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Abstract— We consider the problem of estimating an undis-
turbed, scalar, linear process over a “timing” channel, namely a
channel where information is communicated through the times-
tamps of the transmitted symbols. Each transmitted symbol is
received at the decoder subject to a random delay. The encoder
can encode messages in the holding times between successive
transmissions and the decoder must decode the message from
the inter-reception times of successive symbols. This set-up is
analogous to a telephone system where a transmitter signals
a phone call to the receiver through a “ring" and, after the
random time required to establish the connection, is aware of
the “ring" being received. We show that for the estimation
error to converge to zero in probability, the timing capacity
of the channel should be at least as large as the entropy rate
of the process. In the case the symbol delays are exponentially
distributed, we show a tight sufficient condition using a random-
coding strategy.

I. INTRODUCTION

A networked control system with a feedback loop over a
communication channel provides a first-order approximation
of a cyber-physical system (CPS) [1], [2]. In this setting,
data-rate theorems quantify the impact of the communication
channel on the ability to stabilize (and estimate) the system
state. Roughly speaking, these theorems state that to achieve
estimation with arbitrary small error (and stabilization) the
communication rate available in the feedback loop should be
at least as large as the intrinsic entropy rate of the system,
expressed by the sum of its unstable modes [3]–[6].

We consider a specific communication channel — a timing
channel. Here, information is communicated through the
timestamps of the symbols transmitted over the channel;
the “time” is carrying the message. This formulation is
motivated by recent works in event-triggering estimation and
control, showing that the timing of the triggering events
carries information that can be used for stabilization [7]–[12].
However, while in these works the timing information is not
explicitly quantified, our goal is to precisely determine what
is the value of a timestamp from an information-theoretic
perspective, when this is used for estimation and control.

We consider estimation of a scalar, undisturbed,
continuous-time process over a timing channel and rely on
work in information theory that defines the timing capacity
of the channel, namely the amount of information that can
be encoded using time stamps [13]–[16]. In this setting, the
encoder can communicate with the decoder by choosing the
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timestamps at which symbols from a unitary alphabet are
transmitted. The decoder receives each transmitted symbol
after a random delay is added to the timestamp. We show
that in order to achieve arbitrary small estimation error the
timing capacity should be proportional to the entropy-rate of
the system, with a proportionality factor of at least one, that
accounts for the difference in time scales. In the case the
random delays are exponentially distributed, we show that a
random coding strategy can be used to achieve this bound.
While our analysis is restricted to transmitting symbols from
a unitary alphabet, it is natural to extend this and develop
“mixed” strategies that use both timing information and data
payload, as in event-triggered estimation and control. Finally,
our results show that state-dependent triggering is only one
of many possible strategies to encode information in time,
thus opening several new venues for future investigation.

A. Background

The books [3], [4], [17] and the surveys [5], [6] provide
detailed discussions on data-rate theorems and related results.
A portion of the literature studied estimation and stabilization
over “bit pipe channels," where a rate-limited, possibly time-
varying, noiseless communication channel is present [18]–
[22]. In the case of noisy channels, Tatikonda and Mitter [23]
showed that for almost sure (a.s.) estimation and stabilization
of undisturbed linear systems the Shannon capacity of the
channel should be larger than the entropy rate of the system.
Matveev and Savkin [24] showed that this condition is also
sufficient for discrete memoryless channels, but a stronger
condition is required in the presence of disturbances, namely
the zero-error capacity of the channel must be larger than the
entropy rate of the system [25]. Nair [26] derived a similar
information-theoretic result in a deterministic setting. Sahai
and Mitter [27] considered the less stringent requirement of
moment-estimation (and stabilization) over noisy channels
and in the presence of system disturbances, and provided a
data-rate theorem in terms of the anytime capacity of the
channel [28]–[32].

Another important aspect of CPS is event-triggered esti-
mation and control [33], [34]. One primary focus of event-
triggered control is on minimizing the number of trans-
missions while simultaneously ensuring the control objec-
tive [35], [36]. In this context, the works in [7]–[12] show
that the timing of the state-dependent triggering events
carries information that can be used for stabilization. The
amount of timing information that is transmitted is sensitive
to the delay in the communication channel. While for small
delay stabilization can be achieved with data-rate arbitrarily
close to zero, for large values of the delay this is not the
case and the data-rate must be increased [8], [12]. In this



Fig. 1. The estimation problem.

context, our work explicitly quantifies the value of the timing
information, independent of any transmission strategy, and
also shows its dependence on the random delay, which plays
the role of the channel noise in an information-theoretic
setting.

In the remainder of the paper, Section II formulates
the problem, Section III describes our results. Section IV
concludes the paper with some open problems. Proofs of the
results are omitted and can be found in [37].

B. Notation

Let Xn = (X1, · · · , Xn) denote a vector of random
variables and let xn = (x1, · · · , xn) denote its realization. If
the X1, · · · , Xn are independent and identically distributed
(i.i.d), then we refer to a generic Xi ∈ Xn by X and
skip the subscript i. We use log and ln to denote the
logarithms to base 2 and e respectively. We use H(X) to
denote the Shannon entropy of a discrete random variable X
and h(X) to denote the differential entropy of a continuous
random variable X . Further, we use I(X,Y ) for the mutual
information between random variables X and Y . We will
write Xn

P−→ X if Xn converges in probability to X .
Similarly, we will write Xn

a.s.−−→ X if Xn converges almost
surely to X .

II. PROBLEM FORMULATION

We consider the estimation problem depicted in Fig. 1.
The process dynamics are described by a scalar, continuous-
time, noiseless process

Ẋ(t) = aX(t), (1)

where X(t) ∈ R is the process state. The constants a ∈ R
such that a > 0. The initial state, X(0), is random and
is drawn from a distribution with bounded support, such
that |X(0)| < L and h(X(0)) <∞. Conditioned on the
realization of X(0), the system evolves deterministically. The
decoder has knowledge of system dynamics in (1).

We assume the encoder can measure the state of the system
with infinite precision. The encoder is connected to the
decoder through a timing channel (or the telephone signaling
channel in [13]) as follows.

The encoder can choose to transmit the symbol ♠ at fixed
times to the decoder. This symbol is delivered to the decoder
after a random delay. The encoder receives an instantaneous
but causal acknowledgement when the symbol is delivered,
similar to [12], [27], [38].

The encoder uses a “waiting time” to encode information,
i.e., after the ith ♠ has been received by the decoder, the
encoder waits for Wi+1 seconds to transmit the next symbol.

We assume that the channel is initialized with a symbol
received at t = 0.

This is similar to a telephone system where a transmit-
ter signals a phone call to the receiver through a “ring”.
After the random time required to establish the connection,
the receiver is aware of the “ring”. Thus, communication
between the transmitter and receiver can occur without any
vocal exchange, by encoding messages in the waiting times
between consecutive calls.

Let Di be the inter-reception time between two consecu-
tive symbols, i.e.,

Di = Wi + Si, (2)

where {Si} are random delays that are assumed to be i.i.d.
Fig. 2 provides an example of the timing channel in action.

We assume the use of a random codebook, namely the
holding times {Wi} used to encode any given message are
i.i.d. and also independent of the random delays {Si}. This
assumption is made to simplify our analysis, and does not
change the capacity of the communication channel.

We assume the blocklength of a codeword is n, i.e.
the decoder will use a set of n timestamps to decode the
message. The reception time of the last symbol is given
by Tn =

∑n
i=1Di. We are interested in estimating the

process (1) at a sequence of times {tn} such that

1 < lim
n→∞

tn
E[Tn]

≤ Γ, (3)

i.e. we want |X(tn)− X̂(tn)| P→ 0 as n→∞.
The following definitions are derived from [13], incorpo-

rating our random coding assumption.
Definition 1: A (n,M, T, δ)-i.i.d.-feedback-timing code

for the telephone signaling channel consists of a codebook
of M codewords {(w(m)

i , i = 1, . . . , n), m = 1 . . .M},
where the symbols in each codeword are picked i.i.d. from
a common distribution as well as a decoder, which upon
observation of (D1, . . . , Dn) selects the correct transmitted
codeword with probability at least 1 − δ. Moreover, the
codebook is such that the expected random arrival time of
the nth symbol, given by Tn =

∑n
i=1Di, is not larger than

T ,

E [Tn] ≤ T. (4)
Definition 2: The rate of an (n,M, T, δ)-i.i.d.-feedback-

timing code is

R = (logM)/T. (5)
Definition 3: The timing capacity C of the telephone

signaling channel is the supremum of the achievable rates,
namely the largest R such that for every γ > 0 there exists



Fig. 2. The timing channel. Subscripts s and r are used to denote sent and received symbols, respectively.

a sequence of (n,Mn, Tn, δTn
)-i.i.d.-feedback-timing codes

that satisfy

logMn

Tn
> R− γ, (6)

and δTn
→ 0 as n→∞.

The capacity definition in [13] is slightly more general
and does not include a random coding assumption. However,
the following result [13, Theorem 8] applies to our random
coding set-up, since the capacity in [13] is achieved by
random codes.

Theorem 1 (Anantharam and Verdú): The timing capac-
ity of the telephone signaling channel is given by

C = sup
χ>0

sup
W≥0

E[W ]≤χ

I(W ;W + S)

E[S] + χ
, (7)

and if S is exponentially distributed then

C =
1

eE[S]
[nats/sec]. (8)

III. STATEMENT OF THE RESULTS

The first theorem provides a necessary rate for the state
estimation problem.

Theorem 2: Consider the estimation problem depicted
in Fig. 1 with process dynamics (1). Consider transmit-
ting n symbols over the telephone signaling channel (2),
and a sequence of estimation times satisfying (3). If
|X(tn)− X̂(tn)| P→ 0, then

I(W ;W + S) ≥ a Γ E[W + S] [nats]. (9)
The entropy-rate of the process (1) is given by a

nats/time [39]. Setting Γ = 1 our result recovers a scenario
that parallels the data-rate theorems, stating that the mutual
information between an encoding symbol W and its received
noisy version W + S should be larger than the average
“information growth” of the state during the inter-reception
interval D, which is given by

E[aD] = a E[S +W ]. (10)

In this case, using (7) we also obtain from (9) that

C ≥ a [nats/sec]. (11)

On the other hand, for Γ > 1 our result shows that we
must pay a penalty of Γ in the case that there is a time
lag between the reception time Tn of the last symbol in the
codeword and the observation time tn, see Fig. 3. Using (7),
in this case we obtain from (9) that

C ≥ aΓ [nats/sec]. (12)

Fig. 3. Typical realization of codeword transmission for large n.

The case Γ = ∞ requires transmission of a codeword
carrying an infinite amount of information over a channel
of infinite capacity, thus revealing the initial state of the
system with infinite precision. Once this state is known to
the decoder, the estimation error can be kept small, even at
observation times that are arbitrarily far in the future. This
case is equivalent to transmitting a single real number over
a channel without error.

The second theorem provides a sufficient condition for
convergence of the estimation error to zero in probability
for any sequence of times {tn} that satisfies (3) in the case
of exponentially distributed delays.

Theorem 3: Consider the estimation problem depicted in
Fig. 1 with process dynamics (1). Consider transmitting n
symbols over the telephone signaling channel (2). Assume
{Si} are drawn i.i.d. from an exponential distribution with
mean E[S]. If the capacity of the timing channel, C, is at
least

C > aΓ [nats/sec], (13)

then for any sequence of times {tn} that satisfies (3), we can
compute an X̂(tn) such that:

|X(tn)− X̂(tn)| P→ 0. (14)
Remark 1: Tatikonda and Mitter in [23] considered the

problem of estimation of the discrete-time version of the
system in (1) over an erasure channel. In their model, at each
time step of the system’s evolution the encoder transmits a
packet of I bits to the decoder and this is delivered with
probability 1 − µ, or it is dropped with probability µ. It is



shown that a necessary condition for |X(k)− X̂(k)| a.s−−→ 0
where k ∈ N is

(1− µ)I ≥ log a [bits/sec]. (15)

For Γ = 1 in Theorem 2 we obtain the following necessary
condition for |X(tn)− X̂(tn)| P−→ 0:

I(W ;W + S)

E[W + S]
≥ a [nats/sec], (16)

for any sequence of times {tn} that satisfies (3). We now
compare (15) and (16). The rate of expansion of the state
space of the continuous time process is a nats per unit time,
while for the discrete system is log a bits per unit time.
Accordingly, in the case of (16) the decoder should receive
at least aE[W + S] nats representing the initial state during
a time interval of average length E[W +S]. Similarly, in the
case of (15) the decoder should receive at least log a/(1−µ)
bits representing the initial state over a time interval whose
average length corresponds to the average number of trials
before the first successful reception

(1− µ)

∞∑
k=0

(k + 1)µk =
1

1− µ
. (17)

•

IV. CONCLUSION

Event triggering policies for control exploit timing infor-
mation related to the trigger-event to stabilize a system over
a digital communication channel. This paper studied the fun-
damental limits of using timing information for estimation,
as a precursor to control. We showed that for estimation
of an undisturbed scalar linear system over a channel with
a unitary alphabet, the timing capacity should be at least
as large as the entropy rate of the system. In addition, in
the case of exponentially distributed delay, we provided a
tight sufficient condition. Important open problems for future
research include understanding control of systems using
timing information. In addition, it is important to consider
the effect of system disturbances as well as considering
symbols that carry a payload in addition to communicating
a timestamp.
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