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Introduction

Fiber reinforced composites are used in an increasing number of structural applications, this due to their
higher strength and stiffness to weight ratios as compared to monolithic structural materials. However,
whereas fiber reinforced composites have high tensile strengths along the fiber directions, only about
50-60% of their tensile strengths can be achieved under compression {1, 2]. It is, therefore, important to
understand the failure/damage modes under compressive loading.

The failure modes for unidirectional fiber composites under compressive loading display four mecha-
nisms (Jelf and Fleck [3]): i) fiber buckling with elastic matrix deformation; ii) fiber crushing by yielding
of the fiber or fiber splitting; iii) failure of the matrix; and iv) kink band formation. Among the four fail-
ure modes, kink band formation is believed to be the more important failure mode for modern structural
composite materials, especially for those with ductile matrices (see e.g. Jelf and Fleck [3] for a detailed
discussion).

1t is fairly well established that kink band formation, in particular, the compressive strength of the
composite, is controlled by fiber misalignment and the shear yield strength of the matrix (see e.g. Argon
[4], Budiansky [5], Jelf and Fleck [3], Budiansky and Fleck [1], Kyriakides, Arseculeratne, Perry and
Liechti [2], Moran, Liu and Shih [6]). The study of kink band formation in fiber composites has received
a great deal of attention in the past 15 years. However, there are two important issues regarding the critical
conditions for kink band formation that require further understanding:

1) It is experimentally verified that, under uniaxial compression, critical loading stress o¢c can be
expressed as

Ty TY
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where ty is the critical resolved shear stress along fiber direction, and @ is an effective imperfection

tilt angle. Equation (1), however, is actually a yield criterion for the composite with an effective

imperfection tilt angle ¢. The question is therefore: why can the composite yield stress be used as
the critical loading stress for kink band formation.

' 6))

2) While a good criterion, viz. equation (1), has been experimentally established for the compressive
strength of fiber composites, a more accurate method to predict kink band angles is still missing.
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The purpose of this study was, therefore, to establish a general constitutive framework, and to address
the aforementioned fundamental issues regarding kink band formation.

The Constitutive Theory

As pointed out by others [4, 5, 1], shear yielding along the fiber directions is the major deformation
mode for unidirectional fiber composites, especially under compressive loading. Recently, Moran, Liu
and Shih [6] used a “homogenized” simple slip (shear) model to describe the plastic deformation in fiber
composites. We use the same concept in developing our constitutive framework. Figure 1(a) shows that,
the dominating plastic deformation mode in unidirectional fiber composites is shear deformation along
fiber direction; Figure 1(b) shows the deformation mode for a single crystal undergoing single slip, where
shear (slip) deformation along the slip direction is the only plastic deformation mode. Both deformation
modes in Figure 1 are analogous to the co-operative “deformation” of a deck of cards. Since the fiber
spacing is far smaller than the structure size, the composite material can be treated as “homogenized”.
The plastic deformation mode in our homogenized fiber composite model is exactly the same as that in
a single crystal undergoing single slip as noted in Figure 1, as long as the fibers are identified with the
crystal’s lattice slip planes. Similarly, the elastic properties of the fiber composite are treated as composite
aggregate values instead of separated fiber and matrix values.

The constitutive law can be written in a form similar to that developed by Hill and Rice [7], Asaro
and Rice [8] and Asaro [9], which is based on the work of Taylor [10]. The constitutive framework has
been applied and extended to study localized deformation modes in single crystals, e.g. Peirce, Asaro and
Needleman [11, 12] and more recently Dao and Asaro [13, 14, 15, 16].

Similar to the slip system in single crystals, we first introduce the shearing along the fiber direction
as the composite slip system, which is defined by orthogonal unit vectors s and m, where s is the current
fiber (slip) direction and m is normal to the slip plane. The total deformation rate, D, and spin rate, £, are
composed by two parts. The first part is the plastic part, where the material deforms by shearing along the
slip system (fiber direction) of the composite; the plastic deformation rate D and the plastic spin rate
Q7P are given by

D’ =Py and QF =Wy, 2
respectively, where y is the shearing rate of the slip system, and
1 1
P= -2-(sm +ms) and W= E(sm — ms) . 3)

The second part is the elastic plus the rigid body rotation part, where material deforms by elastic defor-
mation and the rigid body rotations; this part of deformation rate and spin rate are denoted by D* and Q*
respectively. Thus we can add the two parts together to obtain

D=D*+Py and Q=0*+Wy. (@)
s fiber direction
m normal to the fiber direction
m m
Undeformed Deformed
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(a) Unidirectional fiber composite (b) Single crystal under the single slip deformation mode

Figure 1. (a) The dominating plastic deformation mode in an unidirectional fiber composite is shear deformation along fiber
direction, the deformation is assumed to be plane strain for simplicity; (b) the deformation mode for a single crystal undergoing
single slip, where shear (slip) deformation along the slip direction is the only plastic deformation mode. Both deformation
modes in the figure are analogous to the co-operative “deformation” of a deck of cards.
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The material yield criterion is taken to be the Schmid rule, i.e.
T=m-0-S=71y, (5)

where 7 is the current value of the resolved shear stress, o is the Cauchy stress tensor, and 7y is the current
shear resistance. If the slip system is to remain active, taking derivatives of both sides of (5) with respect
to time ¢, we must have
t=hy, (6)

where k is the shear strain hardening moduli. Following the procedure found in Asaro and Rice {8] and
Asaro [9], we have the final constitutive equation

v 1

D)y={L—-—«—(L:P)P:L); :D, 7
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where L is the elastic moduli, and P=P+L-!: (W.0 — o - W).

Critical Conditions of Kink Band Formation

For materials described by idealized rate-independent constitutive laws Hill [17] has given a general
theory of bifurcation of a homogeneous elastic-plastic flow field into bands of localized deformation. For
this to occur there is first the kinematical restriction that for localization in a thin planar band with unit
no;rnal n (see Figure 2) the velocity gradient field inside the band dv/dx can differ from that outside,
av'/ox, as

v avo

— - — =gn. 8

dx ox gn ®
In addition, there is the continuing equilibrium requirement that

n-6-n-¢°=0 9)

at incipient localization where & is the stress rate inside the band and &9 that outside.

Constitutive law (7) along with the conditions for localization (8) and (9) can be solved to obtain
critical conditions for the onset of localization. Following the procedure in Asaro and Rice [8], the critical
condition of localization on a plane of normal n can be expressed as

~h—P:L:P+@®:L-n)-I+@-L-n)""-A]""--L-m)"'-(m-L:P)=0, (100)

Kink baod loading axis

angle‘\>e/.‘;\<':/ tilt angle
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Figure 2. The geometry of a unidirection fiber composite with a kink band. Angle 9 is the angle between the kink band normal
I and the fiber direction S, angle 7 is the loading axis tilt angle, and angle 7 is the local imperfection tilt angle.
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where ;
=5{(n-L-n)I—a-—(n-a)n—n(a-n)} (108)

with I the second order unit tensor.

Solution for Kink Band

As discussed by Asaro and Rice [8], two types of solutions can be found, i.e. shear bands that are almost
parallel to the active slip planes and shear bands that are almost perpendicular to the active slip planes.
Here we will be focusing on kink band formation. We seek solutions for kink bands, or solutions with the
normal to the kink band n close to the slip direction s, i.e. n = s+ ¢, where || is assumed to be relatively
small compared to unity.

With no loss in generality, we set the reference laboratory axes to be aligned with the crystal axes,
ie. X; = s and X3 = m. Figure 2 shows the geometry within the plane defined by s and m. The angle
between n and s is 8. Therefore we have

s=((l)).m=((1)),andn=<§?:z). a1

There are two types of important imperfections that can induce kinking (see Figure 2): i) the loading
axis tilt angle n, and ii) the local imperfection tilt angle n’. Both n and ' are taken to be quite small.

Now take that the compression axis is along the vertical axis X/, then the kinking condition (10)
becomes

C2
—h —(Cy2 — -&—lg)sinze —ocos2n =0, (12)
11

where C11 = L1111, C22 = L2, Ciz2 = L1122 = L2211, 1 is the loading axis tilt angle and o is the
uniaxial compression stress along the vertical X axis (not X; axis). Note that o is negative when the
composite is under compression.

Results

Case Studies and the Calculations of Kink Band Angle

Accurate predictions for kink band angles have been difficult to obtain within the available theories in the
literature (see e.g. Budiansky and Fleck [1]). Here we will apply our model to predict kink band angles,
and compare theoretical results with available experimental data.

Write h,, and 7} as the plastic shear strain hardening moduli and the shear yielding stress of the
matrix respectively, for typical structural fiber composites with ductile matrix, we have h, < O(ty')
[2, 6, 21]. With composite shear strain hardening & = hn, /(1 — Vy) and composite shear resistance
ty & 13" /(1 — Vy), where V; is the volume percentage of the fibers, we obtain & < O(ty). At the initial
yielding, the composite yield stress oy = —1y /¢ (¢ is usually less than 5%), so that ty < O(0.1|oy|).

Therefore, we have
h < O0.1]oy]).

Now, when 7 is small (about 2-4°), our kinking condition (12) can be used to predict kink band angles,
ie.
- — h -0
6 = xarcsin N tarcsin g
Cn - C{/Cn C— C{/Cn

The results of the three case studies are summarized in Table 1, where the S independent elastic constants
in fiber composites are denoted as axial Young’s modulus E 4, transverse Young’s modulus Er, axial
shear modulus G 4, major Poisson’s ratio v4, and minor Poisson’s ratio vy. We have found, as shown in

(13)
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TABLE 1
Summary of the Three Case Studies
Case #1 Case #2 Case #3
AS4/PEEK | Carbon/PEEK | Graphite/Epoxy
E4 (GPa) *128 1220 206.90
ET (GPa) *10.57 7 5.17
Gt (GPa) *5.79 t4 $2.59
VA *0.3 t0.2 0.25
vr *0.3 t0.25 ¥0.25
C11 (GPa) 130.78 220.75 207.765
C22 (GPa) 1178 7.483 5.529
C12 (GPa) 4.63 1.873 1731
ac (MPa) *1000 (Ring) — %173 (Initiation)
Kink Angle (Experimental) *150 — *ge
Kink Angle (Theory®) 16.1° — 10.2°
oc (MPa) *1100 (Rod) | T1000 (Final) | ¥202 (Final)
Kink Angle (Experimental) *16.5° 220 120
Kink Angle (Theory”) 17.9° 21.5° 11.0°

* Data from Kyriakides ez al. [2).

¥ Data from Moran et a!. [6] and Liu and Shih [18}.
% Data from Waas et al, [19].

% Calculated using equation (13).

Table 1, that the critical kinking condition (12) or (13) is in excellent agreement with experimental data
for fiber reinforced polymeric (ductile) matrix composites (within 2° for all three cases studied).

Critical Loading Stress o¢ and Yield Stress oy

When the only non-zero stress component in (X}, X}) coordinate system is 011 = o, the the yield criterion
becomes Ty
oy = ——, (14)
where oy is the yield stress of the composite and ¢ = 5 + n’ is the total imperfection tilt angle. It is
experimentally verified that, when the compressive stress reaches the yield stress oy obtained by (14), the
kink band forms (see e.g. Budiansky [5], Jelf and Fleck [3], Kyriakides, Arseculeratne, Perry and Liechti
{2], and Moran, Liu and Shih [6]).
Why can the composite yield stress be used as the critical loading stress for kink band formation?
First of all, it shall be stressed that, for the critical kinking condition (12) or (13) to be valid, the
composite material must be in the plastic range. In another words, the initial yielding stress is the earliest
possible kinking stress. With this in mind, we now take a closer look at the critical kinking condition (12).
Note that usually for fiber reinforced polymeric composites Er < E 4, we have

VAET
. 15
T—wr @1s)

Cu=Ey, Co=Er, and Ci2 &

For the convenience, 7 is assumed to be very small, and (15) is substituted into (12). After rearrangement,
we reduce (12) to a simple form, viz.

sin?f = —o—h -, (16)
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Note that for typical structural fiber composites with ductile matrix Er > O(10|o|) (see Table 1),
2
[1 - (—"L) ] = O(1), and h < O(0.1|c) at the initial yielding, we have

1-vr

—oy —h
er[1- ()]

for compressive loading (oy < 0). This means that there are always valid solutions for the kinking
condition (16) or (12) at the initial yielding. Therefore, for a ductile matrix fiber composite under uniaxial
compression, it is concluded that the critical kinking stress (o¢) should be the same as the initial yield
stress (oy), i.e.

0< <0(0.1),

oc =o0oy. 17)

This provides some justification for why the yield criterion can be used to predict the critical stress for
kink band formation.

Discussion

For a polymeric matrix fiber reinforced composite, a typical plot of shear stress vs. shear strain along the
fiber direction is shown in Figure 3(a). An often used simple model for the shear stress vs. shear strain
response is shown in Figure 3(b). A distinctive locking stage will be achieved after certain shear strain
yu with the hardening being represented by H. Usually yy > 0.5. As discussed by Moran et al. [6], the
deformation of y > yg (with hardening H) may be related to the kink band broadening as well as the
load for steady state kinking.

Around the ‘yield point’ (see enlarged part shown in Figure 3(a)), t/3y drops from some number of
order G (about 0.4E7) to a fairly low value (h < |oy|). From (13), it is clear that, as hardening (h > 0)
decreases, the kink angle 6 increases. It is therefore expected that, a kink band may initiate at an angle
much shallower than the fully developed kink band angle, while the compressive stress may be only a
little less than the peak (critical) stress. This phenomenon was also experimentally observed by Waas et
al. [19] and Moran et al. [6].

The bifurcation analysis presented in this paper has predicted very good results for the kink band angles
as compared with experiments. Noting that the experimental measured kink band angles are measured
well after the bifurcation point, a possible explanation is that there is little additional rotation after the
load drop. A full boundary value solution may be needed to find out underlying mechanisms, which will
be dealt with in later efforts.

hl>h2>h3

| A4

Y Yu Y
(a) (o

Figure 3. (a) A typical shear stress vs. shear strain curve along the fiber direction for a polymeric matric fiber reinforced
composite. (b) An often used simple model for the shear stress vs. shear strain response for the composite material.
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Conclusions

An elasto-plastic, finite strain, simple slip model is applied to study the critical conditions (i.e. the critical
load and the kink band angle) for kink band formation for fiber composites under compressive loading.
Orientation dependent mechanical behavior of fiber composites is modeled using simple slip along fiber
direction, and elastic anisotropy of fiber composite is rigorously accounted for. To summarize the results
presented in this paper, it is concluded that:

1) A closed form critical condition of the kink band formation for ductile matrix fiber composite, viz.
equation (12), is derived.

2) The kink band angle can be computed using (12) or (13). Excellent agreement is found between
theoretical predictions and available experiments (within 2° for all three cases studied here).

3) Within our model framework, it is demonstrated that, for ductile matrix fiber composites under
uniaxial compression, the critical loading stress o¢ should be the same as the composite yielding
stress oy, i.e.

oc =oy .

This explains the experimentally verified fact that, the yield criterion (e.g. the resolved shear stress
along fiber direction reaches a critical value) can be used to obtain the critical stress o¢ for kink
band formation.
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