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Abstract The information flow required for remote stabilization of dynamical sys-
tems has been investigated extensively in the last two decades and basic results that
are cornerstones for the theory of Cyber-Physical Systems (CPS) have been derived.
This chapter reviews these developments with a particular emphasis on recent ad-
vancements obtained in the context of event-triggering control. In this framework, a
basic realization is that, in the same way that subsequent pauses in spoken language
are used to convey information, it is possible to transmit information in CPS not
only by message content, but also with its timing. Exploiting this possibility, event-
triggering control techniques encode information in the timing of the triggering
events and can achieve system stabilization at dramatically low data-rates.

1 Introduction

Cyber-Physical Systems (CPS) [1] are typically designed as a network of interacting
elements, including sensors, actuators, computing and communication devices con-
nected in closed loop, with the objective of performing tasks that require interaction
with the physical world. In such networked control systems a fundamental question,
which is the focus of this chapter, is the following:
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Fig. 1 High level abstraction of a CPS from a communication perspective.

What is the minimum amount of information transfer among the different components of
the CPS that is needed to keep the overall system stable?

Immediately associated with this basic question is the engineering problem of de-
signing encoding, decoding, and control policies that best exploit the available in-
formation flow. In the last two decades, the research community has addressed these
issues by developing several mathematical abstractions that capture the interaction
between communication and control in CPS. These results shed light on the be-
havior of real systems and provide guidelines to develop effective control policies
Surveys of this literature appear in [2–6] and in the books [7–10]. This book chap-
ter complements and extends these reviews, focusing on data-rate requirements for
stabilization, and in particular on recent advancements obtained through the design
of event-triggered control policies. In this case, a key point is that the information
flow in the feedback loop is not only associated to data flowing through the links
connecting the different devices, but it is more generally encoded in “events” that
occur over time. This new point of view leads to several extensions of classic results
and to a broader perspective on the information constraints associated to control
systems.

To illustrate the results, we consider a high-level abstraction of a CPS as the block
diagram depicted in Figure 1. A dynamical system evolves over time according to
deterministic state equations, affected by stochastic disturbances. Sensors monitor
the system’s output and their readings are encoded and sent through a digital com-
munication channel to a controller, whose action is fed back to the actuators through
another digital communication channel. Examples of CPS that fall within this general
description include autonomous and remotely controlled robots, unmanned aerial ve-
hicles (UAVs), autonomous vehicles (AV), and several industrial control systems.
We further simplify this model by assuming that the controller is co-located with
the actuators and the only communication channel is between the sensors and the
controller, see Figure 2. This comes at no loss of generality so long as the information
available to perform encoding and decoding is the same at the sensor, controller, and
actuators. In this case, Figure 2 is formally equivalent to Figure 1 [11, Proposition
2.2.], since performing decoding and re-encoding at the controller is redundant, and
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Fig. 2 Simplified model where the controller is co-located with the actuators.

Fig. 3 Distributed communication and control system.

the bottleneck link determines the effective data-rate. The information flow through
the feedback loop can then be viewed as occurring over a single channel, which can
also represent a multi-hop network connection, and in this case the effective data-rate
refers to the rate available at the endpoints of the connection.

On the other hand, we point out that in practice the information available for
encoding and decoding may be different at different points in the feedback loop
and solutions in this case are highly dependent on the assumed information pattern.
For example, it may be reasonable to assume that the encoder at the controller is
uncertain of what the actuator actually received, while the encoder at the sensor is able
to infer what the controller or the actuator has received using system observations.
Most schemes in the literature rely on the availability of such causal feedback to
perform their encoding operations, which further justifies the adoption of the model
in Figure 2.

Finally, we also point out that the different blocks, including the system, sensors,
controller, and actuators, can be spatially distributed, see Figure 3, and this raises
additional issues regarding the distributed computation of the control policy, which
we do not consider here. A key aspect of CPS to which we pay special attention is
the need to use available resources such as power efficiently. In addition to being
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computation-aware, the architecture of the CPS should be communication-aware.
The focus of this chapter is on design of systems that can leverage communication-
aware solutions.

Notation: Random variables are displayed in sans serif, upright fonts; their real-
izations in serif, italic fonts. Vectors and matrices are denoted by bold lowercase and
uppercase letters, respectively. For example, a random variable and its realization
are denoted by x and 𝑥; a random vector and its realization are denoted by x and 𝒙;
a random matrix and its realization are denoted by X and 𝑿, respectively.

2 Data-rate theorem

A fundamental result on the information flow requirements in CPS obtained in the
last two decades is the so-called data-rate theorem [11–13]. This quantifies the effect
that communication has on closed-loop stabilization of unstable systems by stating
that the communication rate available in the feedback loop should be at least as large
as the intrinsic entropy rate of the system. For continuous linear systems the intrinsic
entropy rate corresponds to the sum of the unstable modes of the system and for
discrete systems it corresponds to the sum of the logarithms of the unstable modes.
When this condition is satisfied, the controller can compensate for the growth of
the state space occurring during the communication process. To illustrate this result,
consider the set of equations {

x𝑘+1 = 𝑨x𝑘 + 𝑩u𝑘 + v𝑘

y𝑘 = 𝑪x𝑘 +w𝑘 ,

(1a)
(1b)

where 𝑘 = 0, 1, . . . is time, x𝑘 ∈ R𝑑 represents the state variable of the system,
u𝑘 ∈ R𝑚 is the control input, v𝑘 ∈ R𝑑 is an additive disturbance, y𝑘 ∈ R𝑝 is the
sensor measurement, w𝑘 ∈ R𝑝 is the measurement disturbance, and 𝑨, 𝑩, 𝑪 are
constant real matrixes of matching dimensions. Standard conditions on (𝑨, 𝑩) to
be reachable, (𝑪, 𝑨) observable, are added to make the problems considered well
posed. The equivalent continuous formulation is{ ¤x(𝑡) = 𝑨x(𝑡) + 𝑩u(𝑡) + v(𝑡)

y(𝑡) = 𝑪x(𝑡) +w(𝑡).
(2a)
(2b)

In a first approximation, noise and bandwidth limitations in the communication
channel can be captured by modeling the channel as a rate-limited “bit pipe” capable
of transmitting only a fixed number 𝑟 of bits in each time slot of the system’s
evolution, see Figure 4. In this way, the channel can represent a network connection
with a limited available bit-rate, when transmitting below this rate communication
errors are assumed to be negligible, and only quantization of the transmitted messages
is accounted for.
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Fig. 4 Bit-pipe channel

When the control objective is to keep its state bounded, or asymptotically drive
it to zero, the control law is always a linear function of the state. Hence, for unstable
linear systems under this rate-limited bit-pipe communication model, the central
issue is to characterize the ability to perform a reliable estimate of the state at the
receiving end of the communication channel. In order to keep the system stable, the
data-rate theorem states that the information rate 𝑟 supported by the channel must be
large enough compared to the unstable modes of the system, so that it can compensate
for the expansion of the state during the communication process. Namely,

𝑟 >
∑︁
|_𝑖 |>1

log2 |_𝑖 | [bits/sec], (3)

for discrete systems, where {_𝑖} are the open-loop eigenvalues raised to their corre-
sponding algebraic multiplicities, and

𝑟 >
∑︁

Re{_𝑖 }>0
_𝑖 log2 𝑒 [bits/sec], (4)

for continuous systems, If the real parts of all the eigenvalues of 𝐴 are positive
(unstable), this can be written as

𝑟 > tr(𝐴) log2 𝑒 [bits/sec]. (5)

The intuition behind the data-rate theorem is evident by considering a scalar
system and noticing that while the volume of the state of the open loop system
increases by |_ | in a unit time step in the discrete setting —or by |𝑒_ | in the continuous
setting— in closed loop this expansion is compensated by a factor 2−𝑟 due to
the partitioning induced by the coder providing 𝑟 bits of information through the
communication channel. By imposing the product to be less than one and taking the
logarithm base two, the results follow. Another interpretation arises if one identifies
the right-hand side of (3) and (5) as a measure of the rate at which information is
generated by the unstable plant, then the theorem essentially states that to achieve
stability the channel must be able to transport information as fast as it is produced.

Early incarnations of this fundamental result appeared in [14–17] for undisturbed,
scalar, unstable plants, when the objective is to keep the state bounded at all times.
Improvement of the result from maintaining a bounded state to obtaining a state that
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asymptotically approaches zero are shown in [18–20] and require an adaptive “zoom-
in, zoom-out” strategy that adjusts the range of the quantizer so that it increases as
the plant’s state approaches the target and decreases if the state diverges from the
target. This follows the intuition that in order to drive the state to zero, the quantizer’s
resolution should become higher close to the target.

In the presence of stochastic disturbances, asymptotic stability can only be guar-
anteed within the range of the disturbances. The work [12] showed that for almost
surely (a.s.) bounded disturbances and initial condition, the data-rate theorem holds
and we can have

sup
𝑘∈N

‖x𝑘 ‖2 < ∞, a.s. (6)

On the other hand, unbounded disturbances can drive the state arbitrarily far from
zero, and one can only guarantee stability in a weaker, probabilistic sense. The typical
approach is to consider mean-square (m.s.) stability, namely

sup
𝑘∈N
E(‖x𝑘 ‖2) < ∞. (7)

The work [11] proved the data rate theorem using mean-square stability for systems
with unbounded stochastic disturbances and bounded higher moments, namely

∃𝜖 > 0 : E(‖x0‖2+𝜖 ) < ∞, sup
𝑘∈N
E(‖v𝑘 ‖2+𝜖 ) < ∞, sup

𝑘∈N
E(‖w𝑘 ‖2+𝜖 ) < ∞. (8)

The strict necessity of the data-rate requirement in (3) is proven in the case of
bounded disturbances and a.s. stability using the Brunn-Minkowski inequality. In
the case of unbounded disturbances and mean square stability it is proven using
the stochastic counterpart of the inequality, namely the entropy power inequality of
information theory [2]. The main difficulty in proving the sufficiency of the data-rate
requirement in (3) in the unbounded support case is due to the uncertainty about the
state that cannot be confined in any bounded interval. This is overcome by using an
adaptive quantizer described in [11].

3 Extensions to noisy channels

Several generalizations of the data-rate theorem have been considered in the litera-
ture. An important body of work regards extensions to stochastic channels, namely
channels whose behavior varies randomly due to noise. In this case, the rate available
for transmission through the noisy channel must be defined in terms of information
capacity. In this setting, a key result is that for undisturbed systems one can derive
a data-rate theorem expressing the rate available for transmission in terms of the
Shannon capacity of the channel [21, 22]. The Shannon capacity is the supremum
of the achievable rates having arbitrarily small error probability. In contrast, when
systems are subject to disturbances the standard notion of Shannon capacity turns out
to be insufficient to express the ability to stabilize the system in both the a.s. and m.s.
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sense. In this case, alternative notions of capacity must be used to formulate data-rate
theorems, namely the anytime capacity must be used to express m.s. stability [23],
and the zero-error capacity must be used to express a.s. stability [24]. The anytime
capacity is the supremum of the achievable rates having exponentially decaying error
probability for every transmitted bit, and the zero-error capacity is the supremum
of the achievable rates when the error probability is zero. To illustrate these results,
consider stabilization of a scalar system over a simple stochastic erasure channel
where the rate varies randomly between the two values {𝑟, 0} in an i.i.d. fashion.
Namely, for all 𝑘 we have the stochastic rate process

r𝑘 =

{
0 w.p. 𝑝

𝑟 w.p. 1 − 𝑝,
(9)

and we assume that both encoder and decoder have causal knowledge of the channel
realization. In information-theoretic terms, this is as an 𝑟-bit packet erasure channel
with acknowledgement of packet reception and erasure probability 𝑝. This channel
is visually illustrated in Figure 5(a).

(a)

(b)

Fig. 5 Example of stochastic channels. (a) 𝑟 -bit packet erasure channel. (b) stochastic-rate channel,
including erasures.

The Shannon capacity of this channel is [25]

𝐶 = (1 − 𝑝)𝑟. (10)

However, it turns out that a large Shannon capacity is not enough to achieve m.s.
stabilization (7). Instead, we need a more stringent condition, that in the scalar case
is expressed as

E

(
|_ |2
22r𝑘

)
= 𝑝

|_ |2
20 + (1 − 𝑝) |_ |

2

22𝑟 < 1. (11)
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Using the same intuition of production and consumption of information mentioned
above, this condition states that the average of the product of the open loop state ex-
pansion and compensation through 𝑟-bit quantization should be kept less than one to
ensure stability. By rearranging terms, we obtain the anytime capacity condition [23]

𝐶𝐴 ≡ 22𝑟

22𝑟 𝑝 + 1 − 𝑝
=

22𝑟

𝑝(22𝑟 − 1) + 1
> |_ |2. (12)

The notion of anytime capacity, expressed in the left-hand side of (12) for the 𝑟-bit
erasure channel can be extended to other communication channels, and it turns out
to be the correct figure of merit to express data-rate theorems describing the ability
to achieve m.s. stabilization [23].

The expression in (12) shows a clear a trade-off between the reliability of the
channel and the quantization rate. Namely, when the quantization rate 𝑟 → ∞, we
obtain

1
𝑝
> |_ |2, (13)

indicating that the erasure probability 𝑝 must be small enough to guarantee stability.
In contrast, as 𝑟 → ∞, the Shannon capacity (10) tends to infinity, and does not give
any indication on the channel reliability needed to achieve stabilization. In general,
for any finite value of 𝑟 both the quantization rate and the reliability of the channel
play a role in determining the ability to stabilize the system. Finally, when 𝑟 → 0
we obtain |_ | < 1, namely the system cannot be stabilized regardless how small the
erasure probability 𝑝 is.

There are several channels for which anytime capacity stabilization conditions
similar to (12) have been obtained. These include time-varying rate channels [26,27].
In this case, the rate process r𝑘 varies randomly over time in an i.i.d. fashion,
taking values in a subset of the non-negative integers, see Figure 5(b). The erasure
channel considered above is a special case, when the rate process takes values in
{0, 𝑟}. Another extension regards stochastic channels where the rate varies according
to a Markov process [28–30]. This allows arbitrary temporal correlations of the
channel variations over time, and results rely on the theory of Markov Jump Linear
Systems [2]. In the special case of Gaussian channels, it turns out that the Shannon
capacity is indeed sufficient to characterize m.s. stability and we refer to [2, Sec
1.4.4] and references therein for a description of these results.

For general stochastic channels, and systems with bounded disturbances, if in-
stead of m.s. stability (7), one wants to achieve the more stringent a.s. stabilization
condition (6), a basic result in [24] shows that the capacity notion to use is the
zero-error one. This capacity definition was originally introduced by Shannon in
1956 [31], following his celebrated 1948 paper [32], which introduced the classical
Shannon capacity. Its recent application to the field of networked control has led
to the development of a nonstochatsic information theory, which characterizes the
zero-error capacity in terms of an information functional describing the flow of
information through the feedback loop [33].
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An intuitive interpretation of the results above arises considering that the Shannon
capacity defines information transfer using a “weak” reliability constraint, namely
it is required that the probability of decoding a codeword incorrectly tends to zero.
In contrast, the zero-error capacity defines information transfer using a “strong”
reliability constraint, namely it is required that the probability of decoding a codeword
incorrectly is exactly zero. The anytime capacity definition sits somewhat in between
the two, requiring repeated “anytime” decoding of all codewords every time a new
symbol is received, and imposing that the probability of having an error in any of
the decoded codewords tends to zero exponentially as more and more symbols are
received. Accordingly, the Shannon capacity is too weak to express the ability to
stabilize a system, the zero-error capacity can be used to express stabilization in a.s.
sense, and the anytime capacity can be used to express stabilization in the weaker
mean square sense. For a more extensive discussion of the relationship between the
different capacity definitions, we refer the reader to [2, 30].

4 Event triggering

Data-rate theorems have recently been revisited in the context of event-triggering
control. In this context, a more general perspective on the information flowing
through the feedback loop arises by considering that information can be encoded not
only in data payload but also in “events” that occur over time.

Event-triggering [34–49] is a recent control paradigm that seeks to prescribe in-
formation exchange between the controller and the plant in an opportunistic manner.
The main idea can be summarized in the following quote by the greek philosopher
Plato:

Wise men speak because they have something to say; fools because they have to say some-
thing.

Rather than communicating periodically the control action, communication in event-
triggering control occurs only when triggered by some events indicating the need to
send fresh information to guarantee the correct execution of the task at hand (e.g.,
stabilization, tracking). The primary focus then is on minimizing the number of
transmissions while guaranteeing the control objectives.

At a high level, one can view event triggering as sampling in time with the objective
to identify the minimum sampling rate at which information may be transmitted
through the feedback loop. Similarly, a bit-pipe communication model can be viewed
as sampling in space, namely as quantization of the signal, and the data-rate theorem
corresponds to the identification of the minimum quantization rate that can still
guarantee stabilization. In the case of stochastic channels, we have both sampling
in space, since we are transmitting through a digital channel messages of finite
precision, and sampling in time, through errors and erasures. This view suggests that
there should be a close connection between data-rate theorems and event-triggered
control [47].
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A first connection is revealed in [50], which presents a data-rate theorem for event-
triggering strategies for systems subject to bounded disturbances and controlled over
a bit-pipe communication channel. Consider the system’s equations{ ¤x(𝑡) = 𝑨x(𝑡) + 𝑩u(𝑡) + v(𝑡)

y(𝑡) = x(𝑡).
(14a)
(14b)

where the initial condition x(0) and the system disturbance v(𝑡) are a.s. bounded.
At each triggering event, the sensor transmits to the controller a packet of a fixed
number of bits. Letting 𝑏𝑠 (𝑡) be the total number of bits transmitted by the sensor
to the controller up to time 𝑡, the data-rate theorem is expressed in terms of the
asymptotic average transmission bit-rate of the sensor

𝑟 ≡ lim sup
𝑡→∞

𝑏𝑠 (𝑡)
𝑡

[bits/sec]. (15)

This rate clearly depends on the triggering strategy. Letting ‖𝑥∞‖2 be a deterministic
bound on the the steady state and ^ be a sufficiently large constant (both depending
on the range of the disturbance and the initial condition), it turns out that to obtain
exponential stability at rate 𝜎, namely requiring that for all 𝑡 > 0

‖x(𝑡)‖2 6 (^ − ‖𝑥∞‖2)𝑒−2𝜎𝑡 + ‖𝑥∞‖2 a.s., (16)

we need
𝑟 > (tr(𝑨) + 𝜎𝑑) log2 𝑒 [bits/sec], (17)

where 𝑑 indicates the dimension of the system. The expressions (16) and (17) are
consistent with (5) and (6), where 𝜎𝑑 represent the extra bits required for exponential
convergence to the steady state. It follows that the result in [50] can be viewed
as being analogous to the one in [12], but obtained here in the context of event
triggering for continuous systems and with exponential convergence guarantees.
However, while the result in [12] is a data-rate theorem that is both necessary and
sufficient for stabilization, the event-triggering controller design proposed in [50]
uses an asymptotic data rate that is within a constant factor from the necessary
condition (17). Nevertheless, the proposed design adjusts the communication rate
in accordance with state information in an opportunistic fashion and it guarantees
a uniform positive lower bound on the times between successive triggering events,
thus avoiding the so called “Zeno behavior.”

4.1 Zeno Behavior

Event-based control is a fundamentally hybrid phenomenon, since we control con-
tinuous dynamics at discrete instances. In this setting the Zeno phenomenon [51–55]
is an important issue that needs to be accounted for when modeling, analyzing, and
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Fig. 6 A typical Zeno paradox is that in order to reach a destination, we always need to cover half
the distance to it, thus we are prevented from ever reaching it (see [56]).

controlling the system. The name Zeno refers to the ancient Greek philosopher Zeno
of Elea who designed a number of paradoxes to support his view that the concepts
of motion and evolution lead to contradictions. The Zeno behavior we are concerned
here is related to Dichotomy paradox [56], illustrated in Figure 6, which can be stated
as: “That which is in locomotion must arrive at the half-way stage before it arrives
at the goal.” By applying this statement recursively, Zeno concludes that we should
never be able to reach any destination. In the context of event-triggering, the Zeno
phenomenon is a possible degenerate behavior of some event-triggering strategies
leading to an infinite number of triggering events occurring in a finite amount of
time.

Figure 7 gives an example of a possible Zeno behavior. We consider a scalar
continuous-time system

¤x = 𝐴x(𝑡) + 𝐵u(𝑡), (18)

and we assume that at the controller the estimated state x̂ evolves during the inter-
reception times as

¤̂x(𝑡) = 𝐴x̂(𝑡) + 𝐵u(𝑡). (19)

We assume the sensor can use (19) to compute 𝑥(𝑡) for all 𝑡 ≥ 0, provided it
knows 𝑥(0). Thus, the estimation error at the sensor is

z(𝑡) = x(𝑡) − x̂(𝑡), (20)

and evolves during the inter-reception times as

¤z = 𝐴z. (21)

This shows that during the inter-reception times the state estimation error evolves
in open loop, independent of the control input. The sensor relies on this estimation
error to determine the triggering events. Specifically, a triggering happens when the
absolute value of the estimation error crosses a given threshold function, indicated
by the blue curve in Figure 7. Figure 7(a) shows the estimation error evolution of a
“good” communication strategy. In this case the estimation error after the reception
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(a)

(b)

Fig. 7 Example of Zeno phenomenon. (a) regular behavior (b) degenerate behavior. The orange line
represents the absolute value of the estimation error, and the blue curve represents the triggering
threshold.

of each packet jumps to a value that is far from the triggering boundary, which
ensures that the time between any two consecutive triggering times has a uniform
lower bound and the estimation error converges to zero. The uniform lower bound
on two consecutive triggering times leads to an upper bound on the frequency at
which the triggering occurs. In this example, the triggering threshold tends to zero
exponentially, and a “good” communication strategy needs to ensue |z(𝑡) | tends to
zero at the same rate. In contrast, Figure 7(b) shows the realization that exhibits a
Zeno behavior. In this case, the frequency of the triggering events increases over
time, leading to an estimation error that remains constant, while triggering occurs
infinitely often. When designing event-triggering strategies one must rule out the
Zeno behavior. In practice, any valid algorithm, such as the one in [50] must guarantee
a uniform lower bound on the inter-transmission times between successive triggering
events.
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5 Timing information in event-triggering

The event-triggering strategy proposed in [50] adjusts the transmission rate to the
state information required by the controller to guarantee stability, avoids Zeno be-
havior, and ensures that transmissions occur only as needed, thus saving resources.
This work shows that the average transmission rate over the channel, expressed by
(15), must satisfy the minimum requirement imposed by the data-rate theorem and
expressed by (17). This result seems to indicate that the data-rate theorem is in
complete harmony with event-triggering, in the sense that whether the transmission
rate is limited by channel conditions, or it is limited opportunistically through event-
triggering, the same fundamental limitation applies, which is dictated by the unstable
modes of the system and by the desired convergence rate and expressed by (17).

It turns out, however, that event-triggering can also exploit an additional resource
that is not accounted for in the current formulation and which allows to achieve
stabilization with a dramatically lower data-rate. The work in [57] reveals that if the
channel does not introduce any delay and the controller is aware of the triggering
strategy used by the sensor, then one can achieve stabilization by transmitting at a
rate that is arbitrarily close to zero. To illustrate this point, consider the following
undisturbed system { ¤x(𝑡) = 𝑨x(𝑡) + 𝑩u(𝑡)

y(𝑡) = 𝑪x(𝑡).
(22a)
(22b)

where x ∈ R𝑑 and y ∈ R (that is 𝑪 ∈ R1×𝑑) and the only uncertainty is due to
the random initial condition. The channel connecting the sensor to the controller is
assumed to be capable of transmitting one bit in an arbitrarily small time unit, so
that communication of this binary symbol can be considered instantaneous when
compared to the system dynamics. Let {𝑡𝑘𝑠 }𝑘∈N be the sequence of times at which
the sensor transmits a bit to the controller. These times are set by event triggering
accordingly to a level crossing strategy. Letting ℎ be a given threshold, a transmission
occurs every time the difference between two successive output samples crosses the
threshold, namely the triggering condition is given by

|y(𝑡𝑘𝑠 ) − y(𝑡𝑘+1
𝑠 ) | = ℎ. (23)

The system initially evolves in open-loop by letting 𝒖 = 0. Then, at each triggering
time the sensor transmits a single bit to the controller that encodes the sign of the ℎ

step change in the y value. By receiving at least 𝑑 + 1 bits, and solving the following
system of equations

𝑪 (𝑒𝐴𝑡1
𝑠 − 𝑒𝐴𝑡

0
𝑠 )

𝑪 (𝑒𝐴𝑡2
𝑠 − 𝑒𝐴𝑡

1
𝑠 )

...

𝑪 (𝑒𝐴𝑡𝑑𝑠 − 𝑒𝐴𝑡
𝑑−1
𝑠 )


x0 =


y(𝑡1𝑠 ) − y(𝑡0𝑠 )
y(𝑡2𝑠 ) − y(𝑡1𝑠 )

...

y(𝑡𝑑𝑠 ) − y(𝑡𝑑−1
𝑠 )


,
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where the right-hand side is a column vector of ±ℎ values, the controller can infer
the initial condition provided that the matrix on the left-hand side is nonsingular.
Once the initial condition is known, it can then stabilize the system in a closed-loop
fashion. Since we have

lim sup
𝑡→∞

𝑏𝑠 (𝑡)
𝑡

= lim
𝑡→∞

(𝑑 + 1)
𝑡

= 0, (24)

it follows that we can stabilize the system with an arbitrarily small transmission rate.
It is important to note that for this scheme to work, we need to know precisely

the transmission times {𝑡𝑘𝑠 }. The assumption of zero delay ensures that the time at
which the controller receives a bit also reveals the time of transmission. Of course,
the same is true if communication carries an arbitrary but known delay. In practice,
this assumption boils down to having perfect synchronization between encoder and
decoder. The second important assumption is that the system is not affected by
disturbances. As we shall see below, both of these assumptions can be considerably
relaxed. Before describing these additional results, we build some intuition for this
zero-rate result.

The intuition behind the result follows by noting that, like pauses are used in
spoken language to convey information, in the context of event-triggering control it
is possible transmit information in the feedback loop not only by message content,
but also with its timing. Specifically, in the absence of delay in the communication
channel, the mere act of sending one bit at a given time can reveal the state of the
system with arbitrary precision, and transmitting a single data payload bit at every
triggering event is enough to compute the appropriate control action. In fact, we may
take this intuition one step further and also notice that under the same assumptions
of [57] we do not even need to transmit a bit at each triggering time. To reveal any
component x of x(0), we could transmit a single arbitrary symbol ♠ at a time equal
to any bijective mapping of x into a point of the non-negative reals. For example, we
could transmit a symbol ♠ at time 𝑡 = tan−1 (x), where 𝑡 ∈ [0, 𝜋]. Since there is no
choice associated to the symbol selection, in principle the reception of the symbol
should not carry any information. However, its arrival time carries information and
can reveal x with arbitrary precision. To communicate the whole vector x(0), we
could then send 𝑑 + 1 identical ♠ symbols at different times and encode all the
components of x(0) in their inter-transmission times. In principle, one could even
send a single ♠ symbol to encode the whole x(0) vector by using a 𝑑-dimensional
space-filling curve and selecting a time of transmission for which a point on the
curve is mapped onto x(0).

To conclude, the important message to be taken from [57] is that using event
triggering information can be transmitted in the feedback loop not only by sending
data but also by carefully selecting the times of transmission. A similar observation
is also made in [58]. This work considers the system to be fully observable, namely
𝑪 to be the identity, and the sensor to transmit, at a fixed sequence of transmission
times, {𝑡𝑘 } symbols from a finite alphabet over a delay-free and error-free commu-
nication channel. It is further assumed that a special symbol in the alphabet can be
transmitted without consuming any communication resources, effectively represent-
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ing the absence of an explicit transmission, while the other symbols require one unit
of communication resource per transmission. From an information-theoretic per-
spective, this set up is related to the silence-based communication paradigm of [59].
Letting 𝑠(𝑡𝑘 ) be the total number of non-free symbols transmitted by the sensor to
the controller up to time 𝑡𝑘 , the asymptotic average cost per unit time is given by

𝑐 ≡ lim sup
𝑘→∞

𝑠(𝑡𝑘 )
𝑡𝑘

[symbols/sec], (25)

where 𝑡𝑘 → ∞ as 𝑘 tends to infinity. This can also be interpreted as an effective data
rate, since it represents the rate accounting for only the non-free transmissions, and
should be compared with (15). In both cases, the rate depends on the transmission
strategy. It is shown in [58] that stabilization can be achieved with arbitrarily small
values of (25) by letting the transmission times 𝑡𝑘 = 𝑘𝑇 , decreasing the sampling
period 𝑇 , and transmitting non-free symbols rarely. In this regime, the transmission
policy resembles an event-triggering strategy where the transmission of a non-free
symbol may occur at any given time, which depends on the encoding strategy, and
can be chosen with arbitrary precision as𝑇 → 0. At all other times only free symbols
are sent —which is analogous to sending nothing. As in the case of [57], in this setup
the act of transmitting a non-free symbol now carries an amount of information that
can be made arbitrarily large by decreasing the sampling time 𝑇 . This allows to
decrease the number of transmitted non-free symbols and drives the effective rate
(25) arbitrarily close to zero.

6 The value of timing information in the presence of delay

The works we have described suggest that a more general formulation of data-
rate theorems should account for two distinct information flows: one is through
data payload (possibly corrupted by noise) and another is through timing (possibly
corrupted by delay). Traditionally, only the data payload case has been considered,
but the timing information can be very relevant especially in the context of event
triggering. The work in [50] only considers communication through data payload
and does not attempt to exploit timing information. As a result, it recovers the
traditional data-rate theorem formulation. In contrast, the works in [57] and [58]
show that stabilization can be achieved with arbitrarily small data payload rate, by
exploiting the timing information implicit in event-triggering schemes, when sender
and receiver are perfectly synchronized.

At this point, one may suspect that the ability to stabilize the system with zero
payload rate is an artifact of the assumed perfect synchronization between the sensor
and the controller achieved through a zero-delay channel. As we shall see next,
this is not the case. In the presence of delay, the value of the timing information
in the triggering events decreases, because in this case the sensor may only reveal
the state of the system with a finite precision —which depends on the range of the
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unknown delay. However, as long as the amount of information supplied by timing
is above what prescribed by the data-rate theorem for stabilization, it is still possible
to stabilize the system with an arbitrarily small data payload rate. Next, we illustrate
this point in more detail.

6.1 Information Access Rate vs Information Transmission Rate

The works [60, 61] make a key distinction between the information access rate and
the information transmission rate. The information access rate is the rate at which the
controller needs to receive information, conveyed by both data payload and timing
information, and that is subject to the requirement expressed by the classic data-rate
theorem. The information transmission rate is the rate at which the sensor needs to
send data in the form of payload bits. This rate depends on the triggering scheme, and
it can become arbitrarily small without affecting the ability to stabilize the system.

First, let us take the viewpoint of the sensor and examine the amount of information
in the data payload transmissions to the controller. Let 𝑏𝑠 (𝑡) be the number of bits
in the data payload transmitted by the sensor up to time 𝑡, and define the information
transmission rate as

𝑟𝑠 ≡ lim sup
𝑡→∞

𝑏𝑠 (𝑡)
𝑡

.

Let us now consider the viewpoint of the controller and examine the amount of
information that it needs to receive in order to be able to select its stabilizing policy.
This includes both payload and timing information. It is also the same as the number
of bits needed to construct a reliable state estimate [62, Theorem 1]. We let 𝑏𝑐 (𝑡)
be the number of bits required at the controller to perform its selection at time 𝑡 and
define the information access rate as

𝑟𝑐 ≡ lim sup
𝑡→∞

𝑏𝑐 (𝑡)
𝑡

.

In classic data-rate theorems 𝑟𝑐 coincides with 𝑟𝑠 because the controller uses only
data payload bits to select its control law. On the other hand, as discussed above, by
exploiting timing information 𝑟𝑠 and 𝑟𝑐 can be substantially different and the classic
data-rate limitation applies to 𝑟𝑐 only, while we can achieve stabilization with 𝑟𝑠
arbitrarily close to zero.

To view the limitation on 𝑟𝑐 , we consider the same system’s equations as in (14).
In this case, a necessary and sufficient condition to achieve exponential stabilization
at rate 𝜎 is given by the usual data-rate theorem formula expressed in terms of 𝑟𝑐

𝑟𝑐 > (tr(𝑨) + 𝜎𝑑) log2 𝑒 [bits/sec]. (26)

This result should be compared with (17). It is important to stress that the limitation
in (26) describes what is required by the controller, and it does not depend on the
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feedback structure — including aspects such as communication delays, information
pattern at the sensor and the controller, and whether the times at which transmissions
occur are state-dependent, as in event-triggered control, or periodic, as in time-
triggered control. In order to obtain (26), one considers for any control input trajectory
𝑢(𝑡) the subset of initial conditions for which the plant is stabilized by such input.
Then, one constructs a cover of the set of all initial conditions by stabilizing control
policies. This leads to a discrete set of choices for selecting the stabilization policy
for any given realization of the initial condition. It follows that the logarithm of the
covering number is the number of bits needed by the controller by time 𝑡 to select a
stabilizing control policy. A usual balance of information argument between the rate
of expansion of the uncertainty in the state due to the random initial condition, and
the quantization due to the covering finally leads to the lower bound in (26).

Having established the classic data-rate theorem result for the information access
rate, we can now ask what is the data-rate requirement on the information transmis-
sion rate 𝑟𝑠 , assuming that the sensor has access to causal feedback regarding what
has been received by the controller and for different ranges of the possible delay.
While we have already established that 𝑟𝑠 can be arbitrarily close to zero in the ab-
sence of delay, the presence of unknown delay decreases the amount of information
that can be communicated by timing, and this may require 𝑟𝑠 to become positive.

To illustrate the results, we denote by {𝑡𝑘𝑠 }𝑘∈N the sequence of times when the
sensor transmits a packet of a certain number 𝑔(𝑡𝑘𝑠 ) of bits to the controller. We
assume the packet is delivered to the controller without error and entirely but with
an unknown delay. Letting {𝑡𝑘𝑐 }𝑘∈N be the sequence of times when the controller
receives the packets transmitted at times {𝑡𝑘𝑠 }𝑘∈N, we assume that for all 𝑘 ∈ N the
communication delay Δ𝑘 = 𝑡𝑘𝑐 − 𝑡𝑘𝑠 satisfies

Δ𝑘 6 𝛾, (27)

where 𝛾 ∈ R≥0, and that both 𝑡𝑘𝑠 and 𝑡𝑘𝑐 tend to infinity as 𝑘 → ∞. We can then study
how the rate 𝑟𝑠 required for stabilization using an event-triggering varies as a function
of 𝛾. The work [60] considers the case of systems without disturbances, where the
objective is to drive the state to zero at an exponential rate𝜎. The work [61] considers
the case of systems with disturbances using a notion of input to state stability, which
guarantees that the state is bounded at all times and this bound, as usual, depends on
the range of the disturbance. To illustrate the results, we focus on scalar systems in
the following.

A plot of the rate required to keep the state bounded when using any threshold-
based event-triggering policy based on the value of the state estimation error is
depicted in Figure 8. This shows that the required rate for stabilization undergoes
a phase transition: for small values of the delay upper bound 𝛾 the system can be
stabilized with an arbitrarily small information transmission rate. However, when 𝛾

reaches the critical threshold
𝛾𝑐 =

ln 2
𝐴

(28)
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Fig. 8 Phase transition of the necessary information transmission rate for stabilization. The graph
is valid for any generic system. In this example we have a scalar system with no disturbance, 𝐴 = 1,
𝛾𝑐 = ln 2/𝐴 = 0.6931 and the rate dictated by the data-rate theorem is 𝑅𝑐 ≥ 𝐴/ln 2 = 1.4427.

the required rate begins to increase, eventually surpassing the data-rate theorem
requirement 𝐴/ln 2. This indicates that for 𝛾 < 𝛾𝑐 the amount of information con-
tained in the timing of the triggering events is large enough that the rate that must
be supplied by data-payload to guarantee stability is zero. On the other hand, when
𝛾 > 𝛾𝑐 the information contained in the timing of the triggering events is not enough
to guarantee stability and the rate must begin to increase. One way to interpret this
result is that in the presence of delay the value of the timing information supplied
by event triggering “deteriorates” and eventually becomes insufficient to be used
alone for stabilization. On the other hand, increasing the the delay also affects the
rate at which the transmitted payload bits are received, which results in a higher
transmission rate requirement that can surpass the data-rate theorem requirement.

It is interesting to point out that the critical value 𝛾𝑐 at which the information
transmission rate becomes positive equals the inverse of the entropy rate of the
system, namely (28) is the inverse of the critical rate in the data-rate theorem for-
mula (5). Recalling the production and consumption of information analogy that we
discussed in Section 2, we have that for 𝛾 = 𝛾𝑐 the entropy of the system expands
by one new bit at every delay occurrence and this amount of information cannot be
counter-balanced by the information carried by the event triggering times. In other
words, the information supplied by the triggering events can always be “one bit short”
due to the uncertainty introduced by the delay, and this bit must be supplied by the
data payload to ensure stabilization. For this reason, the rate 𝑟𝑠 begins to increase
once 𝛾 reaches the critical value 𝛾𝑐 . Figure 9 also shows a sufficient condition for
stabilization obtained using a given triggering strategy described in [61] that employs
a fixed threshold policy and compares it with the necessary condition and with the
data-rate theorem requirement.

Finally, we now turn our attention to the results for exponential stabilization,
driving the state to zero at rate 𝜎 > 0, for systems without disturbances. The
work in [60] shows that in this case an analogous phase transition behavior occurs.
Figure 10 shows the required rate for exponential stabilization when using any
threshold-based triggering strategy that guarantees the state estimation error to jump
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Fig. 9 Sufficient and necessary transmission rates for stabilization. Here we have a scalar system
with disturbances bounded by 0.4, with 𝐴 = 5.5651. The rate dictated by the data-rate theorem is
𝑅𝑐 ≥ 𝐴/ln 2 = 8.02874.

below the threshold at every triggering time. The parameter 0 6 𝜌0 6 1 in the figure
regulates the magnitude of the jump below the triggering threshold. As 𝜎 → 0 we
have no exponential convergence guarantees, and as 𝜌0 → 1 we have no constraints
on the magnitude of the jumps below the threshod. The plots show that when these
limiting cases are considered jointly, we recover the result in [61]. Namely, the
necessary condition becomes the same as the one depicted in Figure 8, and the
critical channel delay upper bound tends once again to the inverse of the entropy rate
of the plant.

7 A practical demonstration of the value of timing

While control under communication constraints has been mainly a subject of theo-
retical investigation, we wish to complete our treatment with a practical example. We
consider an inverted pendulum, which is a classic example of an inherently unstable
nonlinear system with numerous practical applications. This example is based on the
work in [63], demonstrating stabilization using event-triggering over a communica-
tion channel subject to random packet delays. The pendulum is controlled by two
propellers as shown in Figure11, and is constructed using off-the-shelf components.
Specifically, the frame is built with plywood sheets, and we employ an InvenSense
MPU6050 MEMS sensor (which consists of a 3-axis accelerometer and a 3-axis
gyroscope), using a complementary filter to estimate the pendulum’s angle and an-
gular velocity, and we have a Raspberry Pi Model 3 acting as the computation unit
as well as the controller. Finally, two small DC motors equipped with two identical
propellers are used as actuators. The architecture of the system is illustrated in Fig-
ure 12. The reader is referred to [63] for further details of the implementation and
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Fig. 10 Illustration of the phase transition behavior for system without disturbances for different
values of 𝜌0 and convergence rate 𝜎. The graph is valid for any generic system. In this example we
have a scalar system with 𝐴 = 1, and ln 2/𝐴 = 0.6931.

associated experiments 1. Here, we limit to point out that results confirm that for
small values of the delay the payload transmission rate can be lower than the entropy
rate of the plant. On the other hand, by increasing the upper bound on the delay in
the communication channel, higher data payload transmission rates are required to
satisfy the requirements of the proposed control strategy.

8 Conclusion

Information-flow requirements in networked control systems have been intensively
investigated in the last two decades and have become extremely relevant today in

1 The code can also be found at https://github.com/mkhojas/Event-Triggered-Firmware.
A video that illustrates the main ideas and demonstrates the experimental results can be found
at https://youtu.be/1P0i-tWsPoA
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Fig. 11 An inverted pendulum controlled by thrust force of two propellers. The angle 𝜙 of the
pendulum from the vertical line and its rate of change, measured by the sensor and transmitted to
the controller over a digital channel with bounded unknown delay, are used to determine the left
and right thrust forces of the propellers.

Fig. 12 Architecture and components of the prototype.

the context of CPS. Results point out a balance of information principle: to ensure
stability, information should be delivered to the controller at a rate that compensates
for the uncertainty produced by the open-loop system. This basic principle appears as
the leitmotiv of various data-rate theorems that can be applied in different practical
scenarios. In the context of event-triggering the same principle applies, provided that
when measuring the information flow one accounts for the additional information that
can be communicated by choosing the times of transmission. While the information
carried by data payload can be corrupted by noise, the information carried by timing
can be corrupted by delay. Theoretical results as well as practical demonstrations
have shown that for low values of the communication delay, the information carried
by timing can be used to stabilize the system at dramatically low data rates. Moving
forward, we expect that a complete theory of communication over feedback loops can
be constructed by considering encoding and decoding strategies accounting for both
communication by timing and data payload, as well as accounting for the distributed
nature of many system implementations. The focus of this chapter was on the design



22 Massimo Franceschetti, Mohammad J. Khojasteh, and Moe Z. Win

of systems that can leverage communication-aware solutions. Depending on the
application, a communication-aware design can lead to higher or lower computation
cost. Studying architectures that aim to simultaneously reduce the computation and
communication costs is a research venue that is left for future study.
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