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Abstract
This paper focuses on learning a model of system dynamics online while satisfying safety constraints.
Our motivation is to avoid offline system identification or hand-specified dynamics models and allow
a system to safely and autonomously estimate and adapt its own model during online operation.
Given streaming observations of the system state, we use Bayesian learning to obtain a distribution
over the system dynamics. In turn, the distribution is used to optimize the system behavior and
ensure safety with high probability, by specifying a chance constraint over a control barrier function.
Keywords: Gaussian Process regression, online system dynamics learning, high relative-degree
safety, exponential control barrier function

1. Introduction

Unmanned vehicles promise to transform many aspects of our lives, including transportation, agricul-
ture, mining, and construction. Successful use of robot autonomy in these areas depends critically on
the ability of robots to adapt safely to changing operational conditions. Existing systems, however,
rely on brittle hand-designed dynamics models and safety rules that often fail to account for the
complexity and uncertainty of real-world operation. Recent work (Deisenroth and Rasmussen, 2011;
Dean et al., 2019; Sarkar et al., 2019; Rantzer, 2018; Tu and Recht, 2018; Coulson et al., 2019; Chen
et al., 2018; Rosolia et al., 2018; Taylor et al., 2019; Liu et al., 2019; Umlauft and Hirche, 2019) has
demonstrated that learning-based system identification and control techniques may be successful
at complex tasks and control objectives. However, two critical considerations for applying these
techniques onboard autonomous systems remain: learning online, relying on streaming data, and
guaranteeing safe operation, despite the uncertainty inherent to learning algorithms.

Motivated by the utility of Lyapunov functions for certifying stability properties, Ames et al.
(2016); Xu et al. (2017); Xu et al. (2015); Prajna et al. (2007); Ames et al. (2019) proposed control
barrier functions (CBFs) as a tool for characterizing long-term safety of dynamical systems. A
CBF certifies whether a control policy achieves forward invariance of a safe set C by evaluating
if the system trajectory remains away from the boundary of C. Most of the literature on CBFs
∗ indicates equal contribution.
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considers systems with known dynamics, low relative degree, no disturbances, and time-triggered
control, in which the control inputs are recalculated at a fixed and sufficiently small period. This
is limiting because, low control frequency in a time-triggered setting may lead to safety constraint
violation in-between sampling times. On the other hand, high control frequency leads to inefficient
use of computational resources and actuators. Yang et al. (2019) extend the CBF framework to
a self-triggered setup in which the longest time until a control input needs to be recomputed to
guarantee safety is provided. CBF techniques handle nonlinear control-affine systems but many
existing results apply only to relative-degree-one systems, in which the first time derivative of the
CBF depends on the control input. This requirement is violated by many underactuated robot systems
and motivated extensions to relative-degree-two systems, such as bipedal and car-like robots. (Hsu
et al., 2015; Nguyen and Sreenath, 2016b). Nguyen and Sreenath (2016a) generalized these ideas by
designing an exponential control barrier function (ECBF) capable of handling control-affine systems
with arbitrary relative degree.

Providing safety guarantees for learning-based control techniques has received a great deal of
attention (Koller et al., 2018; Berkenkamp et al., 2017, 2016; Fisac et al., 2018; Lew et al., 2019).
In particular, the utility of the CBF framework may be expanded by considering noisy or a priori
unknown system dynamics. Techniques for handling additive disturbances have been proposed
in (Clark, 2019; Santoyo et al., 2019), while CBF conditions for systems with uncertain dynamics
have been proposed in (Fan et al., 2019; Wang et al., 2018; Taylor and Ames, 2019; Cheng et al.,
2019; Salehi et al., 2019). Fan et al. (2019) study time-triggered CBF-based controllers for control-
affine systems with relative degree one, where the input gain part of the dynamics is known and
invertible. Bayesian learning is used in (Fan et al., 2019) to determine a distribution over the drift
term of the dynamics. In particular, (Fan et al., 2019) compared the performances of Gaussian
Process regression (Williams and Rasmussen, 2006), Dropout neural networks (Gal and Ghahramani,
2016), and ALPaCA (Harrison et al., 2018) in simulations. Wang et al. (2018), (Cheng et al., 2019),
and (Taylor and Ames, 2019) study time-triggered CBF-based control relative-degree-one systems
in presence of additive uncertainty in the drift part of the dynamics. In (Wang et al., 2018), GP
regression is used to approximate the unknown part of the 3D nonlinear dynamics of a quadrotor.
Cheng et al. (2019) proposed a two-layers control design architecture that integrates CBF-based
controllers with model-free reinforcement learning. Taylor and Ames (2019) proposed adaptive
CBFs to deal with parameter uncertainty. Salehi et al. (2019) studies nonlinear systems only with
drift terms and uses Extreme Learning Machines to approximate the dynamics.

Our work proposes a learning approach for estimating posterior distribution of robot dynamics
from online data to design a control policy that guarantees safe operation. We make the following
contributions. First, we develop a matrix variate Gaussian Process (GP) regression approach with
efficient covariance factorization to learn the drift term and input gain terms of a nonlinear control-
affine system. Second, we use the GP posterior to specify a probabilistic safety constraint and
determine the longest time until a control input needs to be recomputed to guarantee safety with high
probability. Finally, we extend our formulation to dynamical systems with arbitrary relative degree
and show that a safety constraint can be specified only in terms of the mean and variance of the Lie
derivatives of the CBF. Notation, proofs, and additional remarks are available in the appendix
at arXiv (Khojasteh et al., 2019).
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2. Background

Consider a control-affine nonlinear system:

ẋ = f(x) + g(x)u =
[
f(x) g(x)

] [1
u

]
=: F (x)u (1)

where x(t) ∈ Rn and u(t) ∈ Rm are the system state and control input, respectively, at time t.
Assume that the drift term f : Rn → Rn and the input gain g : Rn → Rn×m are locally Lipschitz.
We study the problem of enforcing probabilistic safety properties via CBF when f and g are unknown.
We first review key results on CBF-based safety for known dynamics (Ames et al., 2019).

2.1. Known Dynamics: Control Barrier Functions for Safety

Let C ⊂ D ⊂ Rn be a safe set of system states. Assume C = {x ∈ D | h(x) ≥ 0} is specified
as the superlevel set of h ∈ C1(D,R), a continuously differentiable function D → R, such that
∇xh(x) 6= 0 for all x when h(x) = 0. For any initial condition x(0), there exists a maximum time
interval I(x(0)) = [0, t̄) with t̄ ∈ R ∪ {∞} such that x(t) is a unique solution to (1) (Khalil, 2002).
System (1) is safe with respect to set C if C is forward invariant, i.e., for any x(0) ∈ C, x(t) remains
in C for all t in I(x(0)). System safety may be asserted as follows.

Definition 1 A function h ∈ C1(D,R) is a control barrier function (CBF) for the system in (1) if
the following control barrier condition (CBC) is satisfied:

sup
u

CBC(x,u) ≥ 0, ∀x ∈ D (2)

for CBC(x,u) := Lfh(x) + Lgh(x)u + α(h(x)), where α is any extended class K∞ function and
Lfh(x) and Lgh(x) are the Lie derivatives of h along f and g, respectively.

Theorem 1 (Sufficient Condition for Safety (Ames et al., 2019)) Consider a safe set C with as-
sociated function h ∈ C1(D,R). If ∇xh(x) 6= 0 for all x ∈ ∂C, then any Lipschitz continuous
control policy π(x) ∈ {u ∈ U | CBC(x,u) ≥ 0} renders the system in (1) safe.

Ames et al. (2019) also provide a necessary condition for safety allowing a concise charaterization:

(1) is safe with respect to C ⇔ ∃ u = π(x) s.t. CBC(x,u) ≥ 0 ∀x ∈ D. (3)

2.2. Known Dynamics: Optimization-based Safe Control

The results in Sec. 2.1 allow designing a control policy π(x) that guarantees system safety as long as
CBC(x, π(x)) remains positive along the system trajectories. In practice, this is achieved by solving
a quadratic program (QP) repeatedly at triggering times tk = kτ for k ∈ N and τ > 0:

min
uk

u>k Quk s.t. CBC(xk,uk) ≥ 0, (4)

where Q � 0, xk := x(tk), uk := u(tk). While the QP above cannot be solved infinitely fast,
Theorem 3 of Ames et al. (2016) shows that if f , g, and α ◦ h are locally Lipschitz, then uk(x) and
CBC(x,uk(x)) are locally Lipschitz. Thus, for sufficiently small τ , solving (4) at {tk}k∈N ensures
safety during the inter-triggering times as well.
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3. Problem Statement

Consider a control-affine nonlinear system (1), where F : Rn → Rn×(m+1) is unknown. Our
objective is to estimate F (x) from online observations of the system state and control trajectory and
ensure that (1) remains safe with respect to a set C.

Problem 1 Given a prior Gaussian Process distribution vec(F (x))1∼ GP (vec(M0(x)),K0(x,x′))
on the unknown system dynamics and a training set X1:k := [x(t1), . . . ,x(tk)], U1:k := [u(t1),
. . . ,u(tk)], Ẋ1:k = [ẋ(t1), . . . , ẋ(tk)]

2, compute the posterior Gaussian Process distribution
GP (vec(Mk(x)),Kk(x,x

′)) of vec(F (x)) conditioned on (X1:k,U1:k, Ẋ1:k).

Problem 2 Given a safe set C, the system state xk := x(tk), and the distribution GP(vec(Mk(x)),
Kk(x,x

′)) of vec(F (x)) at time tk, choose a control input uk and triggering period τk such that:

P(CBC(x(t),uk) ≥ 0) ≥ pk for u(t) ≡ uk and t ∈ [tk, tk + τk) (5)

where x(t) follows the dynamics in (1), and pk ∈ (0, 1) is a user-specified risk tolerance.

4. Matrix Variate Gaussian Process Regression of System Dynamics

We propose an efficient Gaussian Process (GP) regression approach to compute a posterior dis-
tribution over the dynamics F (x) of the nonlinear control-affine systems (1). The posterior will
be used to determine the distribution of CBC(x,u) in Sec. 5. Since F (x) is matrix-valued, we
define a GP over its vectorization, vec(F (x)) ∼ GP(vec(M0(x)),K0(x,x′)). As in Coregional-
ization models (Alvarez et al., 2012), we can simplify the covariance structure by assuming that
K0(x,x′) = Σκ0(x,x′) decomposes into a scalar state-dependent kernel κ0(x,x′) and an output-
dimension-dependent covariance matrix Σ ∈ Rn(1+m)×(1+m)n. For systems with large state or
control dimensions, learning the (1 +m)2n2 parameters of Σ may require large amounts of training
data. Moreover, the nice matrix-times-scalar-kernel structure is not preserved in the posterior. We
develop a different factorization of K0(x,x′) based on the Matrix Variate Gaussian distribution (Sun
et al., 2017).

Definition 2 The Matrix Variate Gaussian (MVG) distribution is a three-parameter distribution
MN (M,A,B) describing a random matrix X ∈ Rn×m with probability density function:

p(X; M,A,B) :=
exp

(
−1

2 tr
[
B−1(X−M)>A−1(X−M)

])
(2π)nm/2 det(A)m/2 det(B)n/2

(6)

where M ∈ Rn×m is the mean, and A ∈ Rn×n, B ∈ Rm×m encode the covariance matrix of the
rows and columns of X, respectively.

We provide additional properties of the MVG distribution in Appendix B.1. Note that if X ∼
MN (M,A,B), then vec(X) ∼ N (vec(M),B⊗A). Based on this observation, we propose the
following GP parameterization for the vector-valued functions vec(F (x)):

vec(F (x)) ∼ GP(vec(M0(x)),B0(x,x′)⊗A) (7)

1. vec(F (x)) ∈ Rn(m+1) is a vector obtained by stacking the columns of F (x)

2. If not available, the derivatives may be approximated via Ẋ1:k−1 :=
[x(t2)−x(t1)

t2−t1

>
, . . . ,

x(tk)−x(tk−1)

tk−tk−1

>]> provided
that the inter-triggering times {τk} are sufficiently small.
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The above parameterization is efficient because B0(x,x′) ∈ R(m+1)×(m+1) and A ∈ Rn×n and its
structure is preserved in the posterior distribution as we show next.

Consider the training set (X1:k,U1:k, Ẋ1:k) and a query test point x∗. The train and test data are
jointly Gaussian:

ẋ1
...

ẋk
vec(F (x∗))

 ∼ N



M0(x1)u1
...

M0(xk)uk
vec(M0(x∗))

 ,


u>1 B0(x1,x1)u1 · · · u>1 B0(x1,xk)uk u>1 B0(x1,x∗)
...

. . .
...

...
u>k B0(xk,x1)u1 · · · u>k B0(xk,xk)uk u>k B0(xk,x∗)

B0(x∗,x1)u1 · · · B0(x∗,xk)uk B0(x∗,x∗)

⊗A

.
To simplify notation, let B0(X1:k,X1:k) ∈ Rk(m+1)×k(m+1) be a matrix with elements
[B0(X1:k,X1:k)]ij := B0(xi,xj) and define M1:k :=

[
M0(x1) · · · M0(xk)

]
∈ Rn×k(m+1)

and U1:k := diag(u1, . . . ,uk) ∈ Rk(m+1)×k. Applying a Schur complement, we can derive
the posterior distribution of vec(F (x∗)) conditioned on (X1:k,U1:k, Ẋ1:k) as a Gaussian Process
GP(vec(Mk(x∗)),Bk(x∗,x

′
∗)⊗A) with parameters:

Mk(x∗) := M0(x∗) +
(
Ẋ1:k −M1:kU1:k

)(
U>1:kB0(X1:k,X1:k)U1:k

)−1
U>1:kB0(X1:k,x∗)

Bk(x∗,x
′
∗) := B0(x∗,x

′
∗) + B0(x∗,X1:k)U1:k

(
U>1:kB0(X1:k,X1:k)U1:k

)−1
U>1:kB0(X1:k,x

′
∗)

Details are provided in Appendix C.1.2.

F (x∗)u∗ = f(x∗) + g(x∗)u∗ ∼ GP(Mk(x∗)u∗,u
>
∗ Bk(x∗,x

′
∗)u
′
∗ ⊗A). (8)

5. Self-triggered Control with Probabilistic Safety Constraints

Sec. 4 addressed Problem 1 by proposing a Gaussian Process inference algorithm for nonlinear
control-affine systems. Now, we consider Problem (2). As discussed in Sec. 2.1 if f and g are locally
Lipschitz, then system (1) has a unique solution for any x(0) for all time t in I(x(0)). We assume
the sample paths of the GP used to model the dynamics (1) are locally Lipschitz with high probability.
Similar smoothness assumption has been made previously in Srinivas et al. (2009). In detail, we
assume that for any Lk > 0, and triggering time tk, there exists a constant bk > 0, such that the event

sups∈[0,τk) ‖f(x(tk + s)) + g(x(tk + s))uk − f(xk)− g(xk)uk‖ ≤ Lk‖x(tk + s)− xk‖, (9)

occurs at least with probability:

qk := 1− e−bkLk . (10)

This assumption is valid for a large class of GPs, e.g., those with stationary kernels that are four times
differentiable, such as squared exponential and some Matérn kernels (Ghosal et al., 2006; Shekhar
et al., 2018). However, it may not hold for GPs with highly erratic sample paths.

The posterior of F (x)u in (8) induces a distribution over CBC(x,u). To ensure that safety in the
sense of (5) is preserved over a period of time [tk, tk + τk), we enforce a tighter constraint at time
tk and determine the time τk for which it remains valid. In detail, we solve a chance-constrained
version of (4) at time tk,

min
uk

u>k Quk s.t. P(CBC(xk,uk) ≥ ζ|xk,uk) ≥ p̃k, (11)
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where p̃k = pk/qk. As mentioned in Problem (2), we use a zero-order hold (ZOH) control mechanism
in inter-triggering time, i.e., u(t) ≡ uk for t ∈ [tk, tk + τk). The choice of ζ and its effect on τk is
discussed next.

Lemma 2 Consider the dynamics in (1) with posterior distribution in (8). Given xk and uk,
CBCk := CBC(xk,uk) is a Gaussian random variable with the following parameters:

E[CBCk] = ∇xh(xk)
>Mk(xk)uk + α(h(xk)), (12)

Var[CBCk] = u>k Bk(xk,xk)uk∇xh(xk)
>A∇xh(xk) (13)

Using Lemma 12, we can rewrite the safety constraint as

P(CBCk ≥ ζ|xk,uk) = 1− Φ

(
ζ − E[CBCk]√

Var[CBCk]

)
≥ p̃k, (14)

where Φ(·) is the cumulative distribution function of the standard Gaussian. Note that if the
control input is chosen so that ζ − E[CBCk] < 0, as the posterior variance of CBCk tends to zero,
the probability P(CBCk ≥ ζ|xk,uk) tends to one. Namely, as the uncertainty about the system
dynamics tends to zero, our results reduce to the setting of Sec. 2.1, and safety can be ensured with
probability one. Noting that Φ−1(1− p̃k) =

√
2erf−1(1− 2p̃k), ζ needs to satisfy:

0 < ζ ≤ E[CBCk] +
√

2 Var[CBCk] erf−1(1− 2p̃k). (15)

The program (11) provides a probabilistic safety constraints at the triggering times {tk}k∈N.
Next, we will extend our analysis to inter-triggering times {τk}. We continue by re-writing the
Proposition 1 of (Yang et al., 2019) for our setup.

Proposition 1 Consider the system in (1) with zero-order hold control in inter-triggering times. If
the event (9) occurs at the kth triggering time, then for all s ∈ [0, τk) we have

‖x(tk + s)− xk‖ ≤ rk(s) :=
1

Lk
‖ẋk‖

(
eLks − 1

)
. (16)

Recall from Sec. 2.1 that h is a continuously differentiable function. Thus using Proposition 1, we
notice for any inter-triggering time τk, there exist a constant χk > 0 such that

sup
s∈[0,τk)

‖∇h(x(tk + s))‖ ≤ χk. (17)

This is used in the next theorem which concerns Problem 2.

Theorem 3 Consider the system in (1) with safe set C. Assume the program (11) has a solution
at triggering time tk, event (9) occurs at least with probability qk in (10), ‖ẋk‖ 6= 0, and for all
s ∈ [0, τk), α ◦ h satisfies the following Lipschitz property

|α ◦ h(x(tk + s))− α ◦ h(xk)| ≤ Lα◦h‖x(tk + s)− xk‖. (18)

Then (5) is valid for pk = p̃kqk, and τk ≤ 1
Lk

ln
(

1 + Lkζ
(χkLk+Lα◦h)‖ẋk‖

)
, where χk is given in (17).

Remark 4 Assuming ‖ẋ(tk)‖ 6= 0 in Theorem (3) is not restricting our results. Since, if the state
of the system is safe and it does not change it remains safe.
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6. Extension to Higher Relative-degree Systems

Next, we extend the probabilistic safety constraint formulation for systems with arbitrary relative de-
gree, using an exponential control barrier function (ECBF) (Nguyen and Sreenath, 2016a; Ames et al.,
2019). Let r ≥ 1 be the relative degree of h(x), that is, LgL(r−1)

f h(x) 6= 0 and LgL(k−1)
f h(x) = 0,

∀k ∈ {1, . . . , r − 2}. Define traverse dynamics with traverse vector η(x),

η̇(x) = Fη(x) + Gu, h(x) = Cη(x) (19)

where C = [1, 0, . . . , 0]> ∈ Rr. Also, η(x), F , and G are defined in Appendix A.

Definition 3 A function h ∈ Cr(D,R) is an exponential control barrier function (ECBF) for the
system in (1) if there exists a row vector Kα ∈ Rr such that the rth order condition CBC(r)(x,u) :=

L(r)
f h(x) + LgL(r−1)

f h(x)u +Kαη(x) satisfies:

sup
u

CBC(r)(x,u) ≥ 0, ∀x ∈ D, (20)

which results in h(x(t)) ≥ Cη(x0)e(F−GKα)t ≥ 0, whenever h(x0) ≥ 0.

If Kα is chosen appropriately (see Appendix B.2), a control policy u = π(x) that ensures CBC(r) ≥
0, renders the dynamics (1) safe with respect to set C. Thus, as in (11), we are interested in solving

min
uk

u>k Quk s.t. P(CBC(r)
k ≥ ζ|xk,uk) ≥ p̃k. (21)

While we explicitly characterised the distribution of CBCk for relarive degree one in Lemma 2,
finding the distribution of CBC(r)

k for arbitrary r may be a cumbersome task. Instead, a concentration
bound can be used to rewrite the chance constraint in terms of moments of CBC(r)

k . In particular,
using Cantelli’s inequality, for any scalar λ < 0, we have

P
(

CBC(r)
k ≥ E[CBC(r)

k ] + λ|xk,uk
)
≥ 1− Var[CBC(r)

k ]

Var[CBC(r)
k ] + λ2

. (22)

If E[CBC(r)
k ] ≥ −λ we can let ζ = E[CBC(r)

k ] + λ. Thus, using (22), the solution of the program,

min
u>k

u>k Quk s.t. E[CBC(r)
k ] ≥ −λ and

Var[CBC(r)
k ]

Var[CBC(r)
k ] + λ2

≤ 1− p̃k, (23)

is also a solution to (21). Solving the program (23) requires the knowledge of the mean and variance
of CBC(r)

k . In general, Monte Carlo sampling could be used to estimate this quantities. If ζ = 0, the
chance constraint in (23) can be simplified to

E[CBC(r)
k ] ≥

√
p̃k

1− p̃k
Var[CBC(r)

k ], (24)

which means the standard deviation of CBC(r)
k should be smaller than the mean by a factor of√

p̃k/(1− p̃k). Thm. 10 in the appendix provides the expressions for mean and variance of CBC(2)
k .

7
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Figure 1: Top left: Pendulum simulation (left) with an unsafe (red) region. Top right: The pendulum
trajectory (middle) resulting from the application of safe control inputs (right) is shown. Bottom row:Learned
vs true pendulum dynamics using matrix variate Gaussian Process regression

7. Simulations

We evaluate the proposed approach on a pendulum with mass m and length l with state x = [θ, ω]
and control-affine dynamics f(x) = [ω,−g

l sin(θ)] and g(x) = [0, 1
ml ] as depicted in Fig 1. A safe

set is chosen as the complement of a radial region [θc −∆col, θc + ∆col] that needs to be avoided.
The controller knows a priori that the system is control-affine with relative degree two, but it is
not aware of f and g. The control barrier function is thus h(x) = cos(∆col) − cos(θ − θc). We
formulate a quadratically constrained quadratic program as in (23) for r = 2. We specify a task
requiring the pendulum to track a reference control signal u0 and specify the optimization objective as
(uk − u0)>Q(uk − u0). We initialize the system with parameters θ0 = 75◦, ω0 = −0.01, τ = 0.01,
m = 1, g = 10, l = 1, θc = 45, ∆col = 22.5. The system dynamics are approximated accurately
(see Fig. 1) while the system remains in the safe region (see Fig. 1). An ε-greedy exploration strategy
is used to sample u0 ∈ [−20, 20]. We use an exponentially decreasing ε-greedy scheme going from 1
to 0.01 in 100 steps. Negative control inputs get rejected by the CBF-based constraint, while positive
inputs allow the pendulum to bounce back from the unsafe region.

8. Conclusion

Allowing artificial systems to safely adapt their own models during online operation will have
significant implications for their successful use in unstructured, changing real-world environments.
This paper developed a Bayesian inference approach to approximate system dynamics and their
uncertainty from online observations. The posterior distribution over the dynamics may be used
to enforce probabilistic constraints that guarantee safe online operation with high probability. Our
results offer a promising approach for controlling complex systems in challenging environments.
Future work will focus on extending the self-triggering time analysis to systems with higher relative
degree and on applications of the proposed approach to real robot systems.
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