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Abstract
In this paper, we consider the problem of using a robot to explore an environment with an unknown,
state-dependent disturbance function while avoiding some forbidden areas. The goal of the robot is
to safely collect observations of the disturbance and construct an accurate estimate of the underly-
ing disturbance function. We use Gaussian Process (GP) to get an estimate of the disturbance from
data with a high-confidence bound on the regression error. Furthermore, we use neural Contrac-
tion Metrics to derive a tracking controller and the corresponding high-confidence uncertainty tube
around the nominal trajectory planned for the robot, based on the estimate of the disturbance. From
the robustness of the Contraction Metric, error bound can be pre-computed and used by the motion
planner such that the actual trajectory is guaranteed to be safe. As the robot collects more and more
observations along its trajectory, the estimate of the disturbance becomes more and more accurate,
which in turn improves the performance of the tracking controller and enlarges the free space that
the robot can safely explore. We evaluate the proposed method using a carefully designed environ-
ment with a ground vehicle. Results show that with the proposed method the robot can thoroughly
explore the environment safely and quickly.
Keywords: Gaussian Process, Control Contraction Metric, Learning Safe Exploratory Controller

1. Introduction

In the past few years, there has been an increasing interest in combining learning-based system
identification and control theoretic techniques to accomplish complex tasks and control objec-
tives (Deisenroth and Rasmussen, 2011; Dean et al., 2019; Sarkar et al., 2019; Coulson et al., 2019;
Chen et al., 2018; Liu et al., 2020; Fan et al., 2020b; Chowdhary et al., 2014; Jagtap et al., 2020;
Levine et al., 2016; Pan et al., 2018; Kahn et al., 2020; Thananjeyan et al., 2020; Srinivasan et al.,
2020; Wabersich and Zeilinger, 2020a,b). Such a combination has shown to be able to reconcile
the advantages of (deep) learned models which better represent data but are hard to be analyzed,
and control techniques that are proven to work robustly but only on well-modeled control systems.
Following this line of work, we study the problem of motion planning for robots to better learn the
model uncertainties, while maintaining safety during the exploration process.
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Consider the motivating example in Figure 1. The dynamics of a ground vehicle contain a
disturbance term, which is an unknown function of the current position. For example, the fric-
tion factor will be different while the vehicle is driving on sand or grass. There are pools that
the vehicle should avoid. To learn an accurate model of the vehicle, we have to safely drive
the vehicle to every part of the environment and collect data about the friction while remaining
safe. Similarly, safe exploratory planning is also a key yet challenging problem in many engi-
neering domains such as Mars rover exploration as in (Ono et al., 2018; Ahmadi et al., 2020;
Strader et al., 2020) and delivery drones as in (Cao et al., 2017; Berkenkamp and Schoellig, 2015).

Figure 1: Motivating scenario: A
ground vehicle needs to safely explore un-
seen environments to learn the effect of
different terrains (in different colors) on its
dynamics. The light blue regions are pools
that the vehicle should avoid.

We propose a novel framework to solve such uncertainty-
aware safe exploratory problems by combining neural Control
Contraction Metric (CCM) (cf. Sun et al., 2020) with Gaussian
Process (GP). Let us use the above scenario as an example.
The vehicle has dynamics ẋ = f(x) + B(x)u + d(x) where
d is the unknown but bounded model error. The robot aims
to approximate d with a GP model d̂. Initially, the vehicle is
only aware of its immediate surrounding environment. That is,
it gets an initial guess of d̂ and knows an upper bound on the
variance of the estimation error ‖d̂ − d‖ in a ball of radius ρ
around itself. The algorithm then learns a robust control law
using CCM such that in the ρ-ball, the vehicle can track any
desired path x∗(t) with a tracking error E . Therefore, a ref-
erence path x∗(t) is safe, if it is guaranteed to be at least E
away from the forbidden areas. Then, at each time step, the
vehicle will plan a safe path within the ρ-ball with the goal of
obtaining more information about d. The algorithm will col-
lect samples along the traveled path to continue updating the
model d̂, which in turn improves the performance of the tracking controller and characterizes more
free space as safe to explore. This process will terminate when the free space has been fully explored
in the sense that the estimation error ‖d̂− d‖ is uniformly below a threshold.

We evaluate the proposed method in the scenario as shown in Figure 1. We compare the pro-
posed method with a baseline method where the error d is not learned on the fly but pre-estimated
with hand-crafted bounds. Results show that with the proposed method the agent spends a shorter
time exploring the environment and results in fewer collisions, which demonstrates the sample ef-
ficiency and safety guarantee of the proposed method. Moreover, by combining piece-wise linear
paths and learned tracking controllers our method deals with nonlinear dynamics efficiently.

The major contributions of this paper are as follows: Firstly, we propose a framework for com-
bining the GP model with neural contraction metric to safely collect data in an unknown environ-
ment. Secondly, we investigate the sample complexity of the GP regression and use the estima-
tion variance of GP to determine the next point to explore, which improves the sample efficiency.
Thirdly, we derive the criteria for determining when to update the tracking controller, which reduces
unnecessary computation.

Related work Safe exploration has been studied in an extensive set of publications. Here we only
mention a non-exhaustive list of related work. Liu et al. (2020) used neural networks to learn the

2



UNCERTAINTY-AWARE SAFE EXPLORATORY PLANNING USING GP AND NCCM

residual dynamics from data and use statistical learning theory to get a bound on the control per-
formance. In (Nakka et al., 2020) the learned dynamics is projected into a finite-dimensional space
using generalized polynomial chaos, and the trajectory planning problem is written as a convex opti-
mization problem based on the approximated dynamics. Pravitra et al. (2020) used model predictive
path integral control (MPPI) for motion planning, and used L1 adaptive control for handling the po-
tential mismatch between the nominal and true dynamics. Koller et al. (2018) and Wabersich and
Zeilinger (2020a,b) propose learning-based model predictive control (MPC) schemes that provide
high-probability safety guarantees throughout the learning process using GPs. In MPC, nonlinear
dynamics show up as constraints of the optimization problem, which reduce the efficiency of such
methods for robots with complicated dynamics. Berkenkamp et al. (2016b) used GP to learn the
unknown part of the dynamics and used Lyapunov functions to determine a region of attraction
(ROA). With these guarantees, they provided an algorithm to actively and safely explore the state
space to expand the ROA. Berkenkamp et al. (2016a) optimized the parameters of a controller while
ensuring safety by modeling the underlying performance measure as a GP.

2. Problem setup and notations

We denote by R and R≥0 the set of real and non-negative real numbers respectively. For a sym-
metric matrix A ∈ Rn×n, the notation A � 0 means A is positive definite. For a matrix-valued
function M(x) : Rn 7→ Rn×n, its element-wise Lie derivative along a vector v ∈ Rn is ∂vM :=∑

i v
(i) ∂M

∂x(i) . Unless otherwise stated, x(i) denotes the i-th element of vector x. For A ∈ Rn×n, we
denote A+Aᵀ by sym (A). The ball centered at x with radius ρ is denoted by B(x, ρ).

We consider the problem of exploring an environment with unknown state-dependent distur-
bances and known obstacles. Assume that X ⊆ Rn is the state space, U ⊆ Rm is the input space,
D ⊆ Rn is the domain of disturbances, and O ⊂ X is the region containing the obstacles. Let
x(t) ∈ X be the state of the agent; then the dynamics is given by

ẋ = f (x(t)) +B (x(t))u(t) + d(x(t)), (1)

where dynamics functions f : X 7→ Rn, B : X 7→ Rn×m are smooth, u : R≥0 7→ U is the control
input, and d : X 7→ D is a disturbance function. The functions f and B are assumed to be known,
whereas d represents the unknown part of the dynamics, caused by discrepancies between the model
and the real dynamics or by disturbances in the environment, such as drag or friction.

We assume that the agent can observe the disturbance d(x) after it has visited a small neigh-
borhood around state x, that is, it only collects disturbance observations around its trajectory. The
observations are noisy with i.i.d. additive Gaussian noise with zero mean and covariance s2In. The
goal of the agent is to safely explore the environment to establish an accurate estimate d̂(·) of the
disturbance map d(·). At the same time, it should make use of the current estimate to explore the en-
vironment while avoiding the obstacles. Let e(x) = d(x)− d̂(x) be the estimation error. Formally,
the overall goal is to find an estimate d̂ such that ‖e(x)‖2 ≤ ψth for all x ∈ X in the free-space,
and some given threshold ψth > 0, while ensuring safety during exploration.

To derive analytical results, we need to limit the class of possible uncertainty map d. In partic-
ular, we work in a Bayesian framework and assume that d is a sample from a multivariate Gaussian
process with zero mean and known covariance function (or kernel) K(·, ·) (cf. Srinivas et al., 2012;
Lederer et al., 2019b). The choice of the kernel is problem dependent; see, e.g., (Williams and
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Rasmussen, 2006) for a review of common kernel choices. In addition we assume that the kernel K
satisfies the following properties:

Assumption 1 (i)K is isotropic, i.e.,K(x,y) depends on x and y only through ‖x−y‖ and hence
in the sequel we will also overload the notation and use K(‖x − y‖) to denote K(x,y); (ii) There
exist constants CK > 0 and ω ∈ (0, 1] (depending on K) such that we have

√
2(K(0)−K(r)) ≤

CKr
ω for all r > 0. This condition is satisfied for most of the commonly used covariance functions

such as Squared-Exponential (SE) and Matérn kernels (with half-integer smoothness) as noted by
Shekhar and Javidi (2018); (iii) There exist constants a1, a2, L > 0, such that
P
(
{supx∈X |∂d(j)(x)/∂x(j)| < L}

)
≥ 1−a1ne−L

2/a22 for j = 1, . . . , n. Note that this assumption
was employed in (Srinivas et al., 2010) to apply the GP based analysis to continuous domains X .

Overview of the method. The proposed method consists of three major components. (i) Gaussian
Processes (GP) are used to learn the disturbance from observations and give the corresponding high-
probability bound on the estimation error, which will be elaborated in Sec. 3; (ii) With the estimate
of the disturbance, we apply the method proposed by Sun et al. (2020) to learn a tracking controller
for the approximated dynamics. Using this controller, the system can track any nominal trajectory
with bounded tracking error, which will be elaborated in Sec. 4; (iii) An uncertainty-aware data
acquisition algorithm is used to ensure that the agent always visits the most informative points such
that the estimation error can be efficiently reduced as the agent collects data around its trajectory.
Also, a simple planning strategy is used to plan nominal trajectories in the environment considering
the pre-computed tracking error bound such that the motion of the agent is guaranteed to be safe.
The overall exploration algorithm will be shown in Sec. 5.

3. Gaussian process regression and sample complexity

We use GP as our Bayesian inference tool to estimate state-dependent disturbances d. Follow-
ing (Berkenkamp et al., 2017) we develop a unidimensional GP regression for each dimension d(i),
where i = 1, . . . , n. Recall that the observations are disturbed with i.i.d. additive Gaussian noise
with zero mean and covariance s2In. The training observations, for the i-th coordinate, at the sam-
pling points x[N ] := [x1, . . . ,xN ]ᵀ, are denoted by yi,[N ], which is the noisy version of the vector
[d(i)(x1), . . . , d

(i)(xN )]ᵀ. Let κi be the kernel function for the i-th coordinate. The posterior distri-
bution is again Gaussian and can be computed at the query test point x∗, as follows (cf. Williams
and Rasmussen, 2006).

d(i)(x∗) ∼ N
(
µ
(i)
N (x∗), σ

(i)
N (x∗)

)
µ
(i)
N (x∗) = Ki(x∗,x[N ])

ᵀ(Ki(x[N ],x[N ]) + s2IN )−1yi,[N ]

σ
(i)
N (x∗) = κi(x∗,x∗)−Ki(x∗,x[N ])

ᵀ(Ki(x[N ],x[N ]) + s2IN )−1Ki(x∗,x[N ]),

where Ki(x[N ],x[N ]) ∈ RN×N with [Ki(x[N ],x[N ])]j,k = κi(xj ,xk), and Ki(x∗,x[N ]) ∈ R1×N

with [Ki(x∗,x[N ])]j = κi(x∗,xj). We estimate d(x) with the mean of the GP posteriors. That is,

d̂(x) = µN (x), where µN (x) := [µ
(1)
N (x), . . . , µ

(n)
N (x)]ᵀ.
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3.1. Sample-dependent high confidence error bound

In this section, we derive a high probability upper bound on the number of observations required
to ensure that the estimate error e(x) can be made smaller than some prescribed value ψth within a
neighborhood of radius ρ around some given point o.

We begin by stating an assumption on the sampling distribution of the agent, which formalizes
the requirement that the agent can gather sufficient information within its neighborhood. This as-
sumption is necessary for our main result of this section, Theorem 1, as our goal is to get uniformly
good estimates of d at every point in the neighborhood.

Assumption 2 We assume that when the agent is situated at some point o ∈ X , it can draw samples
in a neighborhood B(o, ρ) around the point according to a sampling distribution Q with support
B(o, ρ), which admits a density q satisfying the property c ≤ q(x) for all x ∈ B(o, ρ) for a positive
constant c > 0. Note that a special case of Q is the uniform distribution which admits a constant
density q(x) = 1

Vol(B(o,ρ)) .

We can now state the main result of this section which provides a bound on the number of
observations needed to ensure a uniformly good estimate of the model error function d.

Theorem 1 Suppose the following conditions are satisfied: 1) The model error d in (1) is a sample
from a zero-mean GP with the covariance functionK satisfying Assumption 1, and 2) The agent can
make observations in its neighborhood according to a sampling distribution Q satisfying Assump-
tion 2. Then the number of observations N(ρ, δ), drawn according to the sampling distribution Q,
that are required by the agent in a ball of radius ρ around some point o to ensure that ‖e(x)‖2 ≤ ψ
for all x ∈ B(o, ρ) with probability at least 1− δ is Õ

(
max

{
2
√
nψ−1, ψ−2n/ω

c2
, s2ψ−(2ω+n)/ω

c

})
where the Õ(·) notation suppresses the poly-logarithmic factors of log(1/δ) and log(1/ψ).

Proof (sketch) Full proof can be found in Appendix A.

• First, following the proof of (Srinivas et al., 2010, Lemma 5.6), we first introduce a high prob-
ability event Ω1 such that for all points x in a fine discretization (denoted byH) of B(o, ρ), we
have |µ(j)t (x) − d(j)(x)| ≤ βNσ

(j)
t−1(x) for 1 ≤ j ≤ n. By making the discretization H fine

enough, we can ensure sufficiently accurate estimate of d at every point of X by appealing to
property (iii) in Assumption 1.

• Next, we note that by using (Shekhar and Javidi, 2018, Prop. 3), to ensure uniformly tight
estimate, we need to ensure that every point x ∈ B(o, ρ) has sufficiently many samples in a
ball of radius r0 around it, for an appropriate choice of r0. To achieve this, we consider a
fixed r0/2-covering of B(o, ρ), denoted by E, and find N large enough which ensures that a
r0/2 neighborhood of every point in E has sufficiently many samples drawn according to Q.

Remark 2 Note that our proof of Theorem 1 proceeds by first obtaining a uniform deviation bound
by controlling the deviation on the elements of a sufficiently fine discretizationH of the ball B(o, ρ).
Alternatively, we could also have employed the uniform error bounds derived in (Lederer et al.,
2019b, Theorem 3.1) for this task. However, our approach leads to a slightly easier path to obtain
the sample complexity, i.e., finding the value of N which ensures that the error is smaller than some
given quantity ψ. Performing this “inversion" with the more general bounds derived by Lederer
et al. (2019a); Gahlawat et al. (2020) may be more involved.
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4. Learning-based tracking controller and tracking error

In the last section, we constructed a high confidence bound on the estimation error of the distur-
bance. In this section, we show how to learn a tracking controller with high confidence bound on
the tracking error.

Contraction theory (Lohmiller and Slotine, 1998) analyzes the incremental stability of a system
by considering the evolution of the distance between any pairs of arbitrarily close neighboring tra-
jectories. The existence of a Control Contraction Metric (CCM) (Manchester and Slotine, 2017)
ensures the existence of a tracking controller that can drive the system to any nominal trajectories.

We apply the method proposed by Sun et al. (2020) to jointly learn a tracking controller and
a contraction metric function for the dynamics with the estimate of the disturbance, i.e. ẋ =
f̂ (x(t)) + B (x(t))u(t), where f̂(x) = f(x) + d̂(x). As shown by Sun et al. (2020), the learned
metric M(·) is just a mapping from the state x to an n × n positive definite matrix. The learned
tracking controller is a feedback controller of the form u(x,x∗,u∗), where x is the current state
and x∗,u∗ are the nominal state and control input. We want to find a metric function M(·) and a
feedback controller u(·) satisfying that for all x ∈ X , x∗ ∈ X , u∗ ∈ U , and some λ > 0,

Ṁ + sym (M(A+BK)) + 2λM ≺ 0, (2)

where A := ∂f̂
∂x +

∑m
j=1 u

(j) ∂bj
∂x , bj is the j-th column of B, u(j) is the j-th element of u, K = ∂u

∂x ,
and Ṁ is the derivative of M(x(t)) w.r.t. time. We refer the readers to (Sun et al., 2020) for more
details. Note that the above formulation uses the estimated dynamics by plugging d̂(x) in (1). The
following theorem shows that when applied to the real dynamics, the tracking error of the learned
controller is still bounded.

Theorem 3 (Robustness to dynamics error, Sun et al. 2020) Given M and u satisfying inequal-
ity (2), since M(x) is positive definite, there exist m ≥ m > 0 such that mI �M(x) � mI for all
x. Assume that error of the dynamics is bounded as ‖e(x)‖ ≤ ψ for all x and some ψ > 0. Now
considering the trajectory x(t) of the closed-loop system, the distance between x(t) and any given

reference x∗(t) is bounded as ‖x(t) − x∗(t)‖2 ≤ R0√
me
−λt +

√
m
m ·

ψ
λ (1 − e−λt), where R0 is the

Riemannian distance between x(0) and x∗(0) under metric M .

Moreover, if x(0) = x∗(0), then the Riemannian distanceR0 = 0. This is usually the case since
the reference trajectory planned by the open-loop motion planner exactly starts from the current state
of the agent. Thus, the tracking error of the learned controller is upper bounded by E =

√
m
m
ψ
λ . If

we can ensure that the planned nominal trajectory is at least E away from the obstacles, then the
realized trajectory is guaranteed to be safe. As will be shown in Sec. 5, this is equivalent to bloating
the obstacles by E before planning. The following corollary immediately follows from Theorem 1
and Theorem 3.

Corollary 4 Suppose that a ball B(o, ρ) contains N samples such that N , ρ, δ, ψ satisfy the con-
dition of Theorem 1 for some δ and ψ. If there exists a controller and metric satisfying the CCM
condition (2) and the motion of the closed-loop system is restricted in B(o, ρ), then the tracking

error is less than or equal to E =
√

m
m ·

ψ
λ with probability at least 1− δ.
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Retraining of the controller. As mentioned before, the agent gradually collects more and more
observations and keeps improving the estimate d̂. In this case, we might have to learn a new con-
troller u and a new contraction metric M such that condition (2) still holds. Retraining of this
controller is expensive, and thus we use the following method to reduce the number of retrainings.
The basic idea is to impose some robust margin on condition (2) during training, such that the
learned metric and controller are robust to the change of d̂ to some extent. Specifically, instead of
condition (2), we use the following condition for learning,

Ṁ + sym (M(A+BK)) + 2λM ≺ −MI, (3)

where M > 0 is the margin for robustness. Intuitively, if we impose the above condition, small
changes in d̂ will not lead to a violation of condition (2). Retraining is only needed when the change
in d̂ crosses a certain threshold. Formally, we have the following theorem.

Theorem 5 Consider two estimates d̂1 and d̂2 and their difference R = d̂1 − d̂2. If the metric M
and controller u satisfy the robust condition (3) for the estimate d̂1 and the difference R satisfies
the following condition for all x,

‖∂RM + sym (MR) ‖2 ≤M, (4)

then the original condition (2) is also satisfied for the estimate d̂2.

The proof can be found in Appendix B. In practice, we evaluate condition (4) only in the region
of our interest instead of the whole state space. Moreover, evaluating whether condition (4) holds
on an uncountable set is hard. Instead, we randomly sample a number of points from the set and
say condition (4) holds for the whole set only if it holds for all sampled points with a robust margin
determined by the Lipschitz constant of the LHS of condition (4) (cf. Sun et al., 2020, Sec. 3.2).

5. Algorithm

The overall framework is shown in Algorithm 1. Several components are explained in order.

Compute the estimation error. In Algorithm 1, we need to determine the estimation error ψ in a
ball B(o, ρ) given the current observations and the confidence level δ. Theorem 1 provides a high
probability bound on the number of samples needed to ensure uniformly good estimate within a ball
B(o, ρ). Based on this theorem, we now present a practical heuristic to compute an upper bound on
estimation error, which in turn provides a stopping rule for the sampling. We proceed as follows. We
use black-box optimization to find the maximizer of σ(j)N over the domain B(o, ρ) for all 1 ≤ j ≤ n
which we denote by σ̃(j)N . As we mentioned in the proof sketch of Theorem 1 the absolute value of
the estimation error for the j-th coordinate is bounded by βNσ

(j)
t−1(x). Hence, we stop the sampling

if βN
√∑n

j=1[σ̃
(j)
N ]2, which represents the upper bound on the 2-norm of the total estimation error,

is smaller that ψth. Here, βN is a quantity defined in Appendix A.

Find the next point to visit. At each time step, the agent has to determine the next point to visit
and collect observations around its trajectory. To make the exploration efficient, the next point to
visit must be informative. Therefore, we choose the one with highest estimate variance. Formally,

g = arg max
x∈X

n∑
i=1

(
κi(x,x)−Ki(x,x[N ])

ᵀ(Ki(x[N ],x[N ]) + s2IN )−1Ki(x,x[N ])
)
. (5)

7



UNCERTAINTY-AWARE SAFE EXPLORATORY PLANNING USING GP AND NCCM

Algorithm 1: Safe exploration.
Input: Initial state x; Obstacles O ⊂ X ;
Input: Error tolerance ψth; Confidence level

δ;
Output: Final estimate d̂;
Function Plan(x, g, E):

Data: current state x; goal g; bloating
factor E ;

Bloating obstacles: Õ = O
⊕
B(0, E);

Plan from x to g while avoiding Õ;
while not satisfied do

Find next goal g to visit using Eq. (5);
ρ = ρ0; path = null;
while path is null do

Compute E in B(x, ρ);
path = Plan(x, g, E);
Decrease ρ;

end
Move along path until

reaching the boundary of B(x, ρ);
Enlarge the observation set and update d̂;
Retrain the controller if needed;

end

Bayesian Inference

(GP)

Tracking Controller

Motion Planner

Agent

O
b

serv
atio

n
 (x,𝑑

x
)

Estimate መ𝑑(x)

C
o

n
tro

ller u
(x,x

∗,u
∗)

Error bound ℰ

Nominal   trajectory x∗

Figure 2: Diagram of the proposed method.

Planning a feasible path. After determining the next point to visit, the agent has to plan a nominal
trajectory feasible for the nominal dynamics (i.e. without considering e(x)) such that controlled by
the learned controller in Sec. 4, the agent can safely track this nominal trajectory and reach the
goal. As mentioned in Sec. 4, the distance between the actual trajectory and the nominal one is
bounded by E . Therefore, we first bloat the obstacles with the error bound E : Let the obstacles be
O ∈ X ; the bloated obstacles are just O

⊕
B(0, E), where

⊕
denotes the Minkowski summation

and B(0, E) denotes the ball centered at the origin with radius E . Then, a nominal trajectory to the
goal is planned while avoiding the bloated obstacles. Any motion planner could suffice, e.g. (Vitus
et al., 2008; Fan et al., 2020a), and we adopt RRT* (Karaman and Frazzoli, 2011). RRT* is used to
generate a piece-wise linear path. However, this path is usually not feasible for the agent. Thus, an
additional step is required to generate a feasible trajectory and the corresponding reference control
input. To this end, a simple linear feedback controller is used to track the planned piece-wise linear
path (again, without considering e(x)). The trajectory generated by the agent controlled by the
simple controller will be used as the reference, i.e. x∗(t) and u∗(t) for the tracking controller. Due
to the tracking error introduced by the simple controller, x∗ may be unsafe. If that happens, we
will bloat the obstacles a bit more and repeat planning until we find a safe x∗. However, in the
experiments we found that this was very rarely needed.

Putting it all together. At each time step, the agent first determines the next point to visit. Then,
it initializes the radius ρ = ρ0 and computes the upper bound on the estimation error and the
corresponding tracking error E in the ball B(x, ρ). Using E , the agent searches for a safe path to the
goal. If it failed to find such a path, then ρ is decreased a bit and the above process is repeated until
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a safe path is found. Then, controlled by the learned controller, the agent moves along the path and
collects new observations on the disturbance until it reaches the boundary of the ball B(x, ρ). Then,
GP is invoked to update the estimate d̂ using the new observations. After that, we might retrain the
controller if needed as shown in Sec. 4. The exploration will terminate once we have collect enough
samples such that ‖e(x)‖2 ≤ ψth for all x ∈ X \ O with probability at least 1− δ.

6. Experimental evaluations

In order to evaluate the proposed safe-exploration framework, we designed a scenario as shown in
Fig. 1. Several components of the scenario are explained in order.

Dynamics. We adopted the Dubins car model for the agent. The state of the system is x :=
[px, py, θ, v, ω]ᵀ, where (px, py) the position of the car, θ the heading angle, v the velocity, and ω is
the angular velocity. The control input is u := [f, τ ]ᵀ, where f is the force and τ is the torque. The
dynamics of the car is

ẋ =


v cos(θ)
v sin(θ)
ω
−0.4v
−0.4ω

+


0 0
0 0
0 0
1 0
0 1

u + d(x).

Workspace and obstacles. In the experiments, we want the agent to explore a square region
[0, 10]× [0, 10] on the 2D plane. We randomly generate 10 obstacles, which are shown in Fig. 1.

Disturbance function. The disturbance d(x) is a function of the first two elements of x and
models the effect caused by the ground at position (px, py). We use an image from (Sturtevant,
2012) as the terrain map. In order to define the 5-dimensional disturbance based on the color values
of the image, we use a 5× 3 projection matrix P to map the color space to disturbance space. The
disturbance at (px, py) is obtained by multiplying P and the corresponding RGB color value.

Simulation. At the beginning of the simulation, we assign a random initial position to the agent
such that it is safe initially. Then, the trajectories are simulated with a constant time step ∆t =
0.01 s. At each time step, we check the safety of the agent. If the distance to an obstacle is less than
a threshold thr > 0, then it is said to be unsafe. In the following experiments, we set thr to 0.1
meters. The goal of the agent is to collect observations on the disturbance to construct an estimate
d̂ of the actual disturbance map d and maintain safety in this process.

Metrics for evaluation. We use the following metrics for comparison: 1. Unsafe is the percentage
of iterations at which the agent is unsafe; 2. Travel time is the time needed for exploring the
workspace; 3. Tracking error is the average tracking error, which is the distance between the actual
trajectory and its nominal trajectory averaged over all time steps. Moreover, all the metrics reported
in this section are averaged over 5 runs.

Comparison with the baseline method. The baseline method is a variant of Algorithm 1. The
baseline method does not make use of the current estimate d̂ to retrain the controller and compute
the high-probability tracking error E . Instead, E is set to be a constant. In the experiments, we set
E = 0, 0.1, or 0.3. We also tried to use larger E , e.g. E = 0.6, however, in that case, the bloated
obstacles blocked the free space, which makes it impossible to finish the exploration. For all the

9
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Table 1: Comparison with the baseline method.

Method Unsafe (%) Travel time (s) Tracking error
Algorithm 1 0.3 236 0.051

Baseline (E = 0) 10.3 208 0.243
Baseline (E = 0.1) 5.1 314 0.221
Baseline (E = 0.3) 4.0 515 0.230

methods we set ρ0 = 1, ψth = 0.1, and δ = 0.05. The results are shown in Table 1. Compared to
the baseline methods, the proposed method results in higher safety and shorter travel time, which
demonstrates the sufficiency of the proposed method. Further illustration of the experimental results
can be found in Appendix C.

7. Discussion and Future Work

In this paper, we consider the problem of using a robot to safely explore an unknown environment
and propose a framework where GP and contraction metric are combined to drive the robot effi-
ciently and safely in the environment. Results on a ground vehicle model verify the efficiency of the
proposed safe exploration framework. There are several interesting directions for future research.

• We developed an independent GP regression for each coordinate. For cases where strong
correlations exist between components, we could employ Matrix-Variate GP, as in existing
works such as (Khojasteh et al., 2020; Louizos and Welling, 2016; Cheng et al., 2020).

• In this work, we assume the unknown part of the dynamics is a sample from GP. Alternatively,
depending on specific applications and the available prior knowledge, it may be more suitable
to apply other estimation techniques such as random forests, neural networks or counter-
example guided learning (Chen et al., 2020).

• In this work, we plan the agent action toward the point with the highest estimate variance (5)
and empirically showed its benefits. An important question to investigate for future work is
whether there exist planning strategies that can provably improve upon our method. Ideas
from the literature on active learning (Buisson-Fenet et al., 2020; Capone et al., 2020; Lew
et al., 2020; Nakka et al., 2020) may be useful in designing such optimal strategies.

Acknowledgments The authors acknowledge support from the DARPA Assured Autonomy under
contract FA8750-19-C-0089 and from the Defense Science and Technology Agency in Singapore.
The views, opinions, and/or findings expressed are those of the authors and should not be interpreted
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Appendix A. Proof of Theorem 1

To present the details of the proof, we need to introduce some additional notation. Let E denote the
r0/2 covering of B(o, ρ) for some 0 < r0 < 1, and H denote the r1 covering for some r1 < r0/2.
Both the terms r0 and r1 will be specified later. Throughout this proof, we will use mE and mH to
denote the cardinality of E and H respectively, and furthermore, for any x ∈ B(o, ρ) we will use
[x]E and [x]H to denote the element in E and H (respectively) that is closest to x. In the case of
more than one point being the closest we will choose according to some predetermined rule. Finally,
we will enumerate the elements of E as {z1, z2, . . . , zm}.

Now, suppose that the agent draws N i.i.d. points according to a sampling distribution Q from
the region B(o, ρ), and denote the drawn points by SN = {X1, X2, . . . , XN}. Introduce the random
variables mi = |SN ∩ B(zi, r0/2)|, denoting the numbers of random samples falling in the r0/2
neighborhood of zi, for 1 ≤ i ≤ m.

For some given confidence level δ ∈ (0, 1) we introduce the following three events which can
be ensured to occur simultaneously with probability at least 1− δ.

• Suppose the setH is an r1 = 1/(NL
√
n) (where L = a2

√
log(3a1n/δ)) covering of B(o, ρ)

(recall that the terms a1 and a2 from Assumption 1). Introduce the event

Ω1 = {|d(j)(z)− µ(j)(z)| ≤ βNσ(j)t (z), ∀z ∈ H,∀1 ≤ t ≤ N},

where

βN =
√

2 log(3NmH/δ) and mH = Cn

(
NL
√
n

ρ

)n
for some constant Cn > 0 depending only on n. Then, we have P(Ω1) ≥ 1− δ/3
Proof The proof of this statement proceeds along the lines of the proofs of (Srinivas et al.,
2010, Lemmas 5.5 & 5.6). In particular, we note that for any z ∈ H , the posterior is a
normal random variable with mean µt(z) and variance σ2t (z), and thus by the Gaussian tail
inequality and two union bounds (one over the elements of H for a fixed t, and the second
over t = 1, 2, . . . , N ) we get the required result.

• Next, we introduce the event Ω2 = {|∂d(x)/∂x| < L, ∀x ∈ B(o, ρ), ∀j = 1, 2, . . . , n} with

L = a2

√
log
(
3a1n
δ

)
. Then we have P (Ω2) ≥ 1− δ/3.

Proof This result follows directly from the assumption on the covariance function, stated in
Assumption 1, that there exist constants a1 and a2 such that for any L > 0, the event Ω2 is
satisfied with probability at least 1− a1ne−L

2/a22 . The result then follows by plugging in the
value of L used in the definition of the event Ω2.

• Finally, we introduce the event Ω3 = {|mi−Npi| ≤
√

2N log(3m/δ), ∀1 ≤ i ≤ m} where
pi =

∫
B(zi,r0/2) q(x)dx is the probability that a uniformly drawn sample from B(o, ρ) falls in

B(x, r0/2). Then we have P (Ω3) ≥ 1− δ/3.

Proof The result follows by an application of Hoeffding’s inequality and a union bound over
elements of E followed by another union bound over the N time steps.
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For the rest of the proof, we will work under the event Ω1 ∩Ω2 ∩Ω3, which as shown above occurs
with probability at least 1− δ.

As a consequence of the simultaneous occurrence of Ω1 and Ω2, we note that for any x ∈ B(o, ρ)

we must have d(j)(x) ≤ µ
(j)
t ([x]H) + βNσ

(j)
t ([x]H) + 1/N . Thus if N ≥ 2

√
n/ψ, then to obtain

the required result, it suffices to show that βNσ
(j)
t (x) ≤ ψ/(2

√
n) for all x ∈ H . We proceed in the

following steps:

• For any point x ∈ H , we note that there exists at least one zi ∈ E such that ‖x− zi‖ ≤ r0/2.
Consequently, the ball B(zi, r0/2) is contained in the larger ball of radius r0 centered around
x, i.e., B(x, r0). Since, we assume that the event Ω3 holds, this implies that the number of ran-

dom points from SN which fall in the ball B(x, r0) is at leastmi ≥ N
(
pr0 −

√
2 log(2m/δ)

N

)
.

Thus by an application of (Shekhar and Javidi, 2018, Proposition 3), we note that after col-
lecting N observations, the approximation error at the point x can be upper bounded as
|d(j)(x) − µ

(j)
t (x)| ≤ βNσ

(j)
t (x) ≤ βN

(
σ√
mi

+ CKr
ω
0

)
, where CK is introduced in As-

sumption 1.

Now, assuming that (i) βN ≤ a for some a > 0, and (ii) that N is large enough to ensure
that σ/

√
mi ≤ CKr

ω
0 . Together these two assumptions imply that a suitable value of r0 is(

ψ
2aCK

)1/ω
.

• Now, we obtain the sufficient conditions on N to ensure that the above two assumptions are
satisfied. Recall, that we have already imposed the condition that N is large enough to ensure
that 1/N < ψ/(2

√
n) or equivalently N > 2

√
n/ψ. Additionally, we need N to be large

enough to ensure that σ/
√
mi ≤ CKrω0 , and we break it into two parts:

– N is large enough to ensure that 2 log(3m/δ)/N ≤ (pi/2)2, a sufficient condition
for which is to ensure that 2 log(3m/δ)/N ≤ (1/4)(cCnr

n
0 )2, where the term c is

introduced in Assumption 2. Since a2 ≥ 2 log(2m/δ) a sufficient condition for this is

N ≥ a2+2n/ω

(
2CK
ψ

)2n/ω (22n−2

c2C2
n

)
– N is large enough to ensure that σ/

√
Npi/2 ≤ CKr

ω
0 for all i, a sufficient condition

for which is

N ≥ 2σ2

C2
KCnc

(
2CKa

ψ

)(2ω+n)/ω

.

• Now, it remains to show that there exists an a > 0 such that if N satisfies the above two
conditions then 2 log(2N2/δ) ≤ a. A sufficient condition for this is that

a ≥ 2 max

{
log

(
8σ2(2ρ)2n

δC2
K

(
CK
ψ

)(2ω+n)/ω
)
, log

(
2(2ρ)4n

δ

(
CK
ψ

)4n/ω
)
, a∗

}
,with

a∗ = max
{
e−W (−1/(8n/ω+8)), e−W (−ω/(4ω+2n))

}
, where W is the Lambert W-function.
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To conclude, a sufficient condition for ensuring that the estimated value of d is good enough with
probability at least 1 − δ is that the agent draws at least N uniform samples in the ball B(o, ρ),
where N satisfies:

N = Õ

(
max

{
2
√
nψ−1,

ψ−2n/ω

c2
,
s2ψ−(2ω+n)/ω

c

})
,

where the notation Õ suppresses the polylogarithmic factors of log(1/δ) and log(1/ψ) (arising from
the conditions on a).

Appendix B. Proof of Theorem 5

The following lemma is used for the proof of Theorem 5.

Lemma 6 For any two symmetric matrices A,B ∈ Rn×n, the difference of their largest eigenval-
ues satisfies:

|λmax(A)− λmax(B)| ≤ ‖A−B‖2.

Lemma 6 is a well-known result that follows from the Courant-Fischer minimax theorem. The
detailed proof can be found at Fan and Mitra (2015).
Proof (of Theorem 5). Plugging d̂1 and d̂2 into Equation (2), denote the LHS by LHS(d̂1) and
LHS(d̂2) respectively. Then, we have

LHS(d̂1)− LHS(d̂2) = ∂RM + sym (MR) .

Then, following from Lemma 6 and the assumption that d̂1 satisfies the robust condition, we have

λmax(LHS(d̂2))

≤λmax(LHS(d̂1)) + ‖LHS(d̂1)− LHS(d̂2)‖2
≤−M+ ‖∂RM + sym (MR) ‖2
≤0.

Thus, LHS(d̂2) ≺ 0, which means d̂2 satisfies the original condition (2).

Appendix C. More Experimental Results

The progress of exploration is visualized in Fig. 3. A video is available at https://youtu.be/
cG4o29ntBbE.
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Figure 3: Exploration progress of the proposed method. White dots indicate the collected observa-
tions on the disturbance. Green transparent circle around the car is the ball B(x, ρ) in Algorithm 1.
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