Solving this program requires the knowledge of the mean and variance of 

In general, Monte Carlo sampling could be used to estimate these quantities.

We also explicitly quantified them in our paper for  relative-degree-two

systems. Bipedal and car-like robots are examples of these systems.



Toy example
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Thank You. Questions? 
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