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The elastoviscoplastic single crystal constitutive model incorporating non-Schmid effects developed 
by Dao and Asaro (Mater. Sci. Eng. A, 1993, vol. 170, pp. 143-60) is introduced into Asaro and 
Needleman's (Acta Metall., 1985, vol. 33, pp. 923-53) Taylor-like polycrystal model as well as 
Harren and Asaro's (J. Mech. Phys. Solids, 1989, vol. 37, pp. 191-232) finite element polycrystal 
model. The single crystal non-Schmid effects, strain hardening, latent hardening, and rate sensitivity, 
are all described on the individual slip system level, while polycrystal mechanical properties on 
macroscale are predicted. In general, it is found that non-Schmid effects can have important influ- 
ences on the "constant offset plastic strain yield surfaces," stress-strain behavior, texture develop- 
ment, and shear band formation. Finite element calculations show that with moderate non-Schmid 
effects, localized deformation within a polycrystal aggregate tends to initiate earlier and form sharper 
and more intense shear bands. Heavy shear banding is found to produce less pronounced textures, 
which is consistent with existing experimental evidence on Ni3A1. Examples with Ni3A1 demonstrate 
that the kind of non-Schmid effects existing in Ni3A1 can increase the generalized Taylor factor to 
values much higher than 3.06, raise the polycrystal strain hardening rate much higher than that which 
would be obtained using Schmid's rule, and influence the deformation texture. 

I. INTRODUCTION 

FOR single crystals, Schmid's rule states that yielding 
occurs on a slip system when the resolved shear stress alone 
reaches a critical value. While the Schmid rule is often a 
good approximation for simple metals, deviations from it 
are inevitable. Such deviations are here termed non-Schmid 
effects. For example, significant deviations from Schmid's 
rule have been reported for Zn single crystals, t4] for inter- 
metallics such as Ni3Ga,tSl Ni3A1, [6] and Ti3A1 (DOl9) [7] sin- 
gle crystals, and for quasisingle crystalline high density 
polyethylene t8j polymers. 

The prevailing theory of single crystal plasticity is based 
on the pioneering work of Taylor [9,t~ and the more recent 
work of Hill and Rice.till The influence of non-Schmid ef- 
fects on ductile single crystals was first rigorously formu- 
lated within a rate-independent framework by Asaro and 
Rice.V2] Asaro and Rice recognized that under a single slip 
mode, non-Schmid effects are essential to initiate shear 
bands for crystals undergoing positive strain hardening. Us- 
ing a double symmetric slip model and within the frame- 
work of Schmid's rule, Asaro t131 pointed out that localized 
shearing is possible for crystals undergoing multiple slip 
with positive strain hardening. Peirce et al. [14] later extended 
this formulation into a finite strain elastoviscoplastic frame- 
work. Recently, Dao and Asaro m developed a finite strain 
elastoviscoplastic multiple slip theory incorporating non- 
Sehmid effects, based on the aforementioned earlier works. 
Qin and Bassani, t15,~67 within a rate-independent framework, 
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also developed a multiple slip theory using non-Schmid ef- 
fects based on the earlier work of Asaro and Rice. 

Parallel to the development of single crystal plasticity 
theory, polycrystalline averaging schemes have advanced 
significantly since the early work of Taylor.tg.~0] A few im- 
portant advances along this line are the following. Hill[~7] 
proposed a self-consistent small-strain elastoplastic rate-in- 
dependent model; Hutchinson t~sj applied Hill's model and 
calculated a stress-strain response within the context of 
small strains for single phase fcc polycrystals; Iwakuma and 
Nemat-Nassert~91 and Nemat-Nasser and Obatat20] modified 
Hill's framework for finite strains and two-dimensional (2- 
D) calculations were performed; Asaro and Needlemant2J 
developed a finite-strain elastoviscoplastic Taylor-like 
model where full three-dimensional (3-D) calculations were 
made; Molinari et aLt2q used a self-consistent scheme to 
calculate the viscoplastic response of polycrystals in three 
dimensions; Harren [22,231 used the elastoviscoplastic self- 
consistent framework of Nemat-Nasser and Obata and ex- 
tended it into three dimensions, where results were found 
similar to those obtained by Asaro and Needleman's tzl Tay- 
lor-like model; and, recently, 2-D and 3-D finite element 
calculations were carried out by Harren and Asaro t31 and 
later by Mathur and Dawsont251 and Kalidindi et aL, t24] re- 
spectively. In general, Taylor-like models predict sharper 
textures than the self-consistent and finite element mod- 
els, [3'21'24] although all three types of models give fairly good 
predictions of texture and stress-strain response as com- 
pared against experiments, at least for fcc polycrys- 
tals. t2,21,241 Nevertheless, to the best of our knowledge, the 
previous efforts of the crystal plasticity in polycrystals to 
date have been based on the Schmid rule. 

It is clear that non-Schmid effects can affect the single 
crystal's mechanical behavior, i.e., flow stress t4,5,26] and crit- 
ical conditions of localization.tl.~:.ZTJ How a polycrystal ag- 
gregate's mechanical behavior is influenced by the 
non-Schmid effects of its constituent single crystals is still 
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an outstanding question. The objective of this study, there- 
fore, has been to explore the general influences of non- 
Schmid effects on the initial yielding, stress-strain behavior, 
texture development, and localized deformation in poly- 
crystals. 

The outline of this article is as follows. In Section II-A, 
the single crystal constitutive theory is presented. Section 
II-B-1 briefly describes the 3-D Taylor-like polycrystal 
model used, and Section II-B-2 introduces an idealized fi- 
nite element polycrystal model. Section III-A reviews the 
non-Schmid factors in some simple metals as well as in- 
termetallics. Sections II-B through III-E describe the gen- 
eral influences of non-Schmid effects on initial yielding, 
stress-strain behavior, texture development, and localized 
deformation, respectively. Section III-F provides several 
applications toward polycrystalline Ni~A1. Finally, a dis- 
cussion and conclusions are given in Section IV. 

II. T H E O R Y  

A. Single Crystal Constitutive Model 

The constitutive theory used in the analyses is a rate- 
dependent crystal plasticity theory incorporating non- 
Schmid effects described by Dao and Asar021 The theory 
is developed from earlier versions by Asaro and Rice, tt2J 
Asaro, ~3~ Peirce et aL, [14,28] and most recently McHugh et 
aL t291 The deformation of a single crystal from the reference 
configuration to the current configuration can be decom- 
posed into plastic shearing, thermal deformation due to 
temperature change, elastic stretching, and lattice rotation. 
The deformation gradient, F, is thus decomposed as 

F = F * ' F  ~  e [1] 

where F P is the plastic deformation gradient which repre- 
sents the shear flow of crystal through the undeformed lat- 
tice along various slip systems, F ~ is the thermal defor- 
mation gradient which represents the deformation of the 
crystal due to temperature change, and F* is the elastic 
deformation gradient which represents the elastic stretching 
and rigid body rotation of the crystal. The velocity gradient 
of the single crystal can be defined as 

L = 1~. F -1 [21 

and when the decomposition [1] is used, it becomes 

L = 1~* �9 F *-1 + F* "1 ~~ F e-I �9 F *-1 

+ F*" F ~ ~e" Fp-t .  F ~-' �9 F*-~ [3] 

The velocity gradients of plastic shear flow can be writ- 
ten as 

1 ~P" F e-1 = 3,~s~mr [4] 

where ~ is the shear rate on the c~ slip system of which 
the c~ slip system is defined by its slip direction s~ and its 
slip plane normal m~. The velocity gradient due to thermal 
deformation can be written as 

1~ ~ F ~-~ = b a  [5] 

where 0 is the rate of change of temperature and ~t is the 

thermal expansion tensor which is, for example, diagonal 
for cubic crystals if the reference Cartesian base vectors 
align with the cubic crystal axes. 

To account for the non-Schmid effects, the shear rate on 
the slip system o~, ~ ,  in Eq. [4] is taken to be in the fol- 
lowing form: 

l /m 

y~ =y0 sgn {r,} [ I r(--~ I [6] 
I.  ~g~-) 

where % is the current value of the resolved shear stress, 
is the loading parameter for slip system a defined fur- 

ther subsequently, g~ > 0 is the current value of the slip 
resistance, m is the material rate sensitivity exponent (which 
will be taken the same for all slip systems), and q oiS a 
reference shear rate. 

The loading parameter to the slip system a, ~ ,  is given 
a s  

r ~  = ~-~ + r/~ : ~" = m * .  ~ "  s*  + rl~ : ~" [7] 

where 

s* = F* �9 F ~  s~; m *  = m . "  F ~ �9 F *-1,  [8] 
z * =  s * •  m * ; ' r = J o "  

in which J = det{F} is the Jacobian, ~ is the Kirchhoff 
stress tensor, r is the Cauchy stress tensor, s* is along the 
a slip direction in the current configuration, m* is normal 
to the ot slip plane, z* is normal to both s* and m*, and 
r L is the tensor of non-Schmid effects for slip system a 
which, when aligned with s*, m*, and z*, takes the simple 
form 

0 
= r/,=j [9] �9 / r/re,, 

\n,zr /m~ r/z~ 

The slip resistance g~ is obtained by the path dependent 
integration of the evolution equation 

k~= hop(rAIZ/~l + g~b, %= f'oXlZ/~ldt [10] 
o1 

where h~ is a matrix of hardening moduli, g~, is the rate of 
change of slip resistance with respect to temperature alone, 
and % is the accumulated sum of slips. The initial condi- 
tions for this evolution are given by g~(% = 0, 0 = 00) = 
g~ where 00 is a reference temperature. The specific 
form of the hardening matrix is taken as 

h,a = qh + (1 - q) ht~a [11] 

where q sets the level of latent hardening to the self-hard- 
ening of the slip system and h is the self-hardening rate. 
Other forms of the latent hardening relations may be used, 
in particular, those recently developed by Wu et al. ta~ and 
Bassani and Wu. [3~1 

The single crystal's constitutive description is completed 
with a specification of its elasticity. Here, we consider the 
elastic anisotropy of the single crystal and assume the fol- 
lowing form: 

S* = K :  1~* [12] 
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Fig. 1--2-D single crystal slip geometry used in the idealized polycrystal 
model. The three slip systems are arranged in an equilateral triangle, and 
the reference laboratory base vectors e~ are at an angle ~ with respect to 
reference crystal base vectors a,. 

where S* = F *-~ �9 r �9 F *-r  is the lattice-based second 
Piola-Kirchhoff stress, E* = 1/2 (F * r .  F* - I) is the 
Green strain of  the lattice, and I is the second-order identity 
tensor. The final constitutive theory is then expressed in 
terms of the second Piola-Kirchhoff stress, S = F -1 �9 r  
F r, and the Green strain, E = 1/2(F r �9 F - I). Straight- 
forward manipulation of the preceding equations gives the 
rate form of  the governing constitutive equation, viz. 

= L "  !~ - y ~ X .  - 0 Y  [131 
where 

^ ^ ^ ^ 

L~j,. = F ~  j Fh j Kklpq F ~  ~ Ffq ~ 

= F o �9 F e 

X a  = F 1o { K "  A~ + 2H.}^. ~--r 
Y = ~'-~" {K" B + 2Q} �9 F - r  
A~ = sym {F *r .  F* �9 F e. {s. m(.~} �9 F ~ [14] 

H~ = sym {F a- {s~ m~)} �9 F ~ �9 s*} 
B = sym {F *r-  F* �9 r162 Q = sym {ol" S*} 

where sym {.} means the symmetric part of  {.}. The details 
of  the derivation of Eqs. [13] and [14] may be found else- 
where (e.g., D6ve et al.t32~ and McHugh et al.t29~) and are 
omitted here. It is also useful to rewrite the rate form (Eq. 
[13]) in terms of the nominal stress n = F -~ �9 ~- = S �9 F r. 
Substitutingh = S  �9 F r + S .1 ~r into Eq. [13] yields 

where 
^ ^ 

M,jk, = FL' F*b K~bce F d  F*d + S~k 3j, 
R = X  - F r ; G = Y . F  r 

[15] 

[161 

B. Polycrystal  Formulat ion 

1. Taylor-like model  
To predict the global response of  the polycrystal, the 

transition from the microresponse of the individual grains 

to the macroresponse of the polycrystalline aggregate, 
Asaro and Needlemant2] extended the original model of  
Taylor,tg,ml in which the deformation gradient within each 
grain is assumed to be uniform throughout the aggregate, 
to the finite strain elastic-plastic deformation. In this ex- 
tended Taylor-like model, compatibility is satisfied and 
equilibrium holds within each grain, but the intergranular 
equilibrium is usually violated. This simple averaging pro- 
cedure gives the macroscopic average nominal stress, fi, in 
the polycrystal as the volume average of the nominal stress 
in each grain, n: 

= (n> [17] 

where (.) indicates the volume average over the aggregate. 
Note that due to the assumption of homogeneous defor- 
mation, the local deformation gradient is constant for each 
grain (i.e., F = ~'), which indicates that fi andl~ are con- 
jugate variables (i.e., (n:l~> = fi:l~). 

The rate constitutive Eq. [15] can be implemented nu- 
merically via the one-step, explicit rate tangent method of 
Peirce et al. [~41 and has the form 

at  = M t a n .  # t  __titan - -Gtan  [18] 

where M ~", Rtan, andS,an are determined explicitly from the 
state at time t. Taking the volume average over the aggre- 
gate, we obtain 

- F-" -1~ t~ -" [19] n t = I ~  tan : -G~a. 

which is the macroscopic (time-discrete) constitutive equa- 
tion for polycrystal. .A well-posed rate boundary value 
problem in terms of  �9 and F is prescribed for this macro- 
scopic constitutive equation which allows one to solve the 
rest of  the unknown components of 6 and F. Predictions 
from the Taylor-like model of  Asaro and Needleman ~2~ con- 
cerning the initial yield surfaces, stress-strain curves, and 
evolution of textures of  fcc polycrystals have compared 
well against the existing experiments on copper. In the cur- 
rent investigation, this Taylor-like model proposed by 
Asaro and Needleman is employed (with some minor mod- 
ifications) to study the non-Schmid effects on the behavior 
of  polycrystals with fcc type slip systems. Further details 
of the model can be found in Reference 2 and are omitted 
here. 

2. Finite element  model  
The 2-D idealization used here was introduced by Harren 

et aL, t33] Harren and Asaro,t31 and McHugh et aL [29] for fcc 
or bcc polycrystals and their metal matrix composites. The 
2-D single crystal slip geometry is shown in Figure 1. The 
three slip systems are arranged in an equilateral triangle, 
and the reference laboratory base vectors ei are at an angle 

with respect to reference crystal base vectors ai. The slip 
directions in this model geometry, Sl, s2, and s3, represent 
the close packed directions of  an assemblage of close 
packed circular cylinders. Note that in a 2-D model, two 
independent slip systems can accommodate an arbitrary in- 
crement of  plastic strain, whereas in this model, there are 
three independent slip systems so that, in a sense, this 
model resembles the redundancy exhibited by both fcc and 
bcc potycrystals. Thus, we expect that the qualitative be- 
havior predicted by this model polycrystal will be very 
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Fig. 2~(a) Reference geometry of the idealized polycrystal model. For 
each of the 27 grains, the grain number and the grain's initial orientation 
(in degrees) are shown. (b) The finite element mesh used in the polycrystal 
calculations. The initial mesh consists of rectangular crossed-triangle 
quadrilateral elements in a uniform grid 40 rectangles wide by 56 
rectangles high. 

much like simple metals and intermetallics with more than 
five independent slip systems in three dimensions. 

The reference configuration of the polycrystal model is 
shown in Figure 2(a), where the Cartesian base vectors e i 
describe the orientation of the polycrystal's reference con- 
figuration with respect to the laboratory. Each of the 27 
grains indicated in Figure 2(a) is defined by an orthogonal 
transformation a7 = $0.(~O")ej, n = 1, . . . ,  27, where ~0" is 
the angle ~ shown in Figure 1 for the nth grain. Since a 
symmetry operation for each grain is a 60 deg rotation 

about the e 3 axis, a random value between 0 and 60 deg 
was assigned to each grain with respect to e3, except for n 
= 6, 11, 17, and 22; for these grains, ~b = 0 deg, as ex- 
plained next. The model polycrystal shown in Figure 2(a) 
is intended to model a representative group of random ori- 
ented grains in a large aggregate compromising many sim- 
ilar groups. Thus, it is desired to subject this group of grains 
to a plain strain tension or compression mode that would 
display orthotropic symmetry. Therefore, the material faces 
X~ = Ho and )(2 = 0 are prescribed as planes of mirror 
symmetry for the polycrystal model. The complete poly- 
crystal model then is constructed by reflecting the group of 
grains in Figure 2(a) across the plane X~ = H 0 and then 
reflecting the two quadrants so produced across the plane 
X 2 = 0. This explains the choice of t) = 0 deg for the four 
grains, since any other choice would result in misorienta- 
tions across the boundaries of these "half  grains." 

The finite element mesh used in the polycrystal calcu- 
lations consisted initially of rectangular "crossed-triangle" 
quadrilateral elements in a uniform grid 40 rectangles wide 
by 56 rectangles high, which is 8960 constant strain trian- 
gles totally (Figure 2(b)). The initial width to height ratio 
of each quadrilateral element is taken as 0.75. This initial 
ratio is chosen so that the diagonals of the quadrilateral 
elements will be, more or less, aligned with the microscopic 
shear bands that are expected to form, as discussed by Har- 
ren et aL [33] No geometric imperfections were present in the 
initial mesh. The mesh dimensions were chosen to represent 
equiaxed grains. Finally, all of  the grain boundaries in this 
polycrystal model coincide with either an edge or a diag- 
onal of a quadrilateral element, i.e., with an edge of a con- 
stant strain triangle. As discussed by Harren et al., the grain 
boundaries are "continuum grain boundaries." This is a 
continuum theory, and the polycrystal's initial reference 
configuration is assumed to be stress free and without any 
lattice perturbations. In fact, each grain boundary is a line 
across which the initial lattice orientation ~b n has a jump. 

Due to the symmetries of the globally orthotropic defor- 
mation mode, only one-fourth of the complete polycrystal 
structure needs to be analyzed numerically, which is the 
quadrant depicted in Figure 2. For the simple tension or com- 
pression tests, we have the boundary conditions set to be 

h2 (x,, 0) = 0, 

h, (0, & )  = 0, 

/)1 (H0,)(2) =01, 

~l 2 (Xl, Zo) =52, 

i, (x,,  o) = o 

/2 (o, x~) = o 

i2 ( H o , & )  = 0 

i, (X,, Co) = 0 [20] 

Here, fi = h~e~ is the material particle velocity; i = iie i is the 
rate of nominal traction, i.e., ~ = ~I �9 h (N. is the outward 
unit normal to the aggregate boundaries); U.x is the normal 
velocity on the material face X L = H0; and U 2 is the normal 
velocity on the material face X 2 = Lo. Also, the total loads 
on the unit cell (polycrystal aggregate) in )(1 and X 2 direc- 
tions are, respectively, 

s 
PI = tl (11o, X2) dX2 and y, 

P2 = t2 (x,, 4 t  a& [21] o 

The prescription for boundary value problem is completed 
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Table I. Non-Schmid Factors for Some Simple Metals 

Zn* A1-Cu** Steel (Martensitic)* Cross-Slip Model: 

,},~ - -  0.044 - -  0.03 to 0.1 
rlm~ - -  - -  - -  0.005 to 0.03 
~/,, - -  - -  0.018 to 0.025 - -  
r/~ ~0.1 - -  0.018 to 0.025 - -  
r/= - -  - -  0.018 to 0.025 - -  

*Data from Barendreght and Sharpe.t 4j 
**Data from Chang and Asaro. t~41 

*Data from Spitzig et aL t361 
*Theoretical results from Asaro and Rice3 j2J 

by settingi b, = 0 and ((J2/Lo) = h for tension or ((JdLo) = 
-~  for compression, and hence, O, andlbz are unknowns to 
be solved during the course of  the solution of the rate 
boundary value problem. The initial state of  this problem 
corresponds to zero stress and zero strain. 

III.  I N F L U E N C E  OF N O N - S C H M I D  E F F E C T S  

In order to investigate non-Schmid effects on the behav- 
ior of  polycrystals, we will first review and estimate the 
non-Schmid factors in simple metals and intermetallics. 
Then the contributions of  different non-Schmid effects to- 
ward the yield surface, stress-strain behavior, texture de- 
velopment, and localization will be explored. After that, 
several examples are given on the behavior of  Ni3A1 po- 
lycrystals, where non-Schmid factors of  Ni3AI single crys- 
tals have been estimated by Dao and Asaro. cll 

A. Non-Schmid Effects in Simple Metals and 
Intermetallics 

1. Estimation of non-Schmidfactors in simple metals 
Asaro and Rice,U21 Chang and Asaro, t341 and Asarot3Sl 

have given some estimated non-Schmid factors for simple 
metals. Barendreght and Sharper41 found in Zn single crys- 
tals that r/m m could be as high as 0.17. Spitzig et aL t361 re- 
ported the strength differential (SD) to be as high as 0.07 
to 0.1 in high strength martensitic steels. The SD is defined 
as the ratio (cr~ - G)/[(G + G)/2], where G and o-, are 
yield strengths in uniaxial compression and uniaxial ten- 
sion, respectively. As pointed out by Asaro and Rice, t121 the 
strength differential can be expressed as 

4K 
SD = - -  [22] 

3 

where K is the pressure sensitivity factor. I f  r/~, = r/~m = 
7/~ = K/3, their values are estimated to be 

1 
r/~ = r/m m = aTz ~ = ~ SD [23] 

Estimations and observations of  non-Schmid factors for 
several materials are summarized in Table I. 

2. Estimation of non-Schmid factors in Ni3Al 
Dao and Asaro m have estimated the non-Schmid factors 

for Ni3A1 at several different temperatures (Table II). These 
estimated non-Schmid factors can catch the orientation and 
temperature dependence of single crystalline Ni3A1, as de- 
scribed by Paidar, Pope, and Vitek (PPV). [261 

3. Discussion on stress state dependent flow 
To better understand the stress state dependent yielding 

and plastic flow, we examine the rate-independent limit of  
the flow rule (Eq. [6]), viz. 

~-~ = g~ or ~-~ + ~ : ~" = g~ [24] 

Here, the yield function g~ is defined as the critical resolved 
shear stress when ~-~ is the only nonzero stress component 
under the s*, m*, z* coordinate system. Note that unlike 
the critical resolved shear stress, g~ so defined is stress state 
independent and can be readily determined experimentally. 
The hardening function h ~  described by Eq. [10] is thus 
also stress state independent at the current time t, although 
the path-dependent function h ~  can be strongly influenced 
by the loading and orientation histories of  the crystal. It is 
clear that assuming single slip, our definition naturally leads 
to the same orientation dependence for yielding (z~) and 
hardening (Or~/03,~) which was observed for Ni3A1 single 
crystals below the oetahedral slip to cubic slip transition 
temperature by Aoki and Izumi561 

B. Initial Yield Surface 

While it is clear that the existence of non-Schmid effects 
can affect the yielding of single crystals, how non-Schmid 
effects influence the polycrystal yielding behavior remains 
an outstanding question. On the one hand, if  non-Schmid 
effects exist within each constituent single crystal (or 
grain), the critical resolved shear stress of  each slip system 
will be orientation dependent (or, more accurately, stress 
state dependent); on the other hand, the random distribution 
of  grain orientations may average out some of  the local 
orientation dependence. 

To study the influence of non-Schmid effects on the con- 
stitutive response of the polycrystal aggregate, a set of  con- 
stant offset effective plastic strain "yield surface" 
calculations were carried out using the method first intro- 
duced by Asaro and Needleman.t21 With D as the rate of  
deformation tensor, the Mises effective stress and Mises 
effective strain are then defined as 

s0Vi o- e = a,~ o'j and ~'e = D~j Db dt [25] 

where (.)' denotes deviatoric quantities, e.g., 

1 
O'ij = O'ij -- 3 0rkk ~ij 

At various stages in each loading history, the polycrystal 
aggregate is unloaded to a state of zero average stress be- 
fore reloading to calculate the yield surface. Let us consider 
the calculation of a yield surface corresponding to normal 
tension or compression along the X2 direction (~r22) com- 
bined with XI-X2 shearing (o-12). The boundary conditions 
imposed are 

: = = : / r  : o 

1 (Nn + N12)= PN22 [26] 
2 
�9 , �9 

f,2 - A ,  = o, f3, = o 

Loading is achieved by prescribing f22 and the stress ratio 
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Table II. Non=Schmid Factors for Ni3AI at Several Temperatures  

Tempera ture  Stress State rh~ r / ~  rl= r/,~ "0= 

L.,, > 0, %b > 0 0 0.008 --0.008 0.008 --0.015 
0 = 293 K ~'+~ < 0, z~b < 0 0 - 0 . 0 0 8  0.008 - 0 . 0 0 8  - 0 . 0 1 5  

+'++~ > O, ~'~b < 0 0 0.008 --0.008 0.008 0.014 
r+= < 0, r~b > 0 0 - 0 . 0 0 8  0.008 - 0 . 0 0 8  0.014 
r+~ > 0, %~ > 0 0 0.036 - 0 . 0 3 6  0.037 - 0 . 0 6 5  

0 = 600 K ~'+= < 0, r~+ < 0 0 - 0 . 0 3 6  0.036 - 0 . 0 3 7  - 0 . 0 6 5  
r~, > 0, %b < 0 0 0.030 --0.030 0.031 0.054 
r ~  < O, r~b > 0 0 --0.030 0.030 --0.031 0.054 
"rsm > O, "l'cb > 0 0 0.046 --0.046 0.048 --0.083 

0 = 800 K 'r~,, < 0, "r~b < 0 0 --0.046 0.046 --0.048 --0.083 
Tsm > O, Ycb < 0 0 0.037 --0.037 0.038 0.067 
~'~,, < 0, '+'~.+, > 0 0 - 0 . 0 3 7  0.037 - 0 . 0 3 8  0.067 
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 Jgo 
Fig. 3--Initial constant offset plastic strain yield surface constructed in 
the r section of stress space for an initially isotropic, unstrained 
polycrystal where Schmid's rule holds. The von Mises yield ellipse is 
constructed using the average Taylor factor 3.06 for uniaxial tension or 
compression of an isotropic polycrystal. The offset strain is 0.002. 

p, and 

f = F �9 F? 1 [27]  

N = Fi" n/det (Fi) [28] 

where Fi is the deformation gradient from the initial state 
to the unloaded state of zero average stress. By keeping 
track of  the Mises effective plastic strain and varying the 
stress ratio p, constant offset effective plastic strain yield 
surfaces were constructed. An offset plastic strain of 0.002 
was used in this study. 

A total of 246 random oriented grains with fcc type slip 
systems were used. The slip system hardening is specified 
by taking gO to be the critical resolved shear stress go for 
each slip system and by specifying h(%) in Eq. [11] to be 

~ ( h  o - h| % }  [29] h(Ya) = h~ + (h o - h=) sech 2 [ . ' g *  _ go" 

The plastic hardening constants used are g~ = 1.8g0, ho = 
8.9go, and h~ = 0. These hardening values were obtained 

10.0 

9.0 

8.0 

7.0 

6.0 

5.0 

~ 4.0 

3.0 

2.0 

1.0 

0.0 ' 
-5.0 

i �9 , , i �9 , , 

--(3- "--'(3- 

(~ ~= n ~ ~zz = 0.0333 1 
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I ' q  m m  = O.  1 q mz- -  0.081 
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Fig. 4--Initial constant offset plastic strain yield surfaces constructed in 
the tr22-~r u section of stress space for an initially isotropic, unstrained 
polycrystal for Schmid's rule and for various non-Schmid effects. The 
offset strain is 0.002. 

by fitting to the stress-strain data of  Chang and Asaro [341 for 
the tensile deformation of  A1-3 wt pet Cu single crystals 
along the (211) direction. The latent hardening ratio is taken 
as q = 1.4 for noncoplanar and q = 1 for coplanar slip 
systems. The crystal elastic constants are given as CI, = 
842go, C,2 = 607go, and C44 = 377go, where these constants 
fit the elastic anisotropy of copper single crystals. For a 
concise presentation, only nonzero non-Schmid factors are 
listed herein. 

Figure 3 shows the initial constant offset plastic strain 
yield surface where Schmid's rule holds. The data points 
are shown against the reference Mises ellipse. The Mises 
ellipse is calibrated to a tensile yield stress of  3.06go. The 
0.002 offset surface is very close to the Mises ellipse, in 
agreement with the previous work of  Hillt371 and Asaro and 
NeedlemanY~ 

Figure 4 shows initial constant offset plastic strain yield 
surfaces for Schmid's rule and for various non-Schmid ef- 
fects. Since the three curves for Schmid's rule, r/,= = 0.08, 
and ~mz = --0.08 are hardly distinguishable from each 
other, only one curve is plotted to represent this group. The 
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situation is similar for the other four cases for r/ss = r/,,~ 
= r/= = 0.0333, r/ram = 0.1, r/ss = r/mm = r / z z  = 0.0333 
with r/,,= = 0.08, and r/,,,, = 0.1 with r/~ = 0.08; therefore, 
only one of  these four nearly indistinguishable curves is 
plotted. It is noticed that there is virtually no difference 
between the cases for Schmid 's  rule, r/m~ = 0.08, and r/m~ 
= --0.08; there is no difference between the cases for r/~, 
~-- r/mm = r/zz = 0.0333 and r/~s = r/mm = r/zz = 0.0333 with 
r/~ = 0.08; and there is no difference between the cases 
for r/,,m = 0.1 and r/,~,, = 0.1 with r/~,~ = 0.08. It is thus 
concluded that the non-Schmid effects associated with pure 
shear, i .e . ,  r/,=, will have no net influence by themselves on 
the initial yielding o f  the polycrystal aggregate. In Figure 
4, the case for r/~, = r/m,, = r/= = 0.0333 is a simple Cou- 
lomb friction model, which corresponds to a pressure sen- 
sitivity factor o f  K = 0.1; a strength differential effect is 
clearly seen on the polycrystal initial yield surface. For the 
case of  r/,,,, = 0.1, which is a simple friction model for the 
slip, it is very interesting to find that the initial yield surface 
is virtually identical to that o f  ~.~ = r/,,,, = r/= = 0.0333, 
where a strength differential effect is also found. As they 
should, non-Schmid effects associated with hydrostatic 
stress will have some finite influence on the polycrystal 
initial yield surface and result in the strength differential 
effect. However,  for a random oriented polycrystal, it is a 
bit surprising that no interactions are found between the 
non-Schmid effects associated with the pure shear stresses 
and the non-Schmid effects associated with hydrostatic 
stress in terms of  the influence toward the initial constant 
offset yield surface. Here, it is stressed that an implicit as- 
sumption is made: non-Schmid factors will not change sign 
or magnitude with different stress states of  each constituent 
single crystal. This is, in fact, the case with Ni3A1 single 
crystals, which are the origin for the single crystal tension- 
compression asymmetry. The case with Ni3A1 will be dealt 
with later in Section III-F.  

C.  S t r e s s - S t r a i n  B e h a v i o r  

In polycrystal materials, the stress-strain behavior is not 
only affected by the hardening function (including self- and 
latent hardening) but also by the texture development of  the 
aggregate. In this section, material properties are the same 
as those described in Section B. 

Figure 5(a) shows the Mises effective stress-effective 
strain curves for the case when the Schmid rule applies and 
for various cases when there are non-Schmid effects under 
uniaxial tension. At small strains, i .e . ,  ee < 0.15, the stress- 
strain curves are clustered into two groups: one group with 
non-Schmid effects associated with hydrostatic stress and 
the other group with Schmid's  rule or without non-Schmid 
effects associated with hydrostatic stress; this is consistent 
with the results obtained in our initial yield surface study. 
As the strain gets larger, Le . ,  ee > 0.15, the texture begins 
to form and the curves in each one of  those two groups 
begin to separate from other curves within the same group. 
We note that a (111) fiber texture is forming along the 
tensile axis under uniaxial tension. I f  the tensile axis is 
along the [111] direction, then the slip systems that have 
the highest resolved shear stresses are [011](111), 
[101](lIT),  [101](Tll) ,  [ l l 0 ] (T l l ) ,  [110](111), and 
[011](111) (Figure 5(b)). Note that the normals to the slip 
planes (marked by " m "  in Figure 5(b)) have an angle of  

(a) 

(b) 
Fig. 5--(a)  Mises effective stress-effective strain curves for the Schmid 
rule and for various non-Schmid effects, under uniaxial tension. (b) A 
single crystal under uniaxial tension along the [111] direction, where the 
slip systems that have the highest resolved shear stresses are 1011](1 IT), 
[101](111), [101](]11), [110](111), [110](1]1), and [Oll](1TI). The 
normals to the slip planes are marked by m. 

70.5 deg with the [111] direction which is much larger than 
45 deg- - the  average angle between the tensile axis and the 
slip plane normals of  a random oriented aggregate. Since 
now ~mm = 022 COS2 (70.5 deg) = 0"22/9 ( ' (  0"22/2 = 0"22 
cos 2 (45 deg), the influence of  r/re,, decreases as (111) fiber 
texture develops; this is the reason why the stress-strain 
curve for r/re, , = 0.1 approaches that obtained with the 
Schmid rule. For the other cases, similar analyses can be 
applied to explain the stress-strain behavior under different 
non-Schmid factors. Nevertheless, under simple tension, the 
non-Schrnid factor r/,~, whether positive or negative, tends 
to lower the global stress as the texture develops (e .g . ,  com- 
pare Schmid's  rule with r/m~ = 0.08 or -0 .08 ;  r/m m = O. 1 
with r/ram = 0.1 plus r/r,~ = 0.08; and r/ss = r/,,,, = r/= = 
0.0333 with r/s~ = r/ram = r/zz = 0.0333 plus r/~ = 0.08). 
While the reduced influence of  friction r/ram may  raise the 
global stress closer to the curve for Schmid's  rule as the 
texture develops, the curve for Coulomb friction r/ ,  = r/,,m 

METALLURGICAL AND MATER/ALS TRANSACTIONS A VOLUME 27A, JANUARY ]996--87 



Fig. 6--Mises effective stress-effective strain curves for the Schmid rule 
and for various non-Schmid effects under uniaxial compression. 

= r/z z = 0.0333 is, as it should be, parallel to that obtained 
with Schmid's rule. 

Figures 6 and 7 show the Mises effective stress-effective 
strain curves for the case when the Schmid rule applies and 
for various cases where there are non-Schmid effects under 
uniaxial compression and plain strain compression, respec- 
tively. For either loading history, at small strains, i.e., ee < 
0.05, the stress-strain curves are clustered into two groups: 
one group with non-Schmid effects associated with hydro- 
static stress and the other group with Schmid's rule or 
without non-Schmid effects associated with hydrostatic 
stress; this is consistent with the results obtained in our 
initial yield surface study. At larger strains, similar to uni- 
axial tension, the texture development can have important 
influences toward the stress-strain behavior, although the 
relative influences may vary because of the different tex- 
tures developed under different loading histories. If  we ex- 
amine the stress-strain curves closely, it is found that (1) 
the non-Schmid factor ~/mz, whether positive or negative, 
tends to lower the global stress as the texture develops; (2) 
the Coulomb friction model is relatively orientation de- 
pendent and always results in a stress-strain curve parallel 
to that of  Schmid's rule; and (3) unlike the Coulomb fric- 
tion model, the simple friction model with 7/mm > 0 is very 
sensitive to texture development, although there is no dif- 
ference between these two models at the initial yielding. 

D. Texture D e v e l o p m e n t  

Texture development is very prominent in large defor- 
mation processes in polycrystals. Since single crystal prop- 
erties (mechanical, electrical, thermal, or magnetic) are 
often crystallographic dependent, it is important to accu- 
rately describe the deformation textures formed under dif- 
ferent mechanical processing methods--wire drawing 
(uniaxial tension), forging (uniaxial compression), and roll- 
ing (plain strain compression). Again, the material proper- 
ties used in this section are the same as those specified in 
Section B. 

We denote the "laboratory" Cartesian axes by e, and the 
cube crystal axes in grain K by a~K); the loading axis e2 is 
taken to fall within the [100], [110], [111] standard stere- 
ographic triangle, as shown in Figure 8(a). Figure 8(b) 
shows the "inverse pole figure" of  the loading axis e2, 
describing the random distribution of single crystal orien- 
tations of a polycrystal aggregate in the undeformed state. 

Fig. 7--Mises effective stress-effective strain curves for the Schmid rule 
and for various non-Schmid effects under plain strain compression. 

(a) 

(b) 

Fig. 8--(a) Unit cube used to describe crystallographic directions; the 
standard triangle with corners [100], [110], and [111] is used throughout 
to describe crystal directions in three dimensions; e2 corresponds to a unit 
vector along a material fiber parallel to the axis of  tension or compression. 
(b) Inverse pole figure of  the loading axis e2, describing the random 
distribution of  single crystal orientations of  a polyerystal aggregate in the 
undeformed state. 

A total of 201 grains are used in this aggregate. This ran- 
dom distribution corresponds to a nearly isotropic aggre- 
gate. 

Figure 9 shows the deformation textures in uniaxial ten- 
sion for the Schmid rule or with different non-Schmid ef- 
fects at an effective strain of  e~ = 1.37. A strong [111] 
texture along with a small gathering near [410] develops 
for all four cases shown. Comparing to Schmid's rule, the 
texture for the Coulomb friction model r/s s = 7~m m = ~ z z  = 
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Fig. 9--(a) through (d) Deformation textures in uniaxial tension for the Schmid rule or with different non-Schmid effects at an effective strain of e, = 
1.37. 

0.0333 is virtually the same; while some minor differences 
are found for the friction model 7/,, m = 0.1 and for ~Tm~ = 
0.08--i.e.,  the small cluster near [410] for 7,,,, = 0.1 is 
closer to [100] than that for Schmid's rule, and a third clus- 
ter near [100] appears for ~m~ = 0.08. 

Figure 10 shows the deformation textures in uniaxial 

compression for the Schmid rule or with different non- 
Schmid effects at an effective strain o f  ee = 0.96. At this 
strain level, all the major textures in Figure 10 are around 
the [631]-[441] line, although there are distinct differences 
between the Schmid rule and the friction model rl,~m = 0.1 
or r/m ~ -- 0.08. Again, the texture for the Coulomb friction 
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Fig. lO--(a) through (d) Deformation textures in uniaxial compression for the Schmid rule or with different non-Schmid effects at an effective strain of 
Q = 0.96. 

model r/w , = ~mm = ~ z z  = 0.0333 is, as it should be, vir- 
tually the same as that for Schmid's  rule, reflecting the 
orientation independence of  the Coulomb friction model. 
With the Schmid rule and ~,s = B,,,, = rh: = 0.0333, the 
texture is found somewhat diffusely distributed between the 
[210]-[110] line and the [631]-[331] line; with the case o f  

friction model rh, m = 0.1, the major texture component 
close to the [631]-[441] line is much sharper, and a sec- 
ondary texture component is found around the [210]-[311] 
line; and with rl,= = 0.08, while the major texture 
component is similar to that for Schmid 's  rule, a lot o f  
scattering around the major texture component is found. 
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Fig. 11--(a) through (d) Deformation textures in uniaxial compression for the Schmid rule or with different non-Schmid effects at an effective strain of 
e, = 1.46. 

Figure 11 shows the deformation textures in uniaxial com- 
pression for the Schmid rule or with different non-Schmid 
effects at an effective strain o f  ee = 1.46. At this stage 
(Figure 11), except that there is virtually no difference be- 
tween Schmid's  rule and the Coulomb friction model r/8 s 
= r/,.,. = rG = 0.0333, the textures with non-Schmid ef- 

fects are quite different than those with Schmid's rule, al- 
though their major texture components are still somewhat 
alike. With the Schmid rule and r/$s = r / _  = r/= = 0.0333, 
the texture is found diffusely distributed around the [320]- 
[421]-[331] line; with the case o f  friction model r/,_ -- 0.1, 
the texture is distributed close to the [631]-[441] line with 
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Fig. 12- - (a )  through (d) Deformation textures in plain strain compression for the Schmid rule or with different non-Schmid effects at an effective strain 
of  ~ = 1.50. 

a heavy cluster near [631]; and with ~7,= = 0.08, the major 
texture is distributed around the [430]-[311] line. The in- 
fluence of non-Schmid effects on the details of the texture 
development found in this example shows the need for an 
accurate constitutive description for the non-Schmid behav- 
ior in crystalline solids. As demonstrated earlier, the details 

of texture development combined with the non-Schmid ef- 
fects have significant influence on the stress-strain behavior. 
It is noted that comparing our Schmid's rule results to those 
obtained by Asaro and Needlemanyl a more diffuse and a 
little different texture is developed; this is because the in- 
itial texture used in this study is randomly generated, while 

92--VOLUME 27A, JANUARY 1996 METALLURGICAL AND MATERIALS TRANSACTIONS A 



(a) 

(b) 
Fig. 13--Deformed crystal: (a) map of accumulated sum of slips; and (b) 
map of lattice rotation, measured in degrees toward the tensile axis from 
the original 10 deg tilt (positive values show counterclockwise rotation). 
"% = 0.08 at a nominal tensile strain of  0.10. Figure taken from Dao and 
Asaro527I 

in Asaro and Needleman's research, the initial texture was 
introduced by uniformly distributing crystal orientations 
within the standard triangle. 

Figure 12 shows the deformation textures in plain strain 
compression for the Schmid rule or with different non- 
Schmid effects at an effective strain of ee = 1.50. The tex- 
~re  developed is along the [110]-[311] line for all four 
cases, with virtually no difference between them. 

E. Localized Deformation and Texture 

While in Taylor-like models deformation within a con- 
stituent single crystal of a polycrystal aggregate is assumed 
to be uniform, in reality, this is not the case. It is now 
realized that nonuniform deformation modes like necking 
and shear banding are entirely natural, inevitable outcomes 
of finite deformation of ductile crystalline materi- 
als. [1'12'13'14'27'28] Whether the non-Sehmid effects can have 
significant influence on the shear localizations in polycrys- 
tals and therefore have further influence on the texture de- 
velopment remains a question to be answered. To answer 
this question, we will first examine the localized deforma- 
tion and nonuniform lattice rotations in single crystals. 

1. Localized deformation in single crystals 
Localized deformation modes like necking and shear 

banding are found to be natural consequences of  finite de- 
formation of single crystals. Shear bands, for example, form 
within defect-free single crystals that display positive hard- 
ening in both single slip and multiple slip modes (e.g., 
Asaro,t13] Peirce et al., [14] Dao and Asaro[t.271). 

Dao and Asaro tl,27~ found that moderate non-Schmid ef- 
fects can significantly increase the critical hardening rate for 
shear band initiation and intensify the shear bands (i.e., larger 
strains can accumulate within the shear band at the same 
global strain level). For the formation of macroscopic shear 
bands (MSBs), geometrical softening induced by nonuniform 
lattice rotations plays a major role whether the Schmid rule 
holds (Asaro t~31 and Peirce et aL tl41) or there exist some non- 
Schmid effects (Dao and AsaroV,271). Dao and Asaro [zT] con- 
firmed that coarse slip bands (CSBs) can form under a 
significant hardening rate with some moderate non-Schmid 
effects that are well within the range estimated in Section A. 

While non-Schmid effects do have important influences 
on the localization process in single crystals, we would nat- 
urally expect non-Schmid effects to play a big role in the 
localization in polycrystals as well. To answer the question 
of whether the CSBs and the MSBs can affect the texture 
development in polycrystals, it is intuitive to examine the 
nonuniform lattice rotations caused by the formation of 
CSBs and MSBs. Dao and Asaro [27] performed a number 
of finite element simulations in single crystals studying the 
CSBs and their transition to MSBs. The plastic properties 
used are the same as those specified in Section B, except 
that 2-D double slip model was used. tETj Figure 13(a) shows 
a map of the accumulated sum of slips and Figure 13(b) a 
map of the lattice rotation, measured in degrees toward the 
tensile axis from the original 10 deg tilt, at an engineering 
strain of 0.1 0. The coarse slip pattem is clear and there is 
no apparent necking (Figure 13(a)); these bands are closely 
aligned with the active slip systems. Figure 13(b), a map 
of lattice rotation, shows that the lattice mismatch across 
the CSBs is very small (less than 2 deg). Figure 14(a) 
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(a) 

(b) 

Fig. 14~Deformed crystal: (a) map of  accumulated sum of slips; and (b) 
map of lattice rotation, measured in degrees toward the tensile axis from 
the original 10 deg till; positive values show counterclockwise rotation. 
r/,, = 0.08 at a nominal tensile strain of  0.16. Figure taken from Dao and 
Asaro.[271 

shows a map of  the accumulated sum of  slips, and Figure 
14(b) a map of the lattice rotation, measured in degrees 
toward the tensile axis from the original 10 deg tilt, at 0.16 
engineering strain. The MSB is very well developed at this 
stage (Figure 14(a)), and the MSB is found to be misori- 
ented about 5 deg from slip system s~ of the surrounding 
lattice. The lattice inside the MSB is rotated away from the 
surrounding lattice by about 5 to 7 deg (Figure 14(b)). It 
was noticed that if there were no non-Schmid effects, there 
were no CSBs in the calculations, although the MSBs 
formed in much the same way as described in the case 
where there existed non-Schmid effects (Dao and Asarot27~). 
Now, from Figures 13(b) and 14(b), it is concluded that in 
single crystals, CSBs do not result in significant nonuni- 
form lattice rotations while MSBs do. Therefore, it seems 
appropriate to expect that the CSB type of shear bands in 
polycrystals have little to do with the texture development, 
while the MSB type of shear bands may have some appre- 
ciable influences. 

2. Non-Schmid effects and localized deformation in 
polycrystals 

To study the localized deformation in polycrystals, any 
model that assumes uniform deformation within each of the 
constituent single crystals is inadequate. Therefore, the finite 
element model described in Section II-B-2 will be used. 

The material hardening properties are the same as given 
in Section B: g= = 1.8go, ho = 8.9g0, and ha = 0 in Eq. 
[29]. A simple Taylor hardening is taken with the latent 
hardening ratio q = 1. Isotropic elasticity is used with the 
Lame's constant A = 576.92go and the elastic shear moduli 
G = 384.62go, which corresponds to Young's modulus E 
= 1000g 0 and Poisson's ratio u = 0.3. Finally, the refer- 
ence shear rate is taken as fi = 0.001 s -1, and the rate 
sensitivity is given as m = 0.005. One calculation is done 
using Schmid's rule, while the other calculation is per- 
formed with only the nonzero non-Schmid factor ~7,, = 
0.07. Both runs are under plain strain compression. 

Figures 15(a) and (b) show the contour maps of the ac- 
cumulated sum of slips (%) at a true strain of e = -0.223 
for the Schmid rule and r/s s = 0.07, respectively; and Fig- 
ures 15(c) and (d) show the contour maps of the rate of the 
accumulated sum of slips 0a) at a true strain of e = -0.223 
for the Schmid rule and r/s, = 0.07, respectively. From 
Figures 15(a) and (b), the deformation apparently starts to 
get localized in both cases with Schmid's rule and the non- 
Schmid factor r/,, = 0.07, although the peak strain with 
non-Schmid effects ~/~s = 0.07 is more than 50 pct larger 
than that of the Schmid rule. At this early stage, shear bands 
in Figure 15(a) (Schmid's rule) are more diffuse than those 
in Figure 15(b) (r/s S = 0.07). This trend can be seen more 
clearly in Figures 15(c) and (d). In Figure 15(c) (Schmid's 
rule), we can see that , ,  (a measure of overall deformation 
rate) is highly localized, with some areas (full white) almost 
nondeforming at the moment; several SE-NW and SW-NE 
MSBs are forming across the whole sample. In Figure 15(d) 
(r/s~ = 0.07), features similar to those in Figure 15(c) 
(Schmid's rule) are found, although (1) the peak~ is almost 
50 pct larger, (2) the localization is more concentrated com- 
pared to the relatively diffuse looking bands found in Fig- 
ure 15(c) (Schmid's rule), and (3) there are several grains 
exhibiting the coarse slip pattern, i.e., grains 2, 25, and 26, 
while in the corresponding grains in Figure 15(c) (Schmid's 
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(a) (b) 

(c) (d) 

(e) (jr) 

Fig. 15--(a) through (f) Development of localized deformation in the model polycrystal. Comparisons are made between the case of Schmid's rule and 
the case with non-Schmid effects ~Tss = 0.07. 

rule), no such features can be found. At a true strain of e 
= -0.511, Figures 15(e) and (f) show the contour maps of 
the accumulated sum of slips (~/a) for the Schmid rule and 
~/s$ = 0.07, respectively. At this stage, the MSBs in Figures 
15(e) (Schmid's rule) and (f) (B,s = 0.07) are both fully 
developed; peak ~/a in Figure 15(f) (r/$ s = 0.07) is found to 
be 23 pct larger than that in Figure 15(e) (Schmid's rule). 

Figure 16 shows the ya vs compressive strain plot. It is 
evident that peak % for r/,~ = 0.07 is always higher than 

that for the case of Schmid's rule. Note that the biggest 
increase for r/$ s = 0.07 happens between 0.1 and 0.2 true 
strain, and afterward, those two curves are practically par- 
allel; this shows the strong influence of the non-Schmid 
effects toward the shear band initiation. 

3. Influences on texture development 
Harren and Asaro 13] have shown that with Schmid's rule, 

the Taylor model is very good in terms of calculating de- 
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Fig. 17--Texture development of  the 2-D model polycrystal for (a) the 
Schmid rule and (b) r/,, = 0.07. 

formation textures, although the texture predicted by the 
Taylor model is much sharper than that calculated using the 
finite element model where localized deformation is rigor- 
ously modeled. Here, we study the influences of non- 
Schmid effects, and the non-Schmid effects induced heavier 
shear banding toward the deformation texture. The two 
cases studied are the same as those in Section 2, where 
Schmid's rule holds in one case and ~Ts~ = 0.07 is given as 
the non-Schmid factor in the other case. 

To describe texture in this 2-D idealized polycrystal 

model, we specify the following. The lattice at each point 
in the polycrystal aggregate (actually, in each constant 
strain triangle finite element) has its initial orientation 0 deg 
< ~0 < 60 deg, as described in Figure 2(a). In the deformed 
state, let ~0 stand for the current lattice orientation at each 
point; ~b will still be within 0 deg < qJ < 60 deg or an 
appropriate material symmetry operation will be applied to 
bring it within 0 deg < @ < 60 deg. In order to represent 
this distribution of initial or deformed crystal orientations, 
the interval of 0 deg < ~0 < 60 deg is broken up into 30 
subintervals: 0 deg < ~b < 2 deg, 2 deg < ~b < 4 deg . . . . .  
58 deg < 0 < 60 deg. Associated with each of these sub- 
intervals is the volume fraction (area fraction indeed with 
this idealized polycrystal model) of the aggregate that has 
the lattice orientation within the subinterval. As discussed 
by Harren and Asaro, t31 the ideal texture orientation (ITO) 
under compression is 30 deg. 

Figures 17(a) and (b) show the texture development for 
the Schmid rule and "% = 0.07, respectively. In Figure 
17(a) (Schmid's rule), the texture progressively sharpens as 
the global strain gets larger. It is interesting to observe the 
"texture saturation" within the strain range between e = 
-0.357 and e = -0.511. In Figure 17(b) (r/, s = 0.07), the 
texture, in general, sharpens as the deformation gets larger. 
The similar texture saturation also happens within the strain 
range between e = -0.357 and e = -0.511, although there 
is some small "detexturization" going on within this period 
where the peak texture intensity drops from e = -0.357 to 
e = -0.431 before picking up again from e = -0.431 to 
e = -0.511. The occurrence of texture saturation and es- 
pecially "detexturization" demonstrates that heavy shear 
banding can reorient its surrounding slowly deforming lat- 
tice, which can delay the texturization toward the ITO and 
result in much less pronounced texture. 

F. Applications to Ni3AI 

Simple applications to Ni3A1 polycrystals with respect to 
initial yielding, stress-strain behavior, and texture devel- 
opment are dealt with using the Taylor-like model de- 
scribed earlier. After carefully examining existing experi- 
mental data in the literature, especially those obtained by 
Umakoshi et a/.,[381 the magnitude of non-Schmid effects 
between room temperature and 77 K is found to be appre- 
ciable although smaller compared to that at elevated tem- 
peratures. The constants listed in Table II are thus rather 
conservative ones, especially for room temperature. One 
also notices that the orientation dependencies for Ni3A1 are 
the same, except with different magnitudes (i.e., magnitude 
becomes larger as temperature goes higher) at different 
temperatures below the octahedral slip to cubic slip tran- 
sition temperature. 

In this section, moderate non-Schmid factors (corre- 
sponding to the 600 K data in Table II) and relatively large 
non-Schmid factors (corresponding to the 800 K data in 
Table II) are applied to compare with the results obtained 
assuming Schmid's rule. The non-Schmid factors intro- 
duced here have the exact orientation dependence for each 
constituent single crystal, as observed experimentally (Fig- 
ure 18). The objective here is to see the influence of the 
non-Schmid effects; therefore, except the varying 
non-Schmid factors, the elastic and plastic properties are 
fixed using room temperature properties. The elasticity con- 
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Fig. 18--Summary of tension/compression asymmetry in a Ni3A1 single 
crystal, t391 where "T"  stands for tension and "C"  stands for compression. 
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the trzz-c52 section of stress space for an initially isotropic, unstrained 
polyerystal for Schmid's rule, moderate non-Schmid factors, and large 
non-Schmid factors. The offset strain is 0.002. 

stants are given a s  C l l  = 223 GPa, C12 = 148 GPa, and 
C44 = 125 GPa (Yoo[4~ The plastic properties are given 
as go = 45 MPa with a simple linear hardening h = 300 
MPa in Eq. [11]. The latent hardening ratios q = 1.4 for 
noncoplanar and q = 1 for coplanar slip systems are used. 

1. Initial yielding 
Figure 19 shows the initial constant offset plastic strain 

yield surfaces using Schmid's rule, moderate non-Schmid 
factors (corresponding to the 600 K data in Table II), and 
large non-Schmid factors (corresponding to the 800 K data 
in Table II). One prediction from the initial yield surfaces 
calculated in Figure 19 is that there is practically no 
strength differential effect for Ni3AI isotropic polycrystal 
aggregates, although single crystal Ni3A1 may display some 
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Fig. 20~Calculated effective stress-effective strain curves under (a) 
uniaxial tension and (b) uniaxial compression. 

large tension-compression asymmetry. The initial yield sur- 
faces for Ni3A1 polycrystals with moderate to large non- 
Schmid factors are "fat ter"  versions of those with 
Schmid's rule (or reference Mises ellipse). We define the 
generalized polycrystal Taylor factor as 

rn = 1~22 I/go [30] 
where I~r221 is the absolute value of the global stress under 
uniaxial loading along the X2 axis and go is the critical re- 
solved shear stress when all other stress components are 
zero. It is noted that under Schmid's rule, the definition 
(Eq. [30]) agrees with the traditional Taylor factor defini- 
tion as in Gil Sevillano et al. f411 and Tom6 et al.t421 Gen- 
eralized polycrystal Taylor factors much higher than 3.06 
are observed for the two cases with the kind of non-Schmid 
effects in Ni3A1 shown in' Figure 18. 

2. Stress-strain behavior 
Figures 20(a) and (b) show the calculated effective 

stress-strain curves under uniaxial tension and uniaxial 
compression, respectively. From Figure 20(a), we see that 
the calculated stress-strain curves compare fairly well to the 
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experimental data points measured by Kim et aL, [43] al- 
though a simple linear hardening is used. For either tensile 
or compressive loading, the calculated strain hardening for 
Ni3A1 is very high, about 3800 MPa if we assume Schmid's 
rule and around 4500 MPa if we use non-Schmid effects 
as input. One important observation from the calculated 
curves is that the kind of non-Schmid behavior of Ni3A1 
single crystals shown in Figure 18 can significantly raise 
the strain hardening, whether the polycrystal aggregate is 
under tension or compression. For isotropic fcc polycrys- 
tals, the simple relation 

0o'22 / Oe = 7n= Oz l 0 7 [31] 

is often used to connect the polycrystal aggregate behavior 
to that of the individual crystal, where &r22/Oe is the hard- 
ening rate for a polycrystal under uniaxial loading, O,r/Oy is 
the shear hardening rate for the constituent single crystals, 
and rh is the Taylor factor. For isotropic fcc polycrystals, 
rh = 3.06 is expected. Substituting Oz/Oy = 300 MPa into 
Eq. [31], we find the apparent Taylor factor rh ~ 3.5 for 
Schmid's rule and n~ ~ 3.9 for non-Schmid effects. The 
first increase to about 3.5 for the case of Schmid's rule is 
due to the high latent hardening, while the further increase 
to about 3.9 for the case with non-Schmid effects shows 
significant influence on hardening due to the non-Schmid 
effects. Intermetallic compounds such as Ni3A1 often show 
unusually high and almost constant hardening rates.t 6,44,45~ 
Schulsont441 applied Eq. [31] to estimate the Taylor factor 
n~ in Zr3AI (a L12 intermetallic compound having very sim- 
ilar mechanical properties as Ni3A1) and found that n~ may 
be as high as 5.5, which is much higher than 3.06 (average 
Taylor factor for isotropic fcc crystals). High latent hard- 
ening is suggested for Ni3A1, where Aoki and Izumi t46j ob- 
served significant overshooting in single crystals. Our 
results suggest that non-Schmid effects and the high latent 
hardening may act together, resulting in the unusual hard- 
ening rate in polycrystalline intermetallics, consistent with 
available experimental evidence. 

3. Texture development 
The textures under uniaxial tension are found to be typical 

for fcc polycrystals with non-Schmid effects and with 
Schmid's rule, although an extra small concentration can be 
found near [100] for non-Schmid effects, similar to that found 
earlier in Figure 9(d) for ~/,= = 0.08. Typical copper-type 
plain strain compression texture is also found for the cases of 
Schmid's rule and different Ni3A1 non-Schmid effects. 

Figure 21 shows the textures under Schmid's rule and 
two different magnitudes of Ni3A1 non-Schmid effects at 
an effective strain of 0.95. Although the major texture com- 
ponents for all three cases are somewhat similar, the distinct 
differences between them are evident. With Schmid's rule, 
the major texture component is diffusely distributed be- 
tween the [210]-[110] line and the [631]-[331] line. While 
with non-Schmid effects, the major component is densely 
clustered near the [841] orientation, with some secondary 
scatters along the [841]-[441] line and the [210]-[311] line. 
From this example, it is clear that non-Schmid effects may 
have distinct influences toward the texture development. 

4. Localized deformation and texture 
As shown in Section E, non-Schmid effects can enhance 

strain localization in polycrystals and slow the texture de- 
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Fig. 21--(a) through (c) Deformation textures under Schrnid's rule and 
two different magnitudes of Ni3A1 non-Schmid effects at an effective 
strain of 0.95. 

velopment. Thus, the Taylor-like model we used may not 
be applicable or at least not accurate if there is heavy shear 
banding. 

In fact, consistent with the findings here in this study, 
Ball et aL [47] reported that very heavy shear banding does 
appear for coarse-grained Ni3A1 polycrystal under rolling 
and develops a strong brass-type texture component, while 
less pronounced shear banding occurs for fine-grained 
Ni3A1 polycrystal and a typical copper-type texture devel- 
ops under rolling. Heavy shear banding was suggested to 
be the reason for the texture differences between the coarse 
and fine grain size samples. Ball et aL also concluded that 
heavy shear banding could result in less pronounced tex- 
tures, which agrees with our findings in Section E. A large 
grain size relative to the sample size may also result in the 
sample becoming a "multicrystal aggregate" instead of a 
"true polycrystal aggregate." 

From the results obtained in Section E and existing ex- 
perimental evidence, it is clear that for the Taylor-like mod- 
els to be accurate, there are two requirements: (1) the 
sample must be a true polycrystal aggregate, and (2) there 
should be no heavy shear banding in the sample. 

IV. DISCUSSION AND CONCLUSIONS 

In this article, we have studied the influences of non- 
Schmid effects on the mechanical behavior of polycrystals. 
A Taylor-like model and a finite element model were used, 
where arbitrarily large deformation and the accompanying 
large lattice rotation were rigorously accounted for. To 
summarize the results for polycrystals obtained in Section 
III, we conclude the following. 
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1. Non-Schmid effects related to hydrostatic stress have 
important influences on polycrystal initial yielding, 
while non-Schmid factors related to pure shear do not. 

2. Non-Schmid effects can significantly affect the poly- 
crystal stress-strain behavior by changing the strain 
hardening rate, and the influence on the rate of strain 
hardening may be enhanced by the texture develop- 
ment except for the case where deviations from 
Schmid's rule are purely of a Coulomb friction type. 

3. Except for the Coulomb friction model, non-Schmid 
effects can have distinct influence on texture develop- 
ment, especially under uniaxial compression. 

4. Non-Schmid effects may significantly affect the local- 
ization process in polycrystals, in that sharper and more 
intensive shear banding is expected for polycrystals 
with non-Schmid effects. 

5. Heavy shear banding is found to produce less pro- 
nounced textures, consistent with existing experimental 
evidence on Ni3AI. 

6. The kind of non-Schmid effects existing in Ni3A1 can 
increase the generalized Taylor factor to values much 
higher than 3.06, raise the polycrystal strain hardening 
rate much higher than that which would be obtained 
using Schmid's rule, and influence the deformation tex- 
ture. 

The results presented in this study clearly show that non- 
Schmid effects can have significant influence on the poly- 
crystal mechanical behavior. In materials like intermetallic 
compotmds, crystalline polymers, and perhaps many hcp 
materials, where non-Schmid effects are often found to be 
significant, accurate constitutive descriptions incorporating 
non-Schmid effects may be necessary to predict the poly- 
crystal mechanical behavior. 
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