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Abstract—In this paper, we investigate PN-sequences with ideal
autocorrelation property and the consequences of this property
on the number of +1s and −1s and run structure of sequences.
We begin by discussing and surveying about the length of PN-
sequences with ideal autocorrelation property. From our discus-
sion and survey we introduce circulant matrix representation of
PN-sequence. Through circulant matrix representation we obtain
system of non-linear equations that lead to ideal autocorrelation
property. Rewriting PN-sequence and its autocorrelation prop-
erty in {0,1} leads to a definition based on Hamming weight and
Hamming distance and hence we can easily prove some results
on the PN-sequences with ideal autocorrelation property.

Index Terms—PN-sequence, ideal autocorrelation property,
balance property, run structure, circulant matrix representation.

I. INTRODUCTION

PSEUDO noise sequences (PN-sequences) are codes that
are considered to have correlation and spectrum properties

similar to random sequences, although they are determinis-
tically generated. There are many versions of PN-sequences
with different definitions, approaches and applications such as,
maximal-length sequences (m-sequences) [1], Gold codes [2],
zero correlation zone sequences (ZCZ) [3], etc. In general,
m-sequences are among the most important PN-sequences
since they satisfy randomness postulates stated by Golomb
[4], namely, ideal autocorrelation property, balance property,
and run property. In further work by Golomb he makes
the following conjecture [4], which is still considered open:
“The only binary sequences satisfying the three randomness
postulates are m-sequences.” [4].

The correlation between all non-zero cyclic shifts of an m-
sequence is almost zero (ideal autocorrelation property) [5], so
they can be used as sequences with excellent autocorrelation
function. Sequences with ideal autocorrelation property are
in one-to-one correspondence with Paley-Hadamard difference
sets [6]. A general algorithm for constructing these classes of
sequences for any arbitrary length n is not known so far.

Golomb states another conjecture on the existence of Paley-
Hadamard difference sets that is if n, the length of Paley-
Hadamard difference sets, is equal to 4k+ 3, then it should
be either a prime number, or n must be the product of twin
primes or it should be in the form of 2k − 1, where k is a
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positive integer [7]. To the best of our knowledge when n is a
prime number only Legendre sequences [8] and sextic residue
construction [9] are known. The other known sequences with
ideal autocorrelation property are; Jacobi symbol [10] for n =
p(p+2), and m-sequences [1], Gordon-Mills-Welch (GMW)
sequences [11] and miscellaneous instances [12] for n= 2k−1.

Golomb believes that the existence of miscellaneous ex-
amples gives a clue for further investigating the truth of his
conjecture about Paley-Hadamard difference sets. Three of
these examples were founded in 1967 for n = 127, and a few
years later two and three examples were found for n= 255, and
n = 511, respectively. In 1998 in [13], the authors constructed
five new classes of binary sequences with ideal autocorrelation
by exhaustive search for n= 2k−1 for all k ≤ 10, and proposed
a few more conjectures on the general construction of these
sequences and their corresponding difference sets.

In many applications generalizing the length of PN-
sequences is critical such as in spectrum fragmented cognitive
radio networks [14,15], where the sequences should have a
wide range of lengths because of the number of available
sub-carriers differ in various conditions. Hence in many ad-
vanced communications systems, codes with various lengths
are needed.

In generalizing the length of PN-sequences we begin by
proposing the circulant matrix representation of PN-sequences.
The idea of using circulant matrix representation to construct
a desired sequence was first used by Alem and Salehi in
[16] in order to represent Optical Orthogonal Code (OOC).
In [16] the search space is spectrally classified using circulant
matrix representation of OOCs, followed by a group action
that introduces an efficient partitioning algorithm.

The rest of this paper is organized as follows; in Section II,
circulant matrix representation of PN-sequences is proposed.
In Section III, based on circulant matrices representation, a
system of n non-linear equations is proposed that can be
used to justify ideal autocorrelation property of PN-sequences.
Then a new perspective arises by transferring circulant matrix
of PN-sequences to {0,1} domain which leads to a better
understanding of these sequences discussed in Section IV.
The run structure of the desired sequences are investigated
in Section V. Finally, Section VI, summarizes the results and
concludes the paper.



II. CIRCULANT MATRIX REPRESENTATION OF
PN-SEQUENCES

Lets denote a PN-sequence via a codeword, x =
(x0,x1, . . . ,xn−1). In most technical literature a codeword x
is said to have ideal autocorrelation property if it has the
following autocorrelation function [4,13]

Rx(τ) =
{

n for τ ≡ 0 mod n
−1 otherwise (1)

where Rx(τ) is defined as

Rx(τ) =
n−1

∑
l=0

xlxl⊕τ. (2)

and ⊕ is n-module addition.
Herein, we recognize that in bipolar codewords, ±1s av-

erage out each other in order to construct an impulse shape
autocorrelation function [17]. In general PN-sequences with
ideal autocorrelation property are similar to OOCs, since
both have cyclic structure with cyclic ideal autocorrelation
property. The idea of using outer product matrix to design a
new searching algorithm to obtain OOC codewords was first
proposed in [18] by Charmchi and Salehi, where the authors
attempt, successfully, remove the bottleneck of designing and
generating OOCs with certain code lengths. In [16], in order
to develop search algorithm in designing OOCs the authors do
an in depth search for finding appropriate types of matrices
to representing the characteristics of OOCs. In the following
definitions, the circulant matrix representation of PN-sequence
is introduced, as in [16], whereby displaying all possible cyclic
shifts of a codeword in a circulant matrix.

Definition 1: The circulant matrix representation of every
codeword x = (x0,x1, . . . ,xn−1) as a binary PN-sequence (xl ∈
{±1} for 0 ≤ l ≤ n−1) is defined as follows

Ax = A(x0,x1,...,xn−1) =


x0 x1 . . . xn−1

xn−1 x0 . . . xn−2
...

... . . .
...

x1 x2 . . . x0

 . (3)

Every row of a circulant matrix is a cyclic shift of it’s above
row [19]. From (1), (2) and (3) it becomes evident that the
condition of ideal autocorrelation for x = (x0,x1, . . . ,xn−1) and
its circulant matrix Ax is presented as follows;

AxAT
x = nIn +En = A(n,−1,...,−1) (4)

where In represents the identity matrix of order n and if Jn
denotes an n×n all-ones matrix (every element of Jn is equal
to 1) then

En =−Jn + In. (5)

Example 1: If x = (−1,−1,+1) (m-sequence of length 3) then

Ax =

 −1 −1 +1
+1 −1 −1
−1 +1 −1

 (6)

and

AxAT
x =

 +3 −1 −1
−1 +3 −1
−1 −1 +3

= 3I3 +(−J3 + I3) (7)

III. PROPERTIES OF CIRCULANT MATRICES AND THE
CORRESPONDING NON-LINEAR SYSTEM OF EQUATIONS

The properties of circulant matrices are well known and
easily derived in [20]. The matrix in (3) has eigenvectors, and
eigenvalues that are as follows;

vm =
1√
n
(1,e

− j2πm
n , . . . ,e

− j2πm(n−1)
n )T (8)

λxm =
n−1

∑
l=0

xle− j2π ml
n (9)

where, m = 0,1, . . . ,n−1.
If Un is an n×n matrix that has the eigenvectors as columns

placed in order (Fourier unitary matrix) and Ψ = diag(λxm)
then Ax = UnΨxU∗

n . Also matrices that have this eigenvector
matrix are circulant [21].

In order to proceed further we need one more prop-
erty about circulant matrix. If x = (x0,x1, . . . ,xn−1) and y =
(y0,y1, . . . ,yn−1) then

AxAy = AyAx =UnΨU∗
n (10)

where, Ψ = diag(λxmλym) and AxAy is also circulant matrix. If
y = (x0,xn−1, . . . ,x1), then

AxAT
x = AxAy (11)

So by (10)

AxAT
x =UnΨU∗

n (12)

and λxm ×λym calculated in (15). From (4) and (12) we have

UnΨU∗
n = nIn +En

(13)

Since Un is unitary matrix (UU∗ = I) so

Ψ =U∗
n (nIn +En)Un = nIn +U∗

n EnUn

Ψ−nIn =U∗
n EnUn (14)

Ψ−nIn (the left hand side of (14)) is obtained as in (16), and
(17).

There is a fact about orthogonality of the complex expo-
nentials [20]

n−1

∑
m=0

e j 2πml
n =

{
n l mod n = 0
0 otherwise . (18)

So if n is a prime number then we can easily rewrite the
right hand side of (14) by substituting En from (5)

U∗
n EnUn =U∗

n (−Jn + In)Un = In −U∗
n JnUn (19)



λxm λym = (x0 + x1e− j 2πm
n + x2e− j 2πm(2)

n + · · ·+ xn−1e− j 2πm(n−1)
n )(x0 + xn−1e− j 2πm

n + xn−2e− j 2πm(2)
n + · · ·+ x1e− j 2πm(n−1)

n )

= x2
0 + x2

1 + · · ·+ x2
n−1 +2 ∑

l>r
xlxrcos(

2πm
n

(l − r)) (15)

Ψ−nIn =



n−1
∑

l=0
x2

l +2 ∑
l>r

xlxr −n 0 . . . 0

0
n−1
∑

l=0
x2

l +2 ∑
l>r

xlxrcos( 2π
n (l − r))−n . . . 0

...
...

...
...

0 0 . . .
n−1
∑

l=0
x2

l +2 ∑
l>r

xlxrcos( 2π(n−1)
n (l − r))−n


(16)

=



2 ∑
l>r

xlxr 0 . . . 0

0 2 ∑
l>r

xlxrcos( 2π
n (l − r)) . . . 0

...
...

...
...

0 0 . . . 2 ∑
l>r

xlxrcos( 2π(n−1)
n (l − r))


(17)

thus,

Ψ−nIn =


1−n 0 . . . 0

0 1 . . . 0
...

...
...

...
0 0 . . . 1

 (20)

which leads to the following system of non-linear equations

∑
l>r

xlxr =
1−n

2

∑
l>r

xlxrcos( 2π
n (l − r)) = 0.5

...
∑

l>r
xlxrcos( 2π(n−1)

n (l − r)) = 0.5

(21)

Considering the properties of cosine function, these non-
linear equations are dependent, hence, there is no need to solve
more than (n+1)/2 equations as follows



∑
l>r

xlxr =
1−n

2

∑
l>r

xlxrcos( 2π
n (l − r)) = 0.5

...
∑

l>r
xlxrcos(π(n−1)

n (l − r)) = 0.5

(22)

Considering the following equation

(
n−1

∑
l=0

xl)
2 = 2 ∑

l>r
xlxr +

n−1

∑
l=0

x2
l = 1 (23)

the first equation in (22) is equivalent to
n−1
∑

l=0
xl =±1.

Corollary: The ideal autocorrelation property leads to
balance property.

In order to find sequences with ideal autocorrelation prop-
erty, we need to search balanced {±1}n and find codewords
satisfying equations in (22).

Example 2: As an example for n = 7 equations in (22) for
di where i = 1, . . . ,6 are as follows

d1 = x6x5 + x5x4 + x4x3 + x3x2 + x2x1 + x1x0

d2 = x6x4 + x5x3 + x4x2 + x3x1 + x2x0

d3 = x6x3 + x5x2 + x4x1 + x3x0

d4 = x6x2 + x5x1 + x4x0

d5 = x6x1 + x5x0

d6 = x6x0 (24)

reduce to; cos( 2π
7 ) . . . cos(6× 2π

7 )
...

...
...

cos(6× 2π
7 ) . . . cos(36× 2π

7 )


 d1

...
d6

=

 0.5
...

0.5


(25)

Due to the property of cosine function, the first, second, and
third columns and rows of above 6×6 matrix are respectively
equal to sixth, fifth and fourth columns and rows. Therefore,
(25) is rewritten as follows cos( 2π

7 ) cos( 4π
7 ) cos( 6π

7 )
cos( 4π

7 ) cos( 8π
7 ) cos( 12π

7 )

cos( 6π
7 ) cos( 12π

7 ) cos( 18π
7 )

 d1 +d6
d2 +d5
d3 +d4

=

 0.5
0.5
0.5


(26)

Multiplying the inverse of the 3×3 matrix on the left of (26);
we obtain the following expressions;

d1 +d6 = x6x5 + x5x4 + x4x3 + x3x2 + x2x1 + x1x0 + x6x0

=−1 (27)
d2 +d5 = x6x4 + x5x3 + x4x2 + x3x1 + x2x0 + x6x1 + x5x0

=−1 (28)
d3 +d4 = x6x3 + x5x2 + x4x1 + x3x0 + x6x2 + x5x1 + x4x0

=−1 (29)

Solving for (27), (28) and (29) in balance n-tuples is suffi-
cient for finding sequences with ideal autocorrelation property.



On the other hand, this equations are the multiplication of
codeword with first, second and third circular shift, respec-
tively.

Corollary: As expected the sequences with ideal autocor-
relation property are solutions to the following non-linear
equation system in balanced n-tuples of {±1}

n−1
∑

l=0
xlxl⊕1 =−1

...
n−1
∑

l=0
xlxl⊕ n−1

2
=−1

(30)

Examples of PN-sequences with ideal autocorrelation prop-
erty can be find in Table I.

IV. TRANSFORMATION TO DOMAIN OF {0,1}
In this section, we investigate PN-sequences by transferring

the {±1} to {0,1}, and then discuss the corresponding con-
sequences. If we define the following mapping;

θ : {−1,1}n →{0,1}n

(x′0, . . . ,x
′
i, . . . ,x

′
n−1) = θ(x0, . . . ,xi, . . . ,xn−1)

= (
1− x0

2
, . . . ,

1− xi

2
, . . . ,

1− xn

2
) (31)

Then the autocorrelation function of x can be written as
follows [13,22];

Rx(τ) =
n−1

∑
l=0

xlxl⊕τ =
n−1

∑
l=0

(−1)x′l+x′l⊕τ (32)

= n−2ω(x′⊕T τ(x′))

where ω(x′) denotes the Hamming weight of x′, and T τ

represents τ cyclic shift to the left. Hence

ω(x′⊕T τ(x′)) =
{

0 for τ ≡ 0 mod n
n+1

2 otherwise
(33)

thus, every two different rows of Ax′ in n+1
2 columns have

different value and in n−1
2 columns have the same value. If x=

(x0,x1, . . . ,xn−1) satisfies ideal autocorrelation property, then
the sequence y = (y0,y1, . . . ,yn−1) = (−x0,−x1, . . . ,−xn−1)
also satisfies this property. So without loss of generality

suppose
n−1
∑

i=0
xi = −1. Hence in the columns of every two

different rows of Ax′ , the (1,1) pairs appears once more than
(0,0) pairs. Eventually there are n−3

4 pairs of (0,0) in columns
of every two different rows of Ax′ .

Example 3: If x = (−1,−1,−1,1,−1,1,1), then x′ =
(1,1,1,0,1,0,0) and T x′ = (0,1,1,1,0,1,0) have four pairs
of (1,0), two pairs of (1,1) and one pair of (0,0) in their
columns.

From the above discussion the following results can be
obtained.

Corollary 1: There is no sequences with ideal autocorrela-
tion property of the length 2k or 4k+1.

Corollary 2: The ideal autocorrelation property is given by

Ax′A
T
x′ =

n+1
2

In +
n+1

4
(Jn − In)

= A( n+1
2 , n+1

4 ,..., n+1
4 ) (34)

TABLE I
PN-SEQUENCES WITH IDEAL AUTOCORRELATION PROPERTY OF LENGTH

LESS THAN 31

n Sequence Type
3 ( 1, 1,-1) m-sequence
7 (-1,-1,-1,1,-1, 1, 1) m-sequence

(-1,-1,-1, 1, 1,-1, 1) m-sequence
11 (-1,-1,-1, 1,-1,-1, 1,-1, 1, 1, 1) Legendre

(-1,-1,-1, 1 -1, 1, 1,-1, 1, 1, 1) Legendre
15 (-1,-1,-1,-1, 1, 1, 1,-1, 1, 1,-1,-1, 1,-1, 1) m-sequence

(-1,-1,-1,-1, 1,-1, 1,-1,-1, 1, 1,-1, 1, 1, 1) m-sequence
19 (-1,-1,-1,-1, 1,-1, 1,-1, 1, 1, 1, 1,-1,-1, 1,-1,-1, 1, 1) Legendre

(-1,-1,-1,-1, 1,-1, 1,-1, 1, 1, 1, 1,-1,-1, 1, 1,-1, 1, 1) Legendre
23 (1,1,1,1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,-1,-1,-1,-1,-1) Legendre

(1,-1,1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,-1) Legendre

corollary 3: A PN-sequence of length n with ideal Au-
tocorrelation can be seen as a family of codewords, {0,1}n,
weighting n+1

2 that are cyclic shifts of each other with Ham-
ming distances equals to n+1

2 amongst each other.

V. RUN STRUCTURE

Consider the codeword x= (x0,x1, . . . ,xn−1), a run of length
f is a block of consecutive 1s or −1s in codeword that is not
contained in a larger block of 1s or −1s, and is denoted by
R f . Furthermore, let N(R f ) to denote the number of the runs
of length f . The codeword x has the run property [4], if

⌊ n
2 f+1 ⌋ ≤ N(R f )≤ ⌈ n

2 f+1 ⌉. (35)

The ideal autocorrelation property and the run property are
known to be independent for more than few decades until in
2009 Cai [22] by thinking about autocorrelation run by run
instead of symbol by symbol proved that these two properties
are related. The main result of his work can be presented in
this relation [22]

Rx(τ) = n−2τγ−4 ∑
f1+ f2+...+ fl<τ

(−1)l(τ− i)N(R f1 R f2 . . .R fl )

(36)

where i = f1 + f2 + . . .+ fl , γ is the total number of runs
and R f1 ,R f2 , . . . ,R fs represent consecutive runs of lengths
f1, f2, . . . , fs in x.

Two special cases that can be obtained easily and would
give us some understanding of run structure are Rx(1) = n−2γ
and Rx(2) = n−4γ+4N(R1). Therefore, sequences with ideal
autocorrelation property have n+1

2 number of runs in which
n+1

4 number of them are of length one. With this in mind,
it may be true that the only sequences with ideal autocorre-
lation property that satisfy (35) are m-sequences (Golomb’s
conjecture about m-sequences) but all the sequences that have
ideal autocorrelation property are not too far from satisfying
the conditions in (35).

Example 4:
If n= 11 then (35) implies that 1≤N(R1)≤ 3, 1≤N(R2)≤

2, and 0 ≤ N(R f ) ≤ 1 for f = 3, . . . ,10. The codeword x =
(−1,−1,−1, 1,−1,−1, 1,−1, 1, 1, 1), which has the ideal
autocorrelation property follows (38) in all cases except f = 3
(this codeword has two run of length three).



VI. CONCLUSION

We investigated PN-sequences with ideal autocorrelation
property and the consequence of this property on the number
of +1s and −1s and run structure of sequences. A new per-
spective was introduced using circulant matrix representation
of PN-sequences. We derived a system of non-linear equations
which led to ideal autocorrelation property from this point of
view. Rewriting PN-sequence and its autocorrelation property
in {0,1} led in a definition based on Hamming weight and
Hamming distance and easily proved a number of results on
PN-sequences with ideal autocorrelation property.
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