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Abstract— We consider the problem of stabilizing an undis-
turbed, scalar, linear system over a “timing” channel, namely a
channel where information is communicated through the times-
tamps of the transmitted symbols. Each transmitted symbol is
received at the controller subject to some to random delay.
The sensor can encode messages in the holding times between
successive transmissions and the controller must decode them
from the inter-reception times of successive symbols. This set-up
is analogous to a telephone system where a transmitter signals a
phone call to the receiver through a “ring” and, after a random
time required to establish the connection, is aware of the “ring”
being received. We show that for the state to converge to zero
in probability, the timing capacity of the channel should be at
least as large as the entropy rate of the system. In the case the
symbol delays are exponentially distributed, we show a tight
sufficient condition using a decoding strategy that successively
refines the estimate of the decoded message every time a new
symbol is received. These results extend our previous work on
estimation over the timing channel to stabilization.

I. INTRODUCTION

A wide range of Cyber-Physical Systems (CPS) can be
modeled as networked control systems where the feedback
loop is closed over a communication channel [1]. In these
systems event-triggering control strategies have become pop-
ular due to their efficient usage of the communication and
computation resources. In this case, it has been shown that
the timing of the triggering events carries information that
can be used for stabilization [2]–[9]. Motivated by this
observation, the goal of this paper is to quatnify the value
of the timing information from an information-theoretic
perspective, when this is used for control. We consider a
specific communication channel in the loop — a timing
channel. Here, information is communicated through the
timestamps of the symbols transmitted over the channel; the
“time” is carrying the message.

We consider stabilization of a scalar, undisturbed,
continuous-time, unstable, linear system over a timing chan-
nel and rely on the information-theoretic notion of timing ca-
pacity of the channel, namely the amount of information that
can be encoded using time stamps [10]–[21]. In this setting,
the sensor can communicate with the controller by choosing
the timestamps at which symbols from a unitary alphabet are
transmitted. The controller receives each transmitted symbol
after a random delay is added to the time-stamp. When
the feedback loop is closed over a communication channel,
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data-rate theorems quantify the impact of the communication
channel on the ability to stabilize the system. Roughly
speaking, these theorems state that to achieve stabilization
the communication rate available in the feedback loop should
be at least as large as the intrinsic entropy rate of the system,
expressed by the sum of its unstable modes [22]–[25]. We
prove the following data-rate theorem for stabilization over
a timing channel. For the state to converge to zero in
probability, the timing capacity of the channel should be at
least as large as the entropy rate of the system. Conversely,
in the case the random delays are exponentially distributed,
we show that when this inequality is satisfied, a random
coding strategy along with a successively refining decoder
can be used to drive the state to zero in probability. In
a previous work [26], we obtained analogous results for
estimation over a timing channel, and here we extend these
results to stabilization.

The books [22], [23] and the surveys [24], [25] provide
detailed discussions of data-rate theorems and related results.
A portion of the literature studied stabilization over “bit-
pipe channels," where a rate-limited, possibly time-varying
and erasure-prone communication channel is present in the
feedback loop [27]–[31]. For noisy channels, Tatikonda and
Mitter [32] showed that for undisturbed linear systems, to let
the state to converge to zero a.s., the Shannon capacity of the
channel should be larger than the entropy rate of the system.
Matveev and Savkin [33] showed that this condition is also
sufficient for discrete memoryless channels, but a stronger
condition is required in the presence of disturbances, namely
the zero-error capacity of the channel must be larger than the
entropy rate of the system [34]. Nair [35] derived a similar
information-theoretic result in a deterministic setting. Sahai
and Mitter [36] considered the moment-stabilization over
noisy channels and in the presence of system disturbances of
bounded support, and provided a data-rate theorem in terms
of the anytime capacity of the channel. They showed that
to keep the mth moment of the state bounded, the aytime
capacity of order m should be larger than the entropy rate
of the system. The anytime capacity has been further in-
vestigated in [37]–[40]. Matveev and Savkin [23, Chapter 8]
have also introduced a weak notion of stabilty in probability,
requiring the state to be bounded with probability (1 − ε)
by a constant that diverges as ε → 0, and showed that in
this case it is possible stabilize linear systems with bounded
disturbances over noisy channels provided that the Shannon
capacity of the channel is larger than the entropy rate of the
system. The various results, along with our contribution, are
summarized in Table I.

The main point that can be drawn from the above results
is that the relevant capacity notion for stabilization over a



communication channel critically depends on the notion of
stability and on the system’s model. From the system’s per-
spective, our set-up is closest to the one in [27], [32], [33], as
there are no disturbances and the objective is to drive the state
to zero. Our convergence in probability provides a stronger
necessary condition, but a weaker sufficient condition than
the one in these works. Our convergence in probability is
also significantly stronger than the notion of stabilization in
probability [23, Ch. 8].

Parallel work in control theory has investigated the possi-
bility of stabilizing linear systems using timing information.
One primary focus of the emerging paradigm of event-
triggered control [41]–[44] has been on minimizing the
number of transmissions while simultaneously ensuring the
control objective [7], [45], [46]. In this context, the works
in [3], [5]–[9] pointed out that the timing of the state-
dependent triggering events carries information that can be
used for stabilization. It has been shown that the amount of
timing information is sensitive to the delay in the commu-
nication channel. While for small delay stabilization can be
achieved with by transmitting data payload (physical data)
at a rate arbitrarily close to zero, for large values of the
delay this is not the case, and the data payload transmission
rate must be increased [6], [9]. In this paper we extend
these results from an information-theoretic perspective, as
we explicitly quantify the value of the timing information,
independent of any transmission strategy. While here we
restrict to transmitting symbols from a unitary alphabet, it
would also be of interest to develop “mixed” strategies, using
both timing information and physical data transmitted over
a larger alphabet. Other important research directions left
open for future investigation regard generalizations to vector
systems and the study of systems with disturbances. In the
latter case, it is likely that usage of stronger notions of
capacity, or weaker notions of stability, will be necessary.

Due to space constraints, proofs are omitted for brevity
and appear in an extended version of the paper [47].

A. Notation
Let Xn = (X1, · · · , Xn) denote a vector of random

variables and let xn = (x1, · · · , xn) denote its realization. If
the X1, · · · , Xn are independent and identically distributed
(i.i.d), then we refer to a generic Xi ∈ Xn by X and skip
the subscript i. We use log and ln to denote the logarithms
base 2 and base e respectively. We use H(X) to denote
the Shannon entropy of a discrete random variable X and
h(X) to denote the differential entropy of a continuous
random variable X . Further, we use I(X,Y ) for the mutual
information between random variables X and Y . We write
Xn

P−→ X if Xn converges in probability to X . Similarly,
we will write Xn

a.s.−−→ X if Xn converges almost surely to
X .

II. SYSTEM AND CHANNEL MODEL

We consider the networked control system depicted in
Fig. 1. The system dynamics are described by a scalar,
continuous-time, noiseless, linear time-invariant (LTI) system

Ẋ(t) = aX(t) + bU(t), (1)

Fig. 1. Model of a networked control system where the feedback loop is
closed over a timining channel.

where X(t) ∈ R and U(t) ∈ R are the system state and the
control input respectively. The constants a, b ∈ R such that
a > 0 and b 6= 0. The initial state, X(0), is random and is
drawn from a distribution of bounded differential entropy and
bounded support, namely h(X(0)) <∞ and |X(0)| < L,
where L is known to both the sensor and the controller.
Conditioned on the realization of x(0), the system evolves
deterministically. Both controller and sensor have knowledge
of the system dynamics in (1). We assume the sensor can
measure the state of the system with infinite precision, and
the controller can apply the control input to the system with
infinite precision and with zero delay.

The sensor is connected to the controller through a timing
channel (the telephone signaling channel defined in [10]) and
acts as an encoder by choosing to transmit the symbol ♠
at some given times times to the controller. This symbol
is delivered to the controller after a random delay, and the
sensor receives an instantaneous, causal acknowledgement
when the symbol is delivered. The causal acknowledgment
can be obtained without assuming an additional communica-
tion channel in the feedback loop. Provided that the control
input changes at each reception time, the sensor can compute
the control input from the current state, and detect whether
the previous symbol has been received. Alternatively, the
controller can directly signal the acknowledgement to the
sensor by applying a control input to the system that excites
a specific frequency of the state each time a symbol has
been received. These strategies are known in the literature
as “acknowledgemebt through the control input” [9], [32],
[36].

The encoder uses a “waiting time” to encode information,
i.e., after the ith ♠ has been received by the controller, the
sensor waits for Wi+1 seconds to transmit the next symbol.
We assume that the channel is initialized with a symbol
received at t = 0 and that the causal acknowledgement is not
used to choose the waiting times, but only to avoid queuing,
ensuring that the next symbol is sent after the previous one
has been received [10], [13].

The encoding process we described is analogous to that
of a telephone system where a transmitter signals a phone
call to the receiver through a “ring” and, after a random
time required to establish the connection, is aware of the
“ring” being received. Communication between transmitter
and receiver can then occur without any vocal exchange, but
encoding messages in the waiting times between consecutive



TABLE I
CAPACITY NOTIONS USED TO DERIVE DATA-RATE THEOREMS IN THE LITERATURE UNDER DIFFERENT NOTIONS OF STABILITY, CHANNEL TYPES, AND

SYSTEM DISTURBANCES.

Work Disturbance Channel Stability condition Capacity
[27] NO Bit-pipe |X(t)| → 0 a.s. Shannon
[32], [33] NO DMC |X(t)| → 0 a.s. Shannon
[34] bounded DMC P(supt |X(t)| <∞) = 1 Zero-Error
[23, Ch. 8] bounded DMC P(supt |X(t)| < Kε) > 1− ε Shannon
[36] bounded DMC supt E(|X(t)|m) <∞ Anytime
[28] unbounded Bit-Pipe supt E(|X(t)|2) <∞ Shannon
[30], [31], [40] unbounded Var. Bit-pipe supt E(|X(t)|m) <∞ Anytime
This paper NO Timing |X(t)| P→ 0 Timing

calls.
Let Di be the inter-reception time between two consecu-

tive symbols, i.e.,

Di = Wi + Si, (2)

where {Si} are random delays that are assumed to be i.i.d.
Fig. 2 provides an example of the timing channel in action.

In our stability analysis, we assume the use of a capac-
ity achieving random codebook, namely the holding times
{Wi} used to encode any given message are i.i.d. and also
independent of the random delays {Si}. This assumption is
made for analytical convenience, and does not change the
capacity of the communication channel.

We assume that at each reception of the nth ♠ the decoder
will use the set of n timestamps to decode, and as n → ∞
the decoder refines its estimate of the decoded state. The
reception time of the nth symbol is given by Tn =

∑n
i=1Di.

Our objective is to stabilize the system by driving the state
to zero in probability, i.e. we want |X(t)| P−→ 0 as t→∞.

The following definitions are derived from [10], incorpo-
rating our random coding assumption.

Definition 1: A (n,M, T, δ)-i.i.d.-timing code for the
telephone signaling channel consists of a codebook of M
codewords {(w(m)

i , i = 1, . . . , n), m = 1 . . .M}, where the
symbols in each codeword are picked i.i.d. from a common
distribution as well as a decoder, which upon observation of
(D1, . . . , Dn) selects the correct transmitted codeword with
probability at least 1−δ. Moreover, the codebook is such that
the expected random arrival time of the nth symbol, given
by Tn =

∑n
i=1Di, is not larger than T ,

E [Tn] ≤ T.
Definition 2: The rate of an (n,M, T, δ)-i.i.d.-timing code

is

R = (logM)/T.
Definition 3: The timing capacity C of the telephone

signaling channel is the supremum of the achievable rates,
namely the largest R such that for every γ > 0 there exists
a sequence of (n,Mn, Tn, δTn

)-iid-timing codes that satisfy

logMn

Tn
> R− γ,

and δTn → 0 as n→∞.
The capacity definition in [10] is not restricted to random

coding. However, the following result [10, Theorem 8]
applies to our random coding set-up, since the capacity
in [10] is achieved by random codes.

Theorem 1 (Anantharam and Verdú): The timing capac-
ity of the telephone signaling channel is given by

C = sup
χ>0

sup
W≥0

E[W ]≤χ

I(W ;W + S)

E[S] + χ
,

and if S is exponentially distributed then

C =
1

eE[S]
[nats/sec]. (3)

III. MAIN RESULTS

To derive necessary and sufficient conditions for the sta-
bilization of the feedback loop system depicted in Fig. 1,
we rely on previous results we obtained for an estimation
problem over the timing channel [26]. We then derive a
necessary condition for stabilization showing that if the state
of the closed-loop system |X(t)| P−→ 0 as t → ∞, then
the error in our estimation problem must also tend to zero
in probability. Similarly, we obtain a sufficient condition for
stabilization showing that if our estimation error tends to zero
in probability, then we can also design a controller such that
in closed loop |X(t)| P−→ 0. The main idea at the basis of our
argument is that in the absence of disturbances all is needed
to drive the state to zero is to reliably communicate the initial
condition to the controller. This idea has been exploited [48]
before [49], and we cast it here in the framework of the
timing channel.

The proof of the necessary condition employs a rate-
distortion argument to compute a lower bound on the min-
imum number of bits required to represent the state up to
any given accuracy, and this leads to a corresponding lower
bound on the required timing capacity of the channel. As a
consequence, our necessary condition holds for any source
and channel coding strategies adopted by the sensor, and for
any strategy adopted by the controller to generate the control
input.



Fig. 2. The timing channel. Subscripts s and r are used to denote sent and received symbols, respectively.

The proof of the the sufficient condition relies on the
capacity-achieving code construction in [10]. In addition, in
our design we use a maximum likelihood decoder at any time
a symbol is received to successively refine the controller’s
estimate of the initial condition. This approach is similar to
the one in [48].

A. The estimation problem

We consider the estimation problem depicted in Fig. 3. By
letting b = 0 in (1) we obtain the open-loop equation

Ẋe(t) = aXe(t). (4)

The objective now is to obtain an estimate of the state
X̂e(tn), given the reception of n symbols over the telephone
signaling channel, such that |Xe(tn) − X̂e(tn)| P→ 0 as
n→∞, at any sequence of estimation times tn such that

1 < lim
n→∞

tn
E[Tn]

≤ Γ. (5)

As in the stabilization problem, we assume that the encoder
has causal knowledge of the reception times via acknowl-
edgements through the system as depicted in Fig. 3.

The two following theorems are the building blocks for
our stabilization results and appear in [26]. First, we provide
a necessary rate for the state estimation problem.

Theorem 2: Consider the estimation problem depicted
in Fig. 3 with system dynamics (4). Consider transmit-
ting n symbols over the telephone signaling channel (2),
and a sequence of estimation times satisfying (5). If
|Xe(tn)− X̂e(tn)| P→ 0, then

I(W ;W + S) ≥ a Γ E[W + S] [nats],

and consequently

C ≥ Γa [nats/sec].

The next theorem provides a sufficient condition for con-
vergence of the state estimation error to zero in probability
at any sequence of estimation times tn given in (5), in the
case of exponentially distributed delays.

Theorem 3: Consider the estimation problem depicted in
Fig. 3 with system dynamics (4). Consider transmitting n
symbols over the telephone signaling channel (2). Assume
{Si} are drawn i.i.d. from exponential distribution with mean
E[S]. If the capacity of the timing channel is at least

C > aΓ [nats/sec],

then for any sequence of times {tn} that satisfies (5), we can

compute an estimate X̂e(tn) such that as n→∞, we have

|Xe(tn)− X̂e(tn)| P→ 0.

B. The stabilization problem

We now turn to consider the stabilization problem. Our
first lemma states that if in closed-loop we are able to drive
the state to zero in probability, then in open-loop we are also
able to estimate the state with vanishing error in probability.

Lemma 1: Consider stabilization of the closed-loop sys-
tem (1) and estimation of the open-loop system (4) over
the timing channel (2). If there exists a controller such that
|X(t)| P→ 0 as t → ∞, in closed-loop, then there exists an
estimator such that |Xe(t)− X̂e(t)|

P→ 0 as t→∞, in open-
loop.

The next theorem provides a necessary rate for the stabi-
lization problem.

Theorem 4: Consider the stabilization of the system (1).
If |X(t)| P→ 0 as t→∞, then

I(W ;W + S) ≥ a E[W + S] [nats],

and consequently

C ≥ a [nats/sec].
Our next lemma strengthens our estimation results, stating

that it is enough for the state estimation error to converge
to zero in probability as n → ∞ along any sequence of
estimation times {tn} satisfying (5), to ensure it converges
to zero at all times t→∞.

Lemma 2: Consider estimation of the system (4) over the
timing channel (2). If there exists Γ0 > 1 such that along
the sequence of estimation times tn = Γ0E(Tn) we have
|Xe(tn)− X̂e(tn)| P→ 0 as n → ∞, then for all t → ∞ we
also have |Xe(t)− X̂e(t)|

P→ 0.
The next lemma states that if we are able to estimate the

state with vanishing error in probability, then we are also
able to drive the state to zero in probability.

Lemma 3: Consider stabilization of the closed-loop sys-
tem (1) and estimation of the open-loop system (4) over
the timing channel (2). If there exists an estimator such that
|Xe(t)− X̂e(t)|

P→ 0 as t → ∞, in open-loop, then there
exists a controller such that |X(t)| P→ 0 as t→∞, in closed-
loop.

The final theorem provides a sufficient condition for
convergence of the state to zero in probability in the case
of exponentially distributed delays.

Theorem 5: Consider the stabilization of the system (1).
Assume {Si} are drawn i.i.d. from exponential distribution



Fig. 3. The estimation problem.

with mean E[S]. If the capacity of the timing channel is at
least

C > a [nats/sec],

then |X(t)| P→ 0 as t→∞.

IV. COMPARISON WITH PREVIOUS WORKS

We now discuss some related work in more detail. First,
Tatikonda and Mitter in [32] considered the problem of
stabilization of the discrete-time version of the system in (1)
over an erasure channel. In their model, at each time step
of the system’s evolution the sensor transmits a packet of I
bits to the controller and this is delivered with probability
1−µ, or it is dropped with probability µ. It is shown that a
necessary condition for X(k)

a.s−−→ 0 is

(1− µ)I ≥ log a [bits/sec]. (6)

From Theorem 4 we obtain the following necessary condition
for X(t)

P−→ 0:

I(W ;W + S)

E[W + S]
≥ a [nats/sec]. (7)

We now compare (6) and (7). The rate of expansion of
the state space of the continuous system in open loop is a
nats per unit time, while for the discrete system is log a bits
per unit time. Accordingly, in the case of (7) the controller
must receive at least aE[W +S] nats representing the initial
state during a time interval of average length E[W + S].
Similarly, in the case of (6) the controller must receive at
least log a/(1 − µ) bits representing the initial state over
a time interval whose average length corresponds to the
average number of trials before the first successful reception

(1− µ)

∞∑
k=0

(k + 1)µk =
1

1− µ
.

The works [2], [3], [5]–[9] use event-triggerred poli-
cies that exploit timing information for stabilization over
a digital communication channel. However, most of these
event triggering policies encode information over time in a
specific state-dependent fashion. Our framework generalizes
this idea to provide a fundamental limit on the rate at which
information can be encoded in time in Theorem 4. Theorem 5
achieves this limit in the case of exponentially distributed
delays.

The authors of [3], [5] consider stabilization over a zero-
delay digital communication channel. They showed that in
this case using event triggering it is possible to achieve
stabilization with any positive transmission rate, thus im-
plicitly using the information in the timing. For channels

without delay, an alternative policy to the one in [3], [5]
could be to transmit a single symbol at time equal to any
bijective mapping of x(0) into point of non-negative reals.
For example, we could transmit ♠ at time t = tan−1(x(0))
for t ∈ [0, π]. The reception of the symbol would reveal the
initial state exactly, and the system could stabilized.

The authors of [6] showed that when delay is positive,
but sufficiently small, a triggering policy can still achieve
stabilization with any positive transmission rate. However,
as the delay increases past a critical threshold, the timing in-
formation becomes so much out-of-date that the transmission
rate must begin to increase. In our case, since the capacity
of our timing channel depends on the distribution of the
delay, we may also expect that a large value of the capacity,
corresponding to a small average delay, would allow for
stabilization to occur using only timing information. Indeed,
when delays are distributed exponentially, from (3) and
Theorems 4 and 5 it follows that as longs as the expected
value of delay is

E[S] <
1

ea
,

it is possible to stabilize the system by using only the implicit
timing information. The system is not stabilizable using only
implicit timing information if the expected value of the delay
becomes larger than (ea)−1.

V. CONCLUSIONS

Recently, it has been shown that event triggering policies,
encoding information over time in a state-dependent fashion
can exploit timing information for stabilization over a digital
communication channel. In a more general framework, this
paper studied the fundamental limitation of using timing in-
formation for stabilization, independent of any transmission
strategy. We showed that for stabilization of an undisturbed
scalar linear system over a channel with a unitary alphabet,
the timing capacity should be at least as large as the entropy
rate of the system. In addition, in the case of exponentially
distributed delay, we provided a tight sufficient condition
too. Important open problems for future research include the
effect of system disturbances, understanding the combina-
tion of timing information and packets with payload, and
extensions to vector systems.
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