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Abstract

We examine the large deformation elastic response of the spectrin network in a human red blood cell (RBC) on the basis of molecular-level

constitutive laws. These formulations are shown to be consistent with the predictions of continuum level models for the hyperelastic deformation

of RBC, and are compared with recent experimental studies of whole-cell deformation using optical tweezers stretching. Implications of these

analysis for extracting cell membrane and cytoskeleton response from whole-cell computational simulations of large deformation for realistic

geometries of RBC spectrin network are described. Aspects of large deformation, such as the folding of cell wall during large deformation, are also

examined. We also provide general scaling relationships and closed-form functions on the basis of which mechanical properties of RBCs can be

extracted from optical tweezers experiments.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The deformation characteristics of human red blood cells

(RBCs) or erythrocytes have been topics of research for

decades for a variety of reasons. These non-nucleated cells with

their relatively simple subcellular structure devoid of a nucleus

and with a nearly two-dimensional spectrin cytoskeleton

network offer possibilities to test analytical and computational

models on the basis of which more complex analysis can be

developed for other complex cells. In addition, the deformation

characteristics of the RBCs are known to be strongly linked to

the progression and consequences of hereditary hemolytic

disorders such as spherocytosis, elliptocytosis and ovalocytosis

[1–3], sickle cell disease [4–6] and infectious disease such as

malaria (see, for example [7–9], and the references cited

therein for more details).

While continuum descriptions of RBC deformation have

been the subject of numerous studies [10,11], molecularly

based descriptions of spectrin deformation are increasingly
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being used to address finer-scale and multi-scale mechanical

and biochemical coupling (See [12–15] for example, and the

references cited therein for more details). Such growing interest

in molecularly inspired multi-scale modeling can be attributed

to the following recent developments using laser tweezers

technique: 1) successful experiments on force-displacement

relationships from the stretching of single DNA molecules and

proteins (e.g., [16]); 2) large deformation stretching of whole

RBCs with picoNewton level force resolution [17,18]; and 3)

the ability to determine systematically the mechanical response

of the RBC in conjunction with progressive biochemical and

substructural changes during events such as controlled parasit-

ization (e.g., [9]). Such molecular level information can also

provide potential biochemical pathways to manipulate cyto-

skeleton deformation. It is, therefore, essential to develop a

hierarchical series of multi-scale modeling capabilities that link

whole cell deformation (which can be experimentally measured

directly) with molecularly based models for subcellular

deformation. Advances in computational tools in recent years

have provided appealing possibilities to accomplish these goals

by incorporating appropriate molecular architecture, defect

structure, and multi-scale constitutive formulations for the

deformation of whole RBC.
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In this paper, we present formulations whereby different

elastic parameters to characterize large deformation of RBCs

can be extracted from molecular-level force-displacement

relationships. We further show that such formulations are fully

consistent with continuum analysis based on hyperelastic

constitutive laws and with experimental observations of whole

cell deformation. These results are also shown to be consistent

with our recent spectrin-level simulations of the entire cell [15].

Aspects of large deformation, such as cell wall folding which

have recently been identified on the basis of both continuum

[17,18] and molecular-level modeling [14,15], are also

examined in the present work.

2. WLC spectrin network membrane model and large

deformation elasticity

A healthy erythrocyte or red blood cell (RBC) has a

biconcave equilibrium shape with an average size of about 8 Am
in long diameter. The RBC transports oxygen from the lungs to

the tissues and then transports CO2 back from the tissues to the

lungs via its ¨280 million hemoglobin molecules in the

cytosol. In this process, the RBC must pass through small

capillaries whose inner diameters are smaller than the cell

diameter. The cell needs to change from its biconcave shape to

a bullet or parachute shape, with maximum in-plane strain on

the order of 100% in certain parts of the RBC membrane

induced by the local pressure gradient [11]. It is therefore

important to understand the RBC membrane within the context

of large elastic deformation.

As illustrated in Fig. 1(a), the RBC cell wall comprises a

phospholipid bilayer, cholesterol molecules, transmembrane

proteins and an underlying spectrin network which is tethered

to the membrane. These structural components collectively
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Fig. 1. Molecular based and continuum models of RBC membrane. (a) schematic dra
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determine the deformation behavior of the RBC, in addition to

performing their normal biological functions. The basic building

block of the load-bearing RBC cytoskeleton structure is the

spectrin heterodimer, consisting of intertwined a (280 kD) and b
(246 kD) polypeptide chains running antiparallel to one other

[19]. By using the worm-like-chain (WLC) model to describe the

nonlinear force-displacement behavior of each individual spectrin

molecule (Fig. 1(b)) [13,15], the large deformation characteristics

of the RBC membrane can be obtained in terms of the persistent

length, p, the equilibrium length L0, and the maximum extension

length, Lmax, of the spectrin link. The effective membrane

behavior can also be described phenomenologically using

continuum hyperelasticity models [10,17] where the membrane

mechanical properties are represented by shear modulus, l, and
bending stiffness, j (Fig. 1(c)).

2.1. Spectrin network model

In our recent work [15], a spectrin network model was

constructed to analyze the large deformation of the erythrocyte,

extending the earlier work of Discher and coworkers [13,20–

22]. The approach in [15] particularly focused on incorporating

the effects of random spectrin network, structural relaxation of

the in-plane shear energy, and to include the spontaneous

curvature of the lipid bilayers material [23–25].

The degrees of freedom of the model are the actin vertex

coordinates {xn}, nZ1..N, which can move freely in 3D

Cartesian space according to the generalized force on each

vertex. This is schematically illustrated in Fig. 2(a). Between a

vertex pair (m, n), there can be a spectrin link iZ1..S whose

length is LiK |xm�xn|, the assembly of which forms a 2-D

network. A vertex triplet (l, m, n), mutually connected by

spectrin molecules, forms a triangle aZ1..C, whose area is
In-plane shear modulus: μ
Bending stiffness: κ
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Fig. 2. Schematic drawings of the WLC-membrane model. (a) a degree 6 triangle dominated cytoskeleton model. Li marks a link between two adjacent junction

complexes, which is characterized by the WLC force-extension relationship. Aa is the area of a triangular plaquette, and nb and nc are the normal vectors to plaquette

b and c, respectively. (b) A regular ‘‘single crystal’’ cytoskeleton network.
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Aa= |(xm�x l)� (xn�x l)| / 2 and center of mass is xa K

(xl +xm+xn) / 3, and whose normal na points towards cell

exterior. Two triangles a and b are considered to be adjacent if

they share a common spectrin link. The total coarse-grained

Helmholtz free energy of such a RBC cytoskeleton system is

[13,15]:

F xnf gð Þ ¼ Fin�plane þ Fbending þ Fsurface constraint

þ Fvolume constraint ð1Þ

Noting that in the context of large deformation studies such

as optical tweezers experiments, Fin-plane is the dominant active

term in Eq. (1). The spectrin network plus the bilayer

membrane is assumed to have a total free energy [15]

Fin�plane ¼
X

ia spectrin links

VWLC Lið Þ þ
X

aa triangular plaquettes

Cq

A
q
a
ð2Þ

where Li is the length of spectrin link i and Aa is the area of

triangular plaquette a. The first summation in Eq. (2) includes

all spectrin links and is the total entropic free energy stored in

the spectrin proteins described in terms of the WLC model

[16,26], where the force versus chain length relationship is:

f
WLC

Lð Þ ¼ � kBT

p

1

4 1� xð Þ2
� 1

4
þ x

( )
;

xu
L

Lmax

a 0; 1½ Þ; ð3Þ

in which Lmax is the maximum or contour length of the chain, L

is the instantaneous chain length (x is the dimensionless ratio

between L and Lmax), p is the persistence length, kB is the

Boltzmann constant, and T is the temperature. Integrating Eq.

(3) gives the result [13] that

VWLC Lð Þ ¼ �
Z L

0

dnfWLC nð Þ ¼ kBTLmax

4p
I
3x2 � 2x3

1� x
: ð4Þ

The second summation in Eq. (2) is the hydrostatic elastic

energy stored in the lipid membrane and other protein
molecules, with constant Cq and exponent q to be selected.

Here we use q =1 in this study. The second, third and fourth

free energy terms in Eq. (1) were defined similarly as

traditional cell elasticity models, where detailed developments

can be found elsewhere [15].

2.2. Large deformation elasticity constitutive equations of WLC

membrane

Suppose that the spectrin network is a 2-D triangular crystal

(Fig. 2(b)) with Bravais lattice vectors aK (ax, ay) and bK (bx, by).

The parameter set {ax,ay,bx,by} determines completely the

geometry of the membrane cytoskeleton. For a given reference

lattice, {ax,ay,bx,by} can be made equivalent to two diagonal and

one off-diagonal strain and one rotational degree of freedom. Then,

cub� a ¼ bx � ax; by � ay
� �

; ð5Þ

aujaj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2x þ a2y

q
; bujbj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2x þ b2y

q
;

cujcj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bx � axð Þ2 þ by � ay

� �2q
: ð6Þ

All triangles in the perfect crystalline arrangement have the

same area:

A0 ¼ A1 ¼ A2 ¼ A ¼ 1

2
ja� bj ¼ 1

2
jaxby � aybxj: ð7Þ

If a right-handed system is always chosen, that is, if b is

always chosen to be counter-clockwise to a, then the above

symbols || for absolute values in Eqs. (6) and (7) can be dropped.

The next step is to perform a nonlinear elasticity analysis for

the given Bravais lattice {a,b}. Each vertex is connected to 6

spectrin links, but each link is shared by two vertices, such that

each vertex has three links associated with it. These three links

are conveniently chosen to be a, b, c, respectively, with the

associated WLC energy being VWLC(a)+VWLC(b)+VWLC(c).

Similarly, each vertex is connected to 6 triangular plaquettes,

but a triangular plaquette is shared by 3 vertices. Thus each

vertex really has two affiliated plaquettes, with associated
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membrane energy being 2�CqA
�q. So for each vertex that

occupies a current area 2A the associated strain energy is

VWLC(a)+VWLC(b)+VWLC(c)+2CqA
�q. Based on the Virial

theorem [27], the Cauchy stress is:

sab ¼ �
1

S

X
rkapair

rk f rkð Þr̂ra
kr̂r

b
k ¼ �

1

S

X
rkapair

f rkð Þ
rk

rakr
b
k ð8Þ

for pair-interactions, where S is the area of the representative

area element (RAE), and k goes over all interacting pairs in the

RAE, each pair with radial distance rk, directional normal r̂k
and interacting force f(rk)r̂k. The corresponding WLC stress

then is derived to be:

sWLC
ab ¼ � 1

2A

fWLC að Þ
a

aaab þ
fWLC bð Þ

b
babb þ

fWLC cð Þ
c

cacb

� �
:

ð9Þ
The membrane term, on the other hand, creates a purely

hydrostatic stress contribution,

smembrane
ab ¼ � 1

2
2qCqA

�q�1� �
dab ¼ � qCqA

�q�1dab: ð10Þ

The total in-plane stress is simply the summation of (9) and

(10):

sab ¼ �
1

2A

fWLC að Þ
a

aaab þ
fWLC bð Þ

b
babb þ

fWLC cð Þ
c

cacb

� �
� qCqA

�q�1dab: ð11Þ

Now suppose that at a =b =c =L0=x0Lmax in an unde-

formed lattice, sab =0. Then,

0 ¼ 1

2A0Lmaxx0
I� kBT

p

1

4 1� x0ð Þ2
� 1

4
þ x0

( )

� aaab þ babb þ cacb

� �
þ qCqA

�q�1
0 dab

¼ 1

2A0Lmaxx0
I� kBT

p

1

4 1� x0ð Þ2
� 1

4
þ x0

( )

� x0Lmaxð Þ23dab

2

� �
þ qCqA

�q�1
0 dab ð12Þ

with A0 ¼
ffiffiffi
3
p

x0Lmaxð Þ2=4. Consequently,

Cq ¼
3A

q
0

4qLmaxx0
I
kBT

p

1

4 1� x0ð Þ2
� 1

4
þ x0

( )
x0Lmaxð Þ2

¼
3A

q
0Lmaxx

2
0kBT 6� 9x0 þ 4x20

� �
16pq 1� x0ð Þ2

: ð13Þ

In the special case of q=1 [13],

C1 ¼
3
ffiffiffi
3
p

L3maxx
4
0kBT 6� 9x0 þ 4x20

� �
64p 1� x0ð Þ2

: ð14Þ
2.3. Comparison of WLC spectrin network model and

hyperelasticity model

Following the classical rubber elasticity formulations (see,

for example [28,29]), we have applied first order neo-Hookean

as well as third order hyperelasticity model to study RBC
deformation [17,18]. Expressing the strain energy potential in

terms of membrane shear modulus (in units of force per unit

length),

U ¼ l0

2
k21 þ k22 þ k23 � 3
� �

þ lh k21 þ k22 þ k23 � 3
� �3

; ð15Þ

where l0 is the initial membrane shear modulus (in units of force

per unit length), lh is the third order hyperelasticity constant, and

ki (i=1, 2, 3) are the principal stretches. If the membrane is

assumed to be incompressible, k1k2k3=1. The l0/lh ratio for

healthy RBCs as well as malaria parasite infected RBCs were

estimated to be around 1/20 to 1 /30; and the average initial shear

modulus l0 for healthy RBCs was estimated to be 5–8 lN/m
[9,18], which is consistent with 4–9 lN/m reported in the

literature using micropipette experiments [24].

When taking lh=0, Eq. (15) describes the neo-Hookean

model. When lh=0 and k1k2=k3=1 (i.e., area conservation),

Eq. (15) is reduced to the classical RBC membrane model [10]:

Ts ¼ 2l0c ¼
l0

2
k21 � k22
� �

; ð16aÞ

Ts ¼
1

2
T1 � T2ð Þ

and

cu
1

2
e1 � e2ð Þ ¼ 1

4
k21 � k22Þ;
�

ð16bÞ

k1k2 ¼ 1 ð16cÞ

where T1 and T2 are the in-plane principal membrane stresses,

e1 and e2 are the in-plane principal Green’s strains of the

membrane, and c is the shear strain. Noting that, under uniaxial

stretching, with the same initial uniaxial response BT1
Bk1
jk¼1, the

shear modulus l0 extracted with or without the area conser-

vation assumption is slightly different. The l0 extracted with

the area conservation condition enforced (k1k2=1) would be

exactly 75% of that extracted without enforcing this condition.

This result is confirmed by the numerical simulations in this

study and in a previous study [18]. For example, with the same

whole cell stretching response, the extracted shear modulus l0

is 5.5 lN/m with area conservation condition enforced, and 7.3

lN/m without enforcing this condition [18]. It is generally

accepted in the literature that the RBC membrane can be

treated as area conserving, although when severely stretched it

can be expanded up to 7% [11].

Consider a reference lattice in equilibrium in Fig. 2(b) with

the coordinates

a0 ¼ x0Lmax

ffiffiffi
3
p

2
;
1

2

	 

; b0 ¼ x0Lmax 0; 1ð Þ;

c0 ¼ x0Lmax �
ffiffiffi
3
p

2
;
1

2

	 

: ð17Þ

Fig. 3 compares the uniaxial stress–strain behavior of the WLC

spectrin network model and the hyperelasticity model; the solid

curves are computed using the estimated hyperelasticity parameters

[18] and the dotted curves are plotted using the estimated WLC

parameters [15]. Reasonable match to the initial shear modulus l0 as

well as the strain hardening behavior of the experimentally estimated

hyperelastic response can be found by slightly adjusting the
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parameters p and L0. This also demonstrates that the microscopic

mechanical response is sensitive to microstructural changes.

2.4. Membrane shear modulus l0 of the WLC sheet

Again taking the reference configuration as described in Eq.

(17), if an incremental engineering shear strain c is imposed on

this lattice,

J¼
1 c=2

c=2 1

	 

; r V¼ rJ ; Djrjujr Vj � jrj¼jrjcr̂rxr̂ry þ O c2

� �
;

ð18Þ
then,

a ¼ x0Lmax

ffiffiffi
3
p

2
þ c

4
;
1

2
þ

ffiffiffi
3
p

c
4

	 

;

Da ¼ x0Lmax

ffiffiffi
3
p

c
4
þ O c2

� �
;

b ¼ x0Lmax

c
2
; 1

� �
; Db ¼ O c2

� �
;

c ¼ x0Lmax �
ffiffiffi
3
p

2
þ c

4
;
1

2
�

ffiffiffi
3
p

c
4

	 

;

Dc ¼ � x0Lmax

ffiffiffi
3
p

c
4
þ O c2

� �
ð19Þ

and

DAu det J � 1ð ÞA0 ¼ O c2
� �

; ð20Þ

Taking the differential of Eq. (11),

Dsxy ¼ �
1

2A0

D
fWLC að Þ

a

	 

axay
� �

0
þ fWLC a0ð Þ

a0
D axay
� ��

þ fWLC b0ð Þ
b0

D bxby
� �

þ D
fWLC cð Þ

c

	 

cxcy
� �

0

þ fWLC c0ð Þ
c0

D cxcy
� ��

þ O c2
� �

: ð21Þ
With the WLC force-displacement response,

fWLC a0ð Þ
a0

¼ fWLC b0ð Þ
b0

¼ fWLC c0ð Þ
c0

¼ � kBT

px0Lmax

1

4 1� x0ð Þ2
� 1

4
þ x0

( )
; ð22Þ

D axay
� �

¼ c
2

x0Lmaxð Þ2; D bxby
� �

¼ c
2

x0Lmaxð Þ2;

D cxcy
� �

¼ c
2

x0Lmaxð Þ2; ð23Þ

fWLC a0ð Þ
a0

D axay
� �

þ fWLC b0ð Þ
b0

D bxby
� �

þ fWLC c0ð Þ
c0

D cxcy
� �

¼ � 3ckBTx0Lmax

2p

1

4 1� x0ð Þ2
� 1

4
þ x0

( )
: ð24Þ

On the other hand,

axay
� �

0
¼ x0Lmaxð Þ2

ffiffiffi
3
p

4
; cxcy
� �

0
¼ � x0Lmaxð Þ2

ffiffiffi
3
p

4
; ð25Þ

and,

fWLC Lð Þ
L

¼ � kBT

pL

1

4 1� xð Þ2
� 1

4
þ x

( )
; ð26Þ

so,

D
fWLC Lð Þ

L
¼ kBT

pL20

1

4 1� x0ð Þ2
� 1

4
þ x0

( )
DL� kBT

pL0

� 1

2 1� x0ð Þ3
þ 1

( )
DL
Lmax

¼ kBT

pL20

1

4 1� x0ð Þ2
� x0

2 1� x0ð Þ3
� 1

4

( )
DL: ð27Þ
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Thus,

D
fWLC að Þ

a

	 

axay
� �

0
þ D

fWLC cð Þ
c

	 

cxcy
� �

0

¼ 3ckBTx0Lmax

8p

1

4 1� x0ð Þ2
� x0

2 1� x0ð Þ3
� 1

4

( )
: ð28Þ

Combining contributions in Eqs. (27) and (28), it is seen

that

l0u
dsxy
dc
¼ 1

2A0

3kBTx0Lmax

8p

1

1� x0ð Þ2
� 1þ 4x0

(

� 1

4 1� x0ð Þ2
þ x0

2 1� x0ð Þ3
þ 1

4

)

¼
ffiffiffi
3
p

kBT

4pLmaxx0

3

4 1� x0ð Þ2
� 3

4
þ 4x0þ

x0

2 1� x0ð Þ3

( )
:

ð29Þ

This equation provides an explicit expression for the shear

modulus of the cell membrane which is envisioned as

comprising a triangulated network of WLC spectrin molecules

anchored at actin vertices.

If we take p =8.5 nm, L0=87 nm, and Lmax=238 nm, Eq.

(29) gives linear shear modulus l0=7.98 AN/m. This has

been verified numerically by studying the behavior of the

implementation of the large-strain formula Eq. (11) at small

strain. In particular, we select two area-preserving deforma-

tion paths,

J1 cð Þ ¼ 1 0

c 1

	 

; J2 cð Þ ¼ 1 c

0 1

	 

; ð30Þ

and plot rxy versus c in Fig. 4. The two paths have the

same linear shear modulus l0 at small c but the behaviors
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Fig. 4. Large-strain response of ‘‘single-crystal’’ WLC membrane ( p =8.5 nm,

L0=87 nm, Lmax=238 nm) for two area-preserving shear paths J1 and J2
shown in Eq. (30).
diverge at large c, as one path causes shear displacement in

the x-direction, and the other in the y-direction. This

illustrates that the ‘‘single-crystal’’ WLC membrane is

isotropic linear elastically, but anisotropic at large deforma-

tion. The non-textured ‘‘polycrystalline’’ or ‘‘amorphous’’

versions of the WLC membrane should be isotropic even for

large deformation.

2.5. Linear elastic area compression modulus K of the WLC

sheet

When a =b =c =Lmax x and the angle between a,b is exactly

60-, the Cauchy stress is diagonal:

sab ¼
1

2A
I
kBT

pLmaxx

1

4 1� xð Þ2
� 1

4
þ x

( )
xLmaxð Þ23dab

2

� �

� qCqA
�q�1dab: ð31Þ

The resulting pressure is

P ¼ qCqA
�q�1 � 3kBTxLmax

4Ap

1

4 1� xð Þ2
� 1

4
þ x

( )
: ð32Þ

The linear elastic area compression modulus K is defined

as,

Ku� BP

BlogA






A¼A0

¼ � 1

2

BP

Blogx






x¼x0

: ð33Þ

With the definition,

UuqCqA
�q�1;Vu

3kBTxLmax

4Ap

1

4 1� xð Þ2
� 1

4
þ x

( )
;

P ¼ U � V ;U0uU x0ð Þ ¼ V0uV x0ð Þ ¼ qCqA
�q�1
0 : ð34Þ

It is seen that

BU

Blogx






x¼x0
¼ U0

BlogU

Blogx






x¼x0

U0 � q� 1ð Þ � 2; ð35Þ

and that,

BV

Blogx






x¼x0
¼ V0

BlogV

Blogx






x¼x0

¼ U0 � 1þ 2þ 4 1� x0ð Þ3

1� x0ð Þ 6� 9x0 þ 4x20
� �

( )
:

ð36Þ

Thus,

K ¼ � 1

2

BU

Blogx






x¼x0
� BV

Blogx






x¼x0

 !

¼ qCqA
�q�1
0 qþ 1

2
þ 1þ 2 1� x0ð Þ3

1� x0ð Þ 6� 9x0 þ 4x20
� �

( )
: ð37Þ
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Fig. 5. Large-strain response of ‘‘single-crystal’’ WLC membrane ( p =8.5 nm,

L0=87 nm, Lmax=238 nm) under area expansion and compression.
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Combining this expression with Eq. (13),

K ¼
3Lmaxx

2
0kBT 6� 9x0 þ 4x20

� �
16p 1� x0ð Þ2A0

� qþ 1

2
þ 1þ 2 1� x0ð Þ3

1� x0ð Þ 6� 9x0 þ 4x20
� �

( )

¼
ffiffiffi
3
p

kBT

4pLmax 1� x0ð Þ2
qþ 1

2

	 

6� 9x0 þ 4x20
� ��

þ 1þ 2 1� x0ð Þ3

1� x0

)
: ð38Þ

For p =8.5 nm, L0=87 nm, and Lmax=238 nm, Eq. (38)

gives linear shear modulus K =15.96 AN/m. The behavior at

large strain is shown in Fig. 5.

2.6. Linear elastic Young’s modulus E and Poisson’s ratio N of

the WLC Sheet

For small deformations, the sheet is an isotropic elastic

medium, with

Cijkl ¼ kdijdkl þ l0 dikdjl þ dildjk
� �

; i; j; k; l;a1; 2; ð39Þ

which complies with all symmetry requirements and tensor-

transformation law:

Qii VQjj VQkk VQll VCijkl ¼ Ci Vj Vk Vl V: ð40Þ

In matrix notation,

C ¼
kþ 2l0 k 0

k kþ 2l0 0

0 0 l0

0
@

1
A: ð41Þ

Note that K =k +l0, or k =K�l0, such that

kþ 2l0 k

k kþ 2l0

	 
 1

� k
kþ 2l0

0
@

1
A¼ kþ 2l0 �

k2

kþ 2l0

0

0
@

1
A:
ð42Þ
The linear elastic Young’s modulus is therefore:

E ¼ kþ 2l0 �
k2

kþ 2l0

¼ 4l2
0 þ 4kl0

kþ 2l0

¼ 4Kl0

K þ l0

; ð43Þ

and the Poisson’s ratio is:

m ¼ k
kþ 2l0

¼ K � l0

K þ l0

ð44Þ

Unlike pair-potential systems [30], m in general is not 1 /3.

However, if q=1, then m happens to be 1 /3. One may directly

verify that Eq. (38) is exactly twice of Eq. (29) when q =1. This

result is consistent with a recent measurement, where K /l0was

found to be 1.9 [31].

3. Modeling whole cell deformation of the erythrocyte

3.1. Molecularly based and continuum whole cell model setup

Experimental techniques of laser or optical tweezers (also

referred to as laser or optical traps) were used in measuring

mechanical response of living cells with maximum force

resolution on the order of 1 pN [32]. Systematic experiments

on healthy RBCs [18] as well as RBCs invaded by the malaria

parasite, Plasmodium falciparum [9] were performed with

maximum loading forces on the order of 200 pN, which is

capable of stretching the RBC axial diameter to twice of its

original diameter. Corresponding spectrin network model [15]

and continuum finite element model [17] were constructed to

study the whole cell deformation under laser tweezers stretching.

Fig. 6 schematically illustrates the experimental setup of laser

tweezers as well as the molecularly based and continuum finite

element computational model setup. In the laser tweezers

experiment [18], silica beads 4.12 Am in diameter (Bangs

Laboratories, Fisher, IN, U.S.A.) were added to RBCs to

introduce spontaneous and nonspecific bonding. The optical

tweezers system incorporates a 1.5 W, 1064 nm Nd:YAG laser

module (LazerTweezers, Cell Robotics, Inc., Albuquerque, NM,

U.S.A.) and inverted optical microscope (Leica Systems,

Wetslar, Germany). Deformation was captured using a CCD

camera whereby real-time video images can be viewed. Detailed

descriptions of cell and bead preparation for stretching healthy

and parasitized RBCs by optical tweezers and of the calibration

methods can be found elsewhere [18]. This experimental setup

can be used to measure the deformed axial diameter,DA, and the

deformed transverse diameter, DT, versus the total stretching

force, F. The initial cell size, D0, and the contact diameter, dc
(taken to be the average value from the two diametrically

contacting beads), are measured experimentally (see Fig. 6).

In setting up the molecularly based and the continuum whole

cell model under laser tweezers stretching, the starting cell

geometry is taken to be the average geometry of healthy RBCs

given by [33],

z ¼ FD0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4 x2 þ y2ð Þ

D2
0

s
c0 þ c1

x2 þ y2

D2
0

þ c2
x2 þ y2ð Þ2

D4
0

" #

ð45Þ



Fig. 6. Laser tweezers experiment and computational models setup.
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where the parameter set (D0, c0, c1, c2)= (7.82 Am, 0.05179025,

2.002558, �4.491048) describes the biconcave shape of an

average healthy RBC, with the cytosol volume VRBC=94 Am3

and the cell surface area ARBC=135 Am
2. The parameter set (D0,

c0, c1, c2)= (6.54 Am, 0.5, 0, 0) describes the spherical shape

with the same surface area ARBC, where the biconcave shape can

be achieved via a sophisticated random network generation and

morphing process [15]. The relaxed, free-standing, biconcave

shape so achieved with the WLC spectrin network model

consists ofN =28,673 vertices (see Fig. 7), which is only slightly

deviated from the above mentioned analytical biconcave shape.

This spectrin network is dominated by degree-6 connectivity

(i.e., a node connected with 6 spectrin links), and each connected

spectrin link is described by the WLC force-displacement law

given by Eq. (3). The biconcave-shaped WLC spectrin network

model so generated has zero initial in-plane deformation energy
Fig. 7. WLC spectrin network RBC model setup.
and a small bending energy on the order of 10–100 eV, which

does not have any significant influences towards the subsequent

laser tweezers stretching response. The total cytosol volume,

VRBC, and the membrane surface area, ARBC, are constrained to

be fairly close to their initial values, respectively. The detailed

model generation process of the WLC spectrin network can be

found in [15].

In the molecularly based model simulations, a time-

dependent total force Fext(t) is applied to N+=0.05N vertices

of the cytoskeleton in the x-direction, which are chosen to be

5% of vertices that have the largest x-coordinates at the

beginning of the simulation. Correspondingly, a �Fext(t) total

force is applied to N_=0.05N vertices that have the smallest x-

coordinates at the beginning of the simulation. Thus,

fn
ext=TFext(t) / (0.05N) if vertex n is in N+/ N�, and 0 if

otherwise. The choice of 0.05N vertices corresponds to a

contact diameter dc�2 Am. The contact diameter dc can be

easily adjusted by changing the percentage of N vertices which

TFext(t) is applied to.

In the continuum finite element simulations, the stress-free

configuration is taken to be the analytical biconcave shape

described above. The stretching force is applied to the silica

microbeads which are attached diametrically at opposite ends

of the cell. The silica beads are modeled as rigid spheres and

are assumed to be attached to the cell over a small oval region

with a diameter of between 0.5 to 2 Am so that the contact

diameter can be simulated in accordance with the experimen-

tally observed values. To simulate laser tweezers experiments,

only half of the red blood cell is modeled due to symmetry with

12,000 three-dimensional shell elements (see inset in Fig. 6).

Four-noded, bilinear, reduced integration shell elements are

used. Full cell simulations are also performed to study shape

evolution versus membrane shear and bending moduli. The

total cytosol volume, VRBC, is kept constant at the initial value
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throughout the simulations. The simulations have been

performed using the commercially available general purpose

finite element package, ABAQUS (ABAQUS Inc., Pawtucket,

RI, U.S.A.).

3.2. Laser tweezers simulation results

The coarse grained molecular dynamics (CGMD) simula-

tion is carried out using the following parameter set: L0=75

nm, Lmax=3.17L0=238 nm, p =0.1L0=7.5 nm, q =1, and

additional terms related to volume and surface area conserva-

tion and bending energy. This parameter set leads to the
(a)

(b)

(c)

(d)

(e)

(g)

(h)

Fig. 9. Folding observed in experiments and computational simulations. (a)– (d) Op

are FEM simulations based on continuum hyperelasticity [18] at forces of 67 and 193

forces of 85 and 190 pN, respectively. See text for more details.
following linear elastic properties for the molecularly based

WLC sheet: shear modulus l0=8.3 lN/m; area dilatational

modulus K =16.6 lN/m; uniaxial tension Young’s modulus

E =22.1 lN/m; Poisson’s ratio m =1/3; and average bending

modulus j =2.4�10�19 J. The finite element simulations are

carried out with dc=2 Am, D0=7.82 Am, lh /l0=1 /20, l0=5,

8 and 12 AN/m, and j =2�10�19 J.

Fig. 8 shows the CGMD simulation and finite element

(FEM) simulations results of the increase in the axial diameter

and the decrease in the transverse diameter of the RBC as a

function of the force applied by the optical tweezers up to a

maximum value of about 200 pN. The laser tweezers
(f)

tical tweezers experiments at stretching forces between 80–193 pN. (e) and (f)

pN, respectively. (g) and (h) are simulations based on spectrin level modeling at
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experimental results [18] are also plotted for comparison. It is

clear from the simulations that, computational results using the

shear modulus l0¨8 lN/m match well with the average

experimental curve, while l0=5¨12 AN/m covers most of the

experimental scatter.

3.3. Deformation induced folding during laser tweezers

stretching

It was noted in finite element simulations as well as

experiments that deformation induced folding were observed

(see supplementary movies of simulations and experiments in

our earlier work [9,17,18]). Fig. 9 summarizes different types

of folding observed in experiments as well as in simulations.

Fig. 9(a) shows a relatively deep folding along the center, while
(a)

(b)
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Fig. 10. Scaling relationships of RBC deformed by laser tweezers. (a) Dimensionl
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¼ 5:21.
Fig. 9(b) is a more gradual folding. Fig. 9(c) and Fig. 9(d) show

two cases of irregular T-shaped folding observed experimen-

tally. Similarly, different degrees and types of folding are

observed in the CGMD and FEM simulations. Fig. 9(e) and

Fig. 9(f) show different degrees of folding along the center line

in the FEM simulations. Fig. 9(g) shows a more gradual

folding in the CGMD simulation shown in Fig. 8. Fig. 9(h)

shows a T-shaped folding in the CGMD simulation with an

initial cell geometry that is not symmetrically aligned with the

axis of loading.

It is clear through simulation results as well as the

experimental observations that the folded cell shape can be

strongly influenced by the contact geometry of the beads (size

and symmetry), the stretching force applied, the initial cell

shape, and the bending and shear moduli of the RBCmembrane.
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3.4. Scaling relationships and mechanical property extraction

Extracting mechanical properties from laser tweezers experi-

ments is not a trivial task, because it requires complicated

numerical simulations that can accurately describe the related

geometrical parameters (i.e., cell size, shape, cytosol volume,

and contact geometry) as well as the nonlinear constitutive

parameters (i.e., shear and bendingmoduli). Establishing scaling

relationships through dimensional analysis and parametric

simulations, therefore, will provide insights of the inherent

relationships between these various geometrical and constitutive

parameters. A systematic methodology can also be established to

accurately extract mechanical properties from a laser tweezers

experiment, which will relieve the requirements of running a

large number of sophisticated computational simulations.

For a laser tweezers experiment, the loading force F is a

function of many different parameters:

F ¼ F DA; l0; lh; j; dc;D0; c0; c1; c2ð Þ ð46Þ

Taking the cell shape factors c0, c1, c2 as the standard values

given above for the analytical biconcave shape, and noting that

bending modulus j within the experimentally observed range

is not important for RBCs during large deformation stretching

[17], we can simplify Eq. (46) to be

F ¼ F DA; l0; lh; dc;D0ð Þ ð47Þ

Using the dimensional analysis and C-theorem, Eq. (47) can

be expressed as

F

l0D0

¼ PV
DA

D0

;
D0

dc
;
lh

l0

	 

; ð48aÞ

and equivalently,

DA

D0

¼ P
F

l0D0

;
D0

dc
;
lh

l0

	 

ð48bÞ

where CVand C are dimensionless functions.

Extensive parametric simulations using FEM with different

combinations of parameter sets (l0, lh, j, dc, D0) confirm that,

with the same D0

dc
and

lh

l0
ratio, different parameter sets give

practically the same normalized force ( f ¼ F
l0D0

) versus

normalized cell stretch ratio (r ¼ DA

D0
) curves. Fig. 10(a) plots

the so obtained r-f functions with
lh

l0
¼ 1

20
, and Fig. 10(b) plots

the r-f functions with D0

dc
¼ 5:21. Fig. 10(a) shows the functional

dependence of the C functions versus different D0

dc
ratios;

significant changes are found for the axial response across the

entire stretching range studied, whereas only small variations are

found for the transverse response. This demonstrates the

importance to accurately measure both the contact diameter

and initial cell size. Fig. 10(b) shows the functional dependence

of the C functions versus different
lh

l0
ratios; significant changes

are found for the axial response at larger stretch ratios but not at

small stretch ratios, whereas much smaller variations are found

for the transverse response. This shows that the early portion of

the data can be used to extract the linear shear modulus l0, while

the data at larger stretch ratios can be used to extract the strain
hardening behavior (i.e., lh) of the nonlinear elasticity. Here we

give one set of such dimensionless functions in closed-form

based on hundreds of FEM computations that fit well all the

range of parameters simulated,

DA

D0

¼ 1þ B
F

l0D0

� �C

;

B ¼B1 þ B2 ln
D0

dc
� B3

	 
� �
; C¼ C1 � C2 ln

D0

dc
� C3

	 
� �
;

B1 ¼ 0:42054; B2 ¼ 0:059016� 0:01489195 ln
lh

l0

	 
� �
;

B3¼ 3:247842þ 0:4191616 ln
lh

l0

	 
� �
þ0:0424185 ln

lh

l0

	 
� �2
:

C1¼ 0:5998124� 0:0574776

�
ln

lh

l0

	 
�

� 0:00348081 ln
lh

l0

	 
� �2
;

C2 ¼ 0:04985;

C3¼� 1:93967� 2:090442 ln
lh

l0

	 
� �
�0:2258287 ln

lh

l0

	 
� �2
;

ð49Þ

where the parameter ranges are D0

dc
a 3:5; 15:64½ � and

lh

l0
a 1

90
; 1
10

� �
, and the fitting is within the range DA

D0
a 1; 1:8½ �.

Now with the closed-form dimensionless functions given by

Eq. (49), a systematic methodology can be readily established



Table 1

Illustrative examples of using the proposed scaling functions for extracting the

elastic moduli of healthy and P. falciparum-invaded RBCs subjected to optical

tweezers stretching

RBC

condition

Method

used*

Average l0

(AN/m)

Low error

scatter value

(AN/m)

High error

scatter value

(AN/m)

Number

of tests

Healthy Present

scheme

8.5 6.1 10.9 7

Ref. [9] 5.3 4.0 7.3

Exposed Present

scheme

11.0 7.7 14.2 8

Ref. [9] 8.0 6.0 10.7

Ring Present

scheme

21.2 17.0 25.3 5

Ref. [9] 16.0 12.6 21.3

Trophozoite Present

scheme

40.0 22.6 57.5 5

Ref. [9] 21.3 16.0 32.0

Schizont Present

scheme

57.5 26.6 88.3 23

Ref. [9] 53.3 33.0 100.0

*Note: If the area conservation condition is strictly enforced, the l0 values

extracted in this table need to be multiplied by a factor of 0.75 as discussed in

Section 2.
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as shown in Fig. 11. Various optimizing/fitting schemes other

than the one shown in Fig. 11 can also be explored.

Using the proposed methodology, the experimental data

reported earlier [9] are analyzed and compared with the results

obtained by simply fitting the average experimental curve and

the scatter. Table 1 shows the examples using this method for

extracting the elastic moduli of healthy and P. falciparum-

invaded RBCs that were subjected to large deformation by

means of optical tweezers. For all cases studied in Table 1, we

simply take lh /l0=1 /20 for the purpose of extracting l0. The

P. falciparum-invaded RBCs in schizont stage are more

spherical than biconcave [9]. However, it was found that the

axial responses are very close to each other for spherical and

biconcave RBCs with the same membrane modulus as long as

their initial diameters are the same [17]. Thus the issue of shape

changes can be circumvented by simply using the current set of

equations.

Comparing the results obtained using these two methods,

it is clear that all the trends of shear modulus variation

versus parasite development stages observed in Suresh et al.

[9] are preserved, i.e., the shear modulus of RBC membrane

increases up to 10-fold with progressive parasite develop-

ment. In most cases the values obtained using these two

methods are close to each other. In the case of trophozoite

case, the average value estimated by the current scheme is

considerably stiffer. This is due to the much smaller average

dc=1.2 Am for the trophozoite tests, while in Suresh et al.

[9] it was simply assumed dc=2.0 Am, which resulted in a

lower estimate of the shear modulus.

4. Concluding remarks

In this work, we have provided explicit expressions for the

membrane shear modulus l0, linear elastic area compression
modulus K, and Young’s modulus E for the human red blood

cell with information derived from recent analytical, compu-

tational and experimental studies that employ force-displace-

ment laws that conform to the worm-like chain model

formulation. It is shown that the key parameters of the

WLC model are consistent with the parameters extracted by

matching whole cell, large deformation experiments with

continuum models based on continuum, hyperelasticity

formulations. The predictions of both spectrin-level and

continuum values of elastic parameters of the composite

membrane comprising the spectrin network are then compared

with recent whole cell deformation experiments that

employed optical tweezers stretching to large strain levels.

Folding of the RBC membrane during deformation is

observed both experimentally and computationally. From the

spectrin-level and continuum-level computational simulations,

it is clear that the folding is related to the irregular biconcave

shape of the erythrocyte and that it is influenced by the

constitutive response of the membrane and the spectrin

network and by the conditions of contact where the glass

beads are attached at diametrically opposite ends of the cell

for the optical tweezers experiments. We also present closed-

form scaling functions based on a large number of computa-

tions and dimensional analysis. This provides a systematic

methodology to extract key mechanical parameters from

optical tweezers experiments. Illustrative examples are given

for the use of such methodology for extracting the elastic

moduli of healthy and P. falciparum-invaded RBCs that were

subjected to large deformation by means of optical tweezers.

Acknowledgments

This work was supported in part by the Singapore-MIT

Alliance program on Molecular Engineering of Biological and

Chemical Systems. The authors also acknowledge ongoing

research collaborations between MIT and The Ohio State

University on atomistic and molecular simulations of hard and

soft materials which are supported by the Defense University

Research Initiative on Nano Technology (DURINT) on

FFDamage- and Failure-Resistant Nanostructured and Interfa-

cial Materials__ by the Office of Naval Research under Grant

N00014-01-1-0808.

References

[1] S. Eber, S.E. Lux, Seminars in Hematology 41 (2004) 118.

[2] P.G. Gallagher, Seminars in Hematology 41 (2004) 142.

[3] J. Delaunay, Seminars in Hematology 41 (2004) 165.

[4] C. Brugnara, Journal of Pediatric Hematology Oncology 25 (2003) 927.

[5] G. Bosman, Cellular and Molecular Biology 50 (2004) 81.

[6] O. Galkin, P.G. Vekilov, Journal of Molecular Biology 336 (2004) 43.

[7] B.M. Cooke, N. Mohandas, R.L. Coppell, Advances in Parasitology,

vol. 50, Academic Press Ltd, London, 2001, p. 1.

[8] F.K. Glenister, R.L. Coppel, A.F. Cowman, N. Mohandas, B.M. Cooke,

Blood 99 (2002) 1060.

[9] S. Suresh, J. Spatz, J.P. Mills, A. Micoulet, M. Dao, C.T. Lim, M. Beil, T.

Seufferlein, Acta Biomaterialia 1 (2005) 15.

[10] E.A. Evans, R. Skalak, Mechanics and Thermodynamics of Biomem-

branes, CRC Press, Inc., Boca Raton, Florida, USA, 1980.



M. Dao et al. / Materials Science and Engineering C 26 (2006) 1232–12441244
[11] Y.C. Fung, Biomechanics: Mechanical Properties Of Living Tissues, 2nd

edR, Springer-Verlag, New York, USA, 1993.

[12] J.C. Hansen, R. Skalak, S. Chien, A. Hoger, Biophysical Journal 72

(1997) 2369.

[13] D.E. Discher, D.H. Boal, S.K. Boey, Biophysical Journal 75 (1998) 1584.

[14] N.S. Gov, S.A. Safran, Biophysical Journal 88 (2005) 1859.

[15] J. Li, M. Dao, C.T. Lim, S. Suresh, Biophysical Journal 88 (2005) 3707.

[16] C. Bustamante, Z. Bryant, S.B. Smith, Nature 421 (2003) 423.

[17] M. Dao, C.T. Lim, S. Suresh, Journal of the Mechanics and Physics of

Solids 51 (2003) 2259 (also see Erratum ibid 53 (2005) 493–494).

[18] J.P. Mills, L. Qie, M. Dao, C.T. Lim, S. Suresh, Mechanics and Chemistry

of Biosystems 1 (2004) 169.

[19] J.C. Winkelmann, B.G. Forget, Blood 81 (1993) 3173.

[20] D.E. Discher, D.H. Boal, S.K. Boey, Physical Review E 55 (1997) 4762.

[21] S.K. Boey, D.H. Boal, D.E. Discher, Biophysical Journal 75 (1998) 1573.

[22] J.C.M. Lee, D.T. Wong, D.E. Discher, Biophysical Journal 77 (1999) 853.

[23] W. Helfrich, Zeitschrift fur Naturforschung. C, A Journal of Biosciences

28 (1973) 693.
[24] D.H. Boal, Mechanics of the Cell, Cambridge University Press, Cam-

bridge, U.K., 2002.

[25] R. Mukhopadhyay, G. Lim, M. Wortis, Biophysical Journal 82 (2002)

1756.

[26] J.F. Marko, E.D. Siggia, Macromolecules 28 (1995) 8759.

[27] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Clarendon

Press, New York, 1987.

[28] J.C. Simo, K.S. Pister, Computer Methods in Applied Mechanics and

Engineering 46 (1984) 201.

[29] O.H. Yeoh, Rubber Chemistry and Technology 63 (1990) 792.

[30] K.J. Van Vliet, J. Li, T. Zhu, S. Yip, S. Suresh, Physical Review B 67

(2003) (art. no.-104105).

[31] G. Lenormand, S. Henon, A. Richert, J. Simeon, F. Gallet, Biophysical

Journal 81 (2001) 43.

[32] G. Bao, S. Suresh, Nature Materials 2 (2003) 715.

[33] E.A. Evans, Y.C. Fung, Microvascular Research 4 (1972) 335.


	Molecularly based analysis of deformation of spectrin
 network and human erythrocyte
	Introduction
	WLC spectrin network membrane model and large deformation elasticity
	Spectrin network model
	Large deformation elasticity constitutive equations of WLC membrane
	Comparison of WLC spectrin network model and hyperelasticity model
	Membrane shear modulus l0 of the WLC sheet
	Linear elastic area compression modulus K of the WLC sheet
	Linear elastic Young’s modulus E and Poisson’s ratio N of the WLC Sheet

	Modeling whole cell deformation of the erythrocyte
	Molecularly based and continuum whole cell model setup
	Laser tweezers simulation results
	Deformation induced folding during laser tweezers stretching
	Scaling relationships and mechanical property extraction

	Concluding remarks
	Acknowledgments
	References


