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Abstract— As stops and pauses for separating parts of a
sentence in language help to convey information, it is also
possible to communicate information in communication systems
not only by data payload, but also with its timing. We consider
an event-triggering strategy that exploits timing information
by transmitting in a state-dependent fashion to stabilize a
continuous-time, complex, time-invariant, linear system over a
digital communication channel with bounded delay and in the
presence of bounded system disturbance. For small values of
the delay, we show that by exploiting timing information, one
can stabilize the system with any positive transmission rate.
However, for delay values larger than a critical threshold, the
timing information is not enough for stabilization and the sensor
needs to increase the transmission rate. Compared to previous
work, our results provide a novel encoding-decoding scheme for
complex systems, which can be readily applied to diagonalizable
multivariate system with complex eigenvalues. Our results are
illustrated in numerical simulation of several scenarios.

I. INTRODUCTION

An important aspect of a cyber-physical system [1] is
the existence of a finite rate digital communication channel
in feedback loop between sensor and controller. Data-rate
theorems [2]–[10] quantify the effects of the digital com-
munication channel in the feedback loop on stabilization.
Event-triggering control [11]–[13] is also a key component in
cyber-physical systems where the objective, in the context of
communication, is to minimize the number of transmissions
and at the same time ensuring that the control goal is
achieved [14]–[17].

While the majority of communication systems transmit
information by adjusting the signal amplitude, it is also pos-
sible to communicate information by adjusting the transmis-
sion time of a symbol [18]–[21]. In a general framework [22]
tools from information theory have been utilized to study
the fundamental limitation of using timing information for
stabilization.

Specifically, it is possible to stabilize a plant using in-
herent information in the timing of the event. In fact,
event-triggering control techniques encode information in
the timing in a state-dependent fashion. In this context,
a key observation made in [23] states that in absence of
the delay in the communication process as well as absence
of system disturbances and assuming the controller has
knowledge of the triggering strategy, one can stabilize the
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system with any positive rate of transmission. Our previous
work [24] on systems without any disturbance quantifies
the information contained in the timing of the triggering
events as a function of the delay in the communication
channel. For small values of delay in the communication
channel, we show that stability can be achieved with any
positive transmission rate. However, as the delay increases
to values larger than a critical threshold, information implied
from the triggering action itself may not stabilize the system
and because of that, to ensure stability, the transmission
rate must be increased. These results are compared with a
time-triggered implementation subject to delay in [14]. In
addition to the unknown delay, system disturbances increase
the degree of uncertainty in the state estimation process as
well. Therefore, to ensure stability, it is crucial to take these
effects into account. Our previous work [25] on systems
with disturbances derives a sufficient bit rate for stabilization
of a scalar linear, real, time-invariant system subjected to
bounded disturbance over a digital communication channel
with bounded delay.

In this paper, for a system with complex open-loop gain
subject to disturbances we derive a sufficient information
transmission rate to guarantee stability. More precisely, we
design an encoding-decoding scheme that, together with the
proposed event-triggering strategy, rules out “Zeno behavior"
(an infinite amount of triggering events in a finite-time
interval) and ensures that the norm of the state remains
bounded as time grows. We show that for small values
of delay and using only implicit information, stability can
be achieved with an arbitrary positive transmission rate.
However, as the delay increases, the information gets old
and also corrupted by the system disturbances, therefore
higher and higher communication rates are required to
ensure stability. In addition, this result sets the basis for
the generalization of event-triggered control strategies that
meet the bounds on the information transmission rate for
the stabilization of vector systems with any real open-loop
gain matrix (with complex eigenvalues) under disturbance.
Finally, we numerically validate our result in a series of
simulations. For reasons of space, proofs are omitted and
will appear in full elsewhere.

Notation: Let R, C denote the set of real and complex
numbers, respectively. We let log and ln denote the logarithm
with bases 2 and e, resp. We denote by |.| and ‖.‖ the
absolute value of a real number and the norm of a complex
number resp. Also, any Q ∈ C can be written as Q =
Re(Q) + i Im(Q) or Q = ‖Q‖eiφQ , and for any y ∈ R



we have ‖eQy‖ = eRe(Q)y . We denote by bxc and dxe the
greatest integer less than or equal to x and the smallest
integer greater than or equal to x, resp.

II. PROBLEM FORMULATION

We consider a networked control system consisting of
a plant, sensor, communication channel and controller, cf.
Figure 1. The plant is described by a complex, continuous-
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Fig. 1. System model.

time, linear time-invariant model as

ẋ = Ax(t) +Bu(t) + w(t), (1)

where the plant state x(t) and control input u(t) are complex
numbers for t ∈ [0,∞). Here w(t) ∈ C represents a system
disturbance, which is upper bounded as

‖w(t)‖ ≤M,

where M ∈ R is positive. Here, A ∈ C, B ∈ C, and since
we are only interested in unstable plants, we also assume
Re(A) ≥ 0. We consider the next notion of stability.

Definition 1: The plant (1) is practically stable if for any
‖x(0)‖ < L, where L ∈ R is nonnegative, there exists an
increasing function α of M , with 0 ≤ α(0) < ε for any
ε > 0, such that for all Ψ > α(M), there exists T such that,
‖x(t)‖ ≤ Ψ for all t ≥ T .

The sequence of triggering times where the sensor trans-
mits a data payload packet of length g(tks) bits is represented
by {tks}k∈N. This packet is delivered to the controller without
error and entirely but with unknown upper bounded delay
described as follows. Let {tkc}k∈N be the sequence of times
where the controller receives the packet transmitted at time
{tks}k∈N and decodes it, then we have

∆k = tkc − tks ≤ γ, (2)

with ∆k being the kth communication delay, and γ be a
non-negative real number. Also, for all k ≥ 1, we define the
kth triggering interval as

∆′k = tk+1
s − tks .

From this point on, when referring to a generic triggering or
reception time, for convenience we skip the super-script k in
tkr and tkc .

We denote by bc(t) the number of bits that controller
received until time t, and we define information access rate

as

Rc = lim sup
t→∞

bc(t)

t
.

The number of bits transmitted by the sensor, up to time
t is represented by bs(t) and the information transmission
rate is defined as follows:

Rs = lim sup
t→∞

bs(t)

t
.

As the sensor transmits g(ts) bits of information at each
triggering interval, we can write

Rs = lim sup
N→∞

∑N
k=1 g(tks)∑N
k=1 ∆′k

.

In order to establish a common ground to compare with
the information transmission rate later, we state the gener-
alization of the classical data-rate theorem for the complex
plant (1).

Theorem 1: Consider the plant-sensor-channel-controller
model with plant dynamics (1). If x(t) remains bounded as
t approaches infinity then

Rc ≥
2 Re(A)

ln 2
.

We also represent the estimated state at the controller by
x̂ which evolves at each inter-reception interval as follows:

˙̂x(t) = Ax̂(t) +Bu(t), t ∈ [tkc , t
k+1
c ], (3)

starting from x̂(tk+c ) with x̂(0) = x̂0. We assume that the
sensor has causal knowledge of the time of each control
action to make sure it can compute x̂(t) for all time t. This is
equivalent to establishing an instantaneous acknowledgment
link between the sensor and actuator using the control input,
as in [26], [27]. For instance, this can be implemented in our
system by monitoring the actuator output, which changes at
each reception time. Assuming the sensor has only access
to the plant state, a narrowband signal can be used in the
control input for exciting a specific frequency of the state
to inform the sensor about the exact time of each control
action by the actuator. That being said, we define the state
estimation error as

z(t) = x(t)− x̂(t),

where z(0) = x(0)− x̂0. We rely on this error to determine
when a triggering event occurs in our controller design, as
explained next.

III. EVENT-TRIGGERED CONTROL DESIGN

In this section we propose our event-triggering design, and
utilize it to find a sufficient condition on the information
transmission rate.

Here we describe a class of event-triggered control strate-
gies to determine the sequence of triggering times so that the
plant (1) is practically stable. A triggering occurs at tk+1

s if

‖z(tk+1
s )‖ = J, (4)



provided tkc ≤ tk+1
s for natural number k and t1s ≥ 0. At each

triggering time ts the packet p(ts) of size g(ts) is transmitted
from the sensor to the controller. The packet p(ts) consists of
the quantized version of phase of z(ts), denoted by φq(z(ts)),
and a quantized version of the triggering time ts. By (4) we
have

z(ts) = Jeiφz(ts) ,

hence using the packet, a quantized version of z(ts), denoted
by q(z(ts)), at the controller is constructed as follows

q (z(ts)) = Jeiφq(z(ts)) .

Furthermore, utilizing the bound (2) and the received packet,
the controller constructs a quantized version of ts, denoted
by q(ts). Consequently, at controller z(tc) can be estimated
as follows

z̄(tc) = eA(tc−q(ts))q (z(ts)) . (5)

Based on this, one can formulate a procedure, that we term
jump strategy, to update the estimate of the state maintained
by the controller.

x̂(t+c ) = z̄(tc) + x̂(tc). (6)

Then we can write

‖z(t+c )‖ = ‖x(tc)− x̂(t+c )‖ = ‖z(tc)− z̄(tc)‖.

At the sensor, the packet size g(ts) is chosen to be large
enough such that the following equation for all tc ∈ [ts, ts+
γ] is satisfied.

‖z(t+c )‖ = ‖z(tc)− z̄(tc)‖ ≤ ρ0J. (7)

where 0 < ρ0 < 1 and is considered as a design parameter.
Under this design, the frequency with which transmission
events are triggered is captured by the triggering rate

Rtr = lim sup
N→∞

N∑N
k=1 ∆′k

. (8)

A typical realization of z(t) under the proposed event-
triggering strategy before and after one triggering is repre-
sented in Figure 2.

A. Sufficient condition on the transmission rate

In this section, we derive sufficient condition on the
information transmission rate to ensure the plant (1) is
practically stable. In other words, we design an encoding-
decoding scheme that, together with our event-triggering
policy, rules out “Zeno behavior” (an infinite amount of
triggering events in a finite-time interval) and guarantees
the plant (1) is practically stable. The results presented here
can be readily applied to multivariate linear plants with
disturbance and diagonalizable open-loop gain matrix (with
complex eigenvalues).

B. Design of quantization policy

We devote the first λ bits of the packet p(ts) for quan-
tizing the phase of z(ts). The proposed encoding algorithm,

J

z(t+
c
)

z(ts)

Fig. 2. The blue graph represents evolution of the state estimation error
in time before and after a triggering event. The trajectory starts with an
initial state inside a circle of radius J , and continues in a disturbed fashion
along a spiral trajectory (due to the imaginary part of A) until it hits the
triggering threshold radius J , then it jumps back inside the circle after
the update according to (5). During inter-reception time intervals we have
ż(t) = Az(t) + w(t), and the overshoot from the circle observed in the
trajectory is due to the unknown delay in the communication channel. In
this example, A = 0.3+2i, B = 0.2, u(t) = −8x̂(t), M = 0.2, γ = 0.09
sec, ρ0 = 0.9 and J = 0.147.

uniformly quantizes the circle to 2λ pieces of 2π/2λ radians.
After reception, the decoder finds the right phase quantiza-
tion cell and selects its center point as φq(z(ts)). By letting

ω = φz(ts) − φq(z(ts)),

as depicted in Figure 3, we deduce:

Fig. 3. Estimation of phase angle after triggering event and transmission
of λ bits.

|ω| ≤ π

2λ
.

Furthermore, we use the encoding scheme proposed in [24]
to append a quantized version of triggering time ts of length
g(ts) − λ to the packet p(ts). As shown inf Figure 4, to
determine the time interval of the triggering event, we break
the positive time line into intervals of length bγ. At the
controller, after receiving the packet at tc, ts could fall
anywhere between tc − γ and tc. Also, after breaking the
positive time line into intervals, ts falls into [jbγ, (j+ 1)bγ]
or [(j + 1)bγ, (j + 2)bγ] with j being a natural number.
Therefore, we use the (λ+1)th bit of the packet to determine
the correct interval of ts. This bit is zero if the nearest integer
less than or equal to the beginning number of the interval
is an even number and is 1 otherwise. This can be written



mathematically as p(ts)[λ + 1] = mod
(
b tsbγ c, 2

)
. For the

p

p

p

p

Fig. 4. Quantization of the triggering time ts. The packet p(ts) of length
λ + 4 can be generated and sent to the controller. After reception and
decoding the controller choose the center of the smallest sub-interval as its
estimation of ts, denoted by q(ts).

remaining bits of the packet, the encoder breaks the interval
containing ts into 2g(ts)−λ−1 equal sub-intervals. Once the
packet is complete, it is transmitted to the controller where it
is decoded and the center point of the smallest sub-interval
is selected as the best estimate of ts. Therefore, we have

|ts − q(ts)| ≤
bγ

2g(ts)−λ
.

C. Sufficient information transmission rate

Here, we rely on the quantization policy designed above to
establish a sufficient bound on the information transmission
rate that ensures that the plant is practically stable. We start
by showing that we can achieve (7) with the quantization
policy.

Theorem 2: Consider the plant-sensor-channel-controller
model with plant dynamics (1), estimator dynamics (3),
triggering strategy (4), and jump strategy (6). If the controller
has enough information about x(0) such that state estimation
error satisfies ‖z(0)‖ < J , then the quantization policy
designed above achieves (7) for all k ∈ N with packet size
lower bounded as

g(ts) ≥ g′ := (9)

max

0, λ+ log
Re(A)bγ

ln

(
1+e−Re(A)γ

(
ρ0− M

Re(A)J (e
Re(A)γ−1)

)
2 sin(π/2λ+1)+1+

√
2ζ

)
 ,

provided, cos
(

Im(A)
(
ts − q(ts)

))
= 1− ζ, b > 1,

ρ0 ≥ (10a)
M

Re(A)J

(
eRe(A)γ − 1

)
+ eRe(A)γ

(
2 sin(π/2λ+1) +

√
2ζ
)
,

J ≥ M

Re(A)χ

(
eRe(A)γ − 1

)
, (10b)

√
2ζeRe(A)γ ≤ χ′, (10c)

and

λ > log

 π

arcsin
(

1−χ−χ′
2eRe(A)γ

)
− 1, (10d)

where 0 < χ+ χ′ < 1.
Next we show that, using our encoding-decoding scheme,

if the sensor has a causal knowledge of the delay in the
communication channel, it can calculate the state estimation
for all time.

Proposition 1: Consider the plant-sensor-channel-
controller model with plant dynamics (1), estimator
dynamics (3), triggering strategy (4), and jump strategy (6).
Using (5) and the quantization policy depicted in Figure 3
and 4, if the sensor has causal knowledge of the delay in
the communication channel, then it can calculate x̂(t) for
all time t.

We continue by showing that our event-triggered scheme
does not suffer from Zeno behavior.

Lemma 1: Consider the plant-sensor-channel-controller
model with plant dynamics (1), estimator dynamics (3),
triggering strategy (4), and jump strategy (6). If the packet
size satisfies (7) for all k ∈ N, then for all k ∈ N, we have

tk+1
s − tks ≥ 1

Re(A)
ln

(
J + M

Re(A)

ρ0J + M
Re(A)

)
.

By Lemma 1 we deduce the triggering rate (8) is upper
bounded as follows

Rtr ≤
Re(A)

ln

(
J+ M

Re(A)

ρ0J+
M

Re(A)

)
which is valid for all realization of the plant disturbance,

initial conditions, and delay. Combining this bound with
Theorem 2, we obtain the following result.

Corollary 1: Under the assumption of Theorem 2, there
exists a quantization policy that achieves (7) for all k ∈ N
and for all delays and plant disturbance realizations with an
information transmission rate

Rs ≥
Re(A)

ln

(
J+ M

Re(A)

ρ0J+
M

Re(A)

)g′, (11)

where g′ is defined in (9), provided cos
(

Im(A)
(
ts −

q(ts)
))

= 1− ζ, b > 1, (10a), (10b), (10c), and (10d).
Figure 5 shows the sufficient information transmission

rate (11) as a function of the channel delay upper bound γ.
One can observe that for small value of the delay, the
sufficient information transmission rate is smaller than the
rate required by the extension of the data-rate result in The-
orem 1. As the delay upper bounded increases, the sufficient
information transmission rate increases accordingly.

As a by-product of the above discussion, we can guaran-
tee (1) is practically stable, as stated in the following result.

Theorem 3: Under the assumption of Theorem 2, when
the pair (A,B) is stabilizable, using the control rule u(t) =
−Kx̂(t) the system (1) is practically stable provided that
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Fig. 5. Sufficient transmission rate (11) as functions of channel delay
upper bound γ. We assume A = 1 + i, B = 0.5, M = 0.1,
ρ0 = 0.9 and b = 1.0001. Also λ = log

(
π/2 arcsin( 7

8
)eRe(A)γ

)
and

J = 8M
Re(A)

(
eRe(A)γ − 1

)
+ 0.002. In this case, the rate dictated by data-

rate theorem (Theorem 1) is 2Re(A)/ ln 2 = 2.885.

information transmission rate is lower bounded by (11) and
the real part of A−BK is negative.

Remark 1: Our previous work [24] extends the results on
event-triggered control for plants without disturbance from
the scalar to the vector case, but is limited to plants with real
eigenvalues of the open-loop gain matrix. Our discussion for
complex plants here sets the basis for generalizing this result
to plants subject to disturbance and for any real open-loop
gain matrix (not necessarily with real eigenvalues). •

IV. SIMULATION RESULTS

This section presents simulation results for stabilization
of a complex linear time-invariant plant with disturbances.
Although the results are stated for continuous systems, all the
simulations are done in a digital environment by sampling the
continuous system at a high frequency (such that the resulting
approximate system is close to the continuous system). We
choose the sampling time δ′ = 0.002 seconds. The minimum
upper bound for the channel delay is equal to two sampling
times.

We consider the state and state estimation as defined in (1)
and (3) where A = 2+0.5i, B = 0.5, and the control input is
chosen as u(t) = −8x̂(t). Using (10b), the triggering radius
J (cf. (4)) can be found as follows:

J =
8M(eRe(A)γ − 1)

Re(A)
+ δ′,

Also, to quantize the phase, using (10d) we calculate λ as
follows:

λ =

log

 π

arcsin
(

7/8
2eRe(A)γ

)


We carry out a set of three different simulations. In
simulation (a), we assume the plant disturbance is zero and
the channel delay is upper bounded by two sampling times
2δ′. In simulation (b), we assume the plant disturbance is
upper bounded by M = 0.1 and the channel delay is upper

bounded by two sampling times. Finally, for simulation (c),
we assume the plant disturbance is upper bounded by M = 2
and the channel delay is upper bounded by γ = 1.2 seconds.

Simulation results are presented in Figure 6, where the
first row represents norm of the error ‖z(t)‖, and triggering
radius J , the second row represents the evolution of φx(t)
and the third row represents the evolution of ‖x(t)‖ in time.
In the third column, despite having large delays and large
disturbances, the controller is able to stabilize the plant.
As we can see in the plot, the estimate of the state at the
controller tracks the norm and phase of the state. In the first
row, sudden changes in the norm of the state estimation error
represent reception of the transmitted packet at the controller.

ACKNOWLEDGEMENTS

This research was supported by NSF award CNS-1446891.
The authors would like to thank Prof. Pavan Tallapragada for
helpful discussions.

V. CONCLUSIONS

We have presented an event-triggered control scheme for
stabilization of a continuous-time, complex, time-invariant,
linear system over a digital communication channel with
bounded delay and in the presence of bounded system
disturbances. We have tested the proposed control scheme on
an unstable linear system with complex open-loop gain and
validated the results in simulation. Future work will study the
identification of necessary conditions on the transmission rate
in complex systems, developing an event-triggering design
for vector systems with real and complex eigenvalues based
on the complex system design, and testing of the proposed
control strategies on practical scenarios.
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