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The accurate description of the indentation load–displacement relationship of an elastic
sharp indenter indenting into an elastic half-space is critical for analyzing the
nanoindentation data of superhard materials using the procedure proposed by Oliver
and Pharr [J. Mater. Res. 7, 1564 (1992)]. A further discussion on this issue is made
in the present work to reconcile the apparent inconsistencies that have appeared
between the experimental results reported by Lim and Chaudhri [Philos. Mag. 83,
3427 (2003)] and the analysis performed by Fischer-Cripps [J. Mater. Res. 18, 1043
(2003)]. It is found that the indenter size effect is responsible for this large
discrepancy. Moreover, according to our analysis, we found that when the deformation
of the indenter is significant, besides the errors caused by the Sneddon’s boundary
condition as addressed by Hay et al. [J. Mater. Res. 14, 2296 (1999)], the errors
induced by the application of reduced modulus should be considered at the same time
in correcting the modified Sneddon’s solution. In the present work, for the diamond
indenter of 70.3° indenting into an elastic half-space with its Poisson’s ratio varying
from 0.0 to 0.5 and the ratio of the Young’s modulus of the indented material to that
of the diamond indenter, Ematerial/Eindenter, varying from 0 to 1, a set of new correction
factors are proposed based on finite element analysis. The results reported here should
provide insights into the analysis of the nanoindentation load–displacement data when
using a diamond indenter to determine the hardness and Young’s modulus of superhard
materials.

I. INTRODUCTION

During the past 3 decades, depth sensing instrumented
indentation tests have become an important tool to de-
termine the mechanical properties of materials at differ-
ent length scales (e.g., nanometer and micrometer
scales). Using indentation tests, Young’s modulus and
hardness can be measured following the method of
Doerner and Nix1 or Oliver and Pharr.2 It is also possible
to use indentation tests to determine the stress–strain
curves of elastoplastic materials.3–15 Besides being used

on bulk materials, indentation tests can be used to probe
the mechanical properties of thin films and coating sys-
tems.16,17 The present research is relevant for the analy-
sis of the conical indentation into an elastic half-space,
which is useful when taking at least the following two
aspects into consideration. First, there indeed exist ma-
terials that exhibit elastic deformation under indentation
(e.g., rubber-like materials and some superhard materi-
als). Second, the solution of the indentation into an elas-
tic half-space forms the basis of analyzing the nanoin-
dentation data by using the classic method of Oliver and
Pharr.2 Giannakopoulos et al.18 and Larsson et al.19

explored the Vickers and Berkovich indentation into
an elastic half-space by using finite element computa-
tions. Hay et al.20 examined the Sneddon’s solution21

by analyzing the conical indentation of linearly elastic
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materials. In their analysis,18–20 the indenter was as-
sumed to be rigid. However, in the nanoindentation of
superhard materials, which is the main concern of the
present research, the indenter can undergo significant
elastic deformation. To include the effect of the indenter
compliance, a common practice of so-called reduced
modulus was used in the method of Oliver and Pharr.2

There have recently been a few conflicting reports21–24

regarding the applicability of the reduced modulus, as
described in detail below in this section.

In the procedure proposed by Oliver and Pharr,2 a key
relation is applied to relate the indentation response to
the material properties for the case of conical indentation

S =
2

��
E* �A , (1)

where S, A are the contact stiffness and the contact area,
respectively. E* is the reduced modulus which is given
by

1

E*
=

1 − �2

E
+

1 − �i
2

Ei
, (2)

where E and � are the Young’s modulus and Poisson’s
ratio of the elastic solids, respectively, and Ei and �i are
the Young’s modulus and Poisson’s ratio of the elastic
indenter, respectively. The relation comes from the elas-
tic-contact analysis and specially the modified Sneddon’s
solution2 for conical indentation

P =
2

�
E* tan���h2 , (3)

where P, h, and � are the indentation load, the indentation
depth, and the half-apex angle of the indenter, respec-
tively. Equation (3) is an extension of the original Sned-
don’s solution25 for a rigid conical indenter, that is

P =
2

�

E

1 − �2 tan���h2 . (4)

Up to now, no rigorous theoretical proof has been pro-
vided for the extension of Eq. (4) to Eq. (3). Chaudhri21

pointed out that such an extension is questionable when
the deformation of the indenter is significant. However,
the numerical and theoretical analysis performed by
Fischer-Cripps22 showed that the application of Eq. (3)
using reduced Young’s modulus in nanoindentation tests
can provide reliable results for the determination of
hardness and Young’s modulus. Recently, Lim and
Chaudhri23 carried out comprehensive experiments to
verify the effectiveness of Eq. (3). Based on their results,
Lim and Chaudhri23 suggested that when the Young’s
modulus of the indented material is comparable with
that of the indenter, the modified Sneddon’s solution2 is
no longer valid, which is apparently inconsistent with
the numerical results of Fischer-Cripps.22 Lim and

Chaudhri23 also argued that if the indenter with the half-
apex angle of 75° is applied, the Sneddon’s solution
given by Eq. (4) instead of Eq. (3) should be applied to
extract mechanical properties of indented materials. Ac-
cordingly, they suggested revised values of the Young’s
modulus, which are much smaller than the originally re-
ported values, for several superhard materials that had
been reported in the literature.26–29

The main intention of the present work is to reconcile
the apparent inconsistencies found in the literature and to
further examine the errors induced by the application of
the so-called reduced modulus when the indenter exhibits
significant elastic deformation. We start from the inter-
esting experiments designed by Lim and Chaudhri23 by
simulating a rubber indenter indenting into a rubber half-
space (see Sec. II). The subsequent analysis (see Sec. III)
aims at revealing the reason why the load–depth curves
in the experiments23 are far from the results given by the
theoretical and numerical analysis.22 In Sec. IV, the per-
formance of Eq. (3) in the analysis of nanoindentation
into superhard materials is further examined by simulat-
ing a diamond indenter indenting into an elastic half-
space considering different elastic properties. The analy-
sis shows that corrections to Eq. (3) are needed and are
proposed in the present research for a specific conical
indenter. Section V summarizes the main findings in the
present work.

II. SIMULATIONS OF THE EXPERIMENTS
PERFORMED IN THE LITERATURE

The experiments performed by Lim and Chaudhri23

using a conical indenter with a half-apex angle of 75°
were simulated by applying ABAQUS,30 a general pur-
pose commercial finite element software. The objective
is to confirm the large discrepancy between the experi-
mental results23 and the results from theoretical and nu-
merical analysis.22 Figure 1 shows the schematic of the
indenter and the indented material. By referring to the
experiments of Lim and Chaudhri,23 the radius Rw and
the height Lh of the substrate for the rubber block, PDMS
(1:10) and soda-lime glass block are taken as 36 mm × 40
mm, 14 mm × 25 mm, and 36 mm × 25 mm, respectively.
The material properties of the indenter and the indented
materials in the work of Lim and Chaudhri23 were used
in the present simulations (see Table I for detail). An
axisymmetric model was adopted, and a total of 10,000
four-node bilinear axisymmetry elements was used to
model the semi-infinite substrate of the indented solid.
Figure 2 is the mesh of the rubber indenter indenting into
the rubber block. A mesh similar to that shown in Fig. 2
is used for other cases. It should be pointed out that the
75° indenter has a tip radius of 0.28 mm,23 which is also
simulated in the present analysis. The boundary condi-
tions on the indented solid were specified such that the
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outer-surface nodes are traction-free with fixed lower-
surface nodes, as given by Fig. 1, and the following
equations

Tr�r = Rw� = 0, Tz�r = Rw� = 0 �outer surface� ,
(5)

and

Ur�z = Lh� = 0, Uz�z = Lh� = 0 �lower surface� ,
(6)

where T represents the traction force, and U represents
the displacement. It is assumed that the machine compli-
ance has already been excluded from the recorded dis-
placement. Considering that the indenter rod is made of
aluminum,23 the Young’s modulus of which is much
larger than that of rubber, the aluminum rod is assumed
to be rigid. The rigid indenter rod was assumed to be
well-bonded with the indenter; in the simulation this was
realized by assuming that the upper surface of the in-
denter has a finite displacement Uc in the direction z,
which is the same as that of the indenter rod, and no
displacement was seen in the direction r. In equation
form, they are expressed as

Ur,upper = 0

Uz,upper = Uz,rod = Uc . (7)

In this case, a displacement-controlled loading procedure
is applied. Friction was omitted here, according to Mata
and Alcalá.12 In the simulations, the indenter and the
indented materials were both assumed to be linearly elas-
tic, and large deformation formulations were adopted.20

The computational results and corresponding experimen-
tal results are given in Fig. 3. In Fig. 3, the indentation
depth is the displacement of the indenter rod and also the
upper surface of the indenter in the loading direction. The
maximum indentation depth is obtained by referring to
that in the experiments of Lim and Chaudhri.23 The
analysis performed by Fischer-Cripps,22 however,
showed that the modified Sneddon’s solution given by
Eq. (3) (the dotted lines in Fig. 3) still works very well,
even where the deformation of the indenter is significant.
Therefore, from the results in Fig. 3, it can be seen that
the present computational results agree well with the ex-
periments,23 and these results computationally reproduce
the large discrepancy between the numerical results of
Fischer-Cripps22 and the experimental results of Lim and
Chaudhri.23

III. SAMPLE SIZE EFFECT AND INDENTER SIZE
EFFECT ON THE INDENTATION
LOAD–DISPLACEMENT CURVE

To reconcile the apparent difference between the nu-
merical results of Fischer-Cripps22 and the experimental
results of Lim and Chaudhri,23 we further examined the
experimental procedure in Ref. 23 and the numerical
model in Ref. 22, as well as the model used in Sec. II.
The difference may be due to two possibilities: (i) the
assumption of the material constitutive response was in-
correct; and/or (ii) the geometrical relationships (i.e.,
sample size effects and/or indenter size effects) come
into play. In both interpreting the experimental results in
Ref. 23 and performing the numerical simulations in Sec.
II, the material response was assumed to be linearly elas-
tic, and the viscoelasticity and nonlinear elasticity (i.e.,

FIG. 1. A schematic drawing of the computational model (an elastic
conical indenter indenting into an elastic solid) used in the present
analysis.

TABLE I. Material properties used in the simulation of the experi-
ments performed by Lim and Chaudhri.23

Materials Young’s modulus (MPa)
Poisson’s

ratio

Rubber conical indenter 2.45 0.5
Rubber block 2.45 0.5
PDMS (1:10) 1.5 0.5
Soda-lime glass 70,000 0.25

FIG. 2. Finite element mesh used in the present analysis.
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hyperelasticity) were regarded as being negligible. Lim
and Chaudhri31 confirmed that viscoelastic effects on the
indentation loading curve for the experimental materials
studied by Lim and Chaudhri23 were not observed, and
the linear elastic assumption of the material response is
reliable. Therefore, in the present work, the geometrical
factors were examined carefully.

A. Sample size effect

Recently, Xu and Li32 systematically investigated the
indentation sample size effect. They showed that a criti-
cal ratio of the indent size to sample size exists, beyond
which a significant sample size effect may occur. In the
experiments of Lim and Chaudhri,23 for the rubber in-
denter indenting into the rubber block and the polydi-
methylsiloxane (PDMS) substrate, the ratios of the maxi-
mum contact radius, am, to the sample size parameter,
Rw, are about 0.05 and 0.12, respectively, which are
larger than the critical values reported by Xu and Li.32

Thus, sample size effects may come into play. To clarify
this issue, we simulated the rubber indenter indenting
into the rubber block and PDMS substrate with Rw � Lh,
and the ratios of am/Rw were 0.01 and 0.012, respectively.
For these two small am/Rw ratios, the sample size effect
should be negligible according to the analysis in Ref. 32.
For the sake of comparison, the computational results
with smaller am/Rw ratios are also shown in Figs. 3(a) and
3(b) (dashed lines). It should be pointed out that for the
rubber indenter indenting into the soda-lime glass, the
sample size should not affect the indentation response
because the Young’s modulus of the soda-lime glass is
much larger than that of the rubber indenter (see Table I).
From the results in Fig. 3, it can be seen that the sample
size effect in the experiments in Ref. 23 is not significant,
and thus not the key factor responsible for the large dis-
crepancy between the numerical results in Ref. 22 and
the experimental results in Ref. 23.

B. Indenter size effect

In the experiment using a rubber indenter of 75° (� in
Fig. 1) indenting into a rubber half-space performed by
Lim and Chaudhri,23 the height of the indenter described
by L in Fig. 1 is about 1.34 mm, and the maximum
indentation depth is about 0.43 mm. In this case, the
maximum indentation depth is not a small value com-
pared with the indenter height L. From the numerical
model given by Fig. 1 in the work of Fischer-Cripps,22 it
can be seen that the indenter height used in that study
appears to be much larger than the maximum indentation
depth. Thus, the indenter size effect is likely to be the key
factor that leads to large differences between the numeri-
cal results22 and the experimental results23 when the elas-
tic deformation of the indenter is significant. To verify
this issue, we simulated the indentation of ideally sharp
rubber indenters of 75° and 70.3° (see Fig. 1 for the
definition of �) into a rubber half-space with Rw � Lh.
To avoid the sample size effect, the ratio of am/Rw is
taken to be 0.01. The indenter of 70.3° is investigated
here because this specific indenter geometry is often used
in simulations (e.g., in Refs. 8–12, 14, 15, and 20) and
is regarded as giving the same depth/area ratio12,20 or quite
similar load-depth curves8 to the standard Berkovich

FIG. 3. Comparison of the indentation loading responses obtained
from finite element analysis with those given by the experiments in
Ref. 24 and Eq. (3) for the rubber cone with the half-apex angle of 75°
(a) loading on the rubber block, (b) loading on the PDMS (1:10), and
(c) loading on the soda-lime glass.
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indenter. In addition, the results reported in Sec. IV are
also based on this specific indenter geometry. The inden-
tation load (P) versus the normalized indentation dis-
placement (h/L) curves are plotted in Fig. 4. From the
results, it can be seen that when L � h (e.g., h/L < 0.05),
the computational results [solid lines in Figs. 4(a) and
4(c)] are close to the modified Sneddon’s solution given
by Eq. (3) [dashed lines in Figs. 4(a) and 4(c)]. In addi-
tion, we found that when the indentation depth is not a
small value compared with the indenter height, the in-
dentation load approaches the value predicted by the
Sneddon’s solution given by Eq. (4) [see Figs. 4(b) and
4(d)]. This was the phenomenon observed in the experi-
ments of Lim and Chaudhri23 (i.e., they found that at the
maximum indentation depth the rubber indenter with the
half-apex angle of 75° behaves as if it were rigid when it
was indented into the PDMS substrate; see Fig. 9 in Ref.
23 for detail). This phenomenon may be rationalized as
follows. Because the elastic indenter is firmly attached to
a “rigid” indenter rod at the upper end, when h/L be-
comes large, the strong support provided by the rigid rod
is more and more significant, and consequently makes
the overall indentation response approach the rigid in-
denter situation.

Based on all the previous analysis, it is evident that the
indenter size effect should be responsible for the large
discrepancy between the experimental results of Lim and
Chaudhri23 and the numerical results of Fischer-Cripps22

when the elastic deformation of the indenter is signifi-

cant. The physics behind the present issue is closely re-
lated to one of the fundamental assumptions of the Sned-
don analytical equations in contact mechanics (i.e., the
deformation is assumed to be local and much greater than
the deformation in the bulk material remote from the
contact region). In most of the previous research,18–20 the
indenter was taken to be rigid; therefore, one only needed
to make sure the indented material has the right geometry
that is consistent with the assumption previously made
(i.e., that the sample size should be large enough com-
pared with the contact depth). Meanwhile, for the present
case, the indenter is assumed to be elastic; thus, the fun-
damental assumption on relative size scales should be
enforced for the indenter as well (i.e., as previously
stated, the indenter height should be much larger than the
indentation depth). Otherwise, the boundary conditions
can significantly affect the indentation response.

Hay et al.20 have addressed the error in the Sneddon’s
solution25 induced by the boundary condition applied in
the derivation of the analytical load–displacement curve
given by Eq. (4). It has been found that only for the case
that the radial displacement of the indented material in
the contact region equals zero (e.g., the half-apex angle
equals to 90° or Poisson’s ratio equals 0.5) is the Sned-
don’s boundary condition used to derive Eq. (4) strictly
valid.20,33 Taking into consideration that in many cases
of practical interest (e.g., a standard Berkovich indenter
or a cube corner indenter indenting into a material with
Poisson’s ratio smaller than 0.5) the radial displacement

FIG. 4. Comparison of the computational indentation load–displacement curves (solid lines) with the analytical solutions given by Eqs. (3) (dashed
lines) and (4) (dotted lines), for the rubber indenters loading on the rubber half-space. (a) 75° indenter and L � h (i.e., h/L < 0.01); (b) 75° indenter
and when h is not a small value compared with the parameter L; (c) 70.3° indenter and L � h (i.e., h/L < 0.01); and (d) 70.3° indenter and when
h is not a small value compared with the parameter L.
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of the indented material in the contact region does not
disappear, Hay et al.20 provided correcting factors to Eq.
(3) to obtain more accurate results. The corrected Sned-
don’s solution is thus given by20

P = �
2

�
E* tan���h2 . (8)

For the materials with Poisson’s ratio v � 0.3 and the
indenter with � � 70.3°, � � 1.067 in Eq. (8) according
to Ref. 20. Moreover, the correcting factors in the work
of Hay et al.20 show that the smaller the half-apex angle
is, the larger the correcting factor will be. It should be
noted that in the research of Hay et al.,20 only rigid
indenters are considered. However, for the indentation of
superhard materials, the elastic deformation of the in-
denter can be significant. In this case, the problem is
more complicated [i.e., not only the Sneddon’s boundary
condition but also the application of the reduced modulus
can lead to errors between Eq. (3) and the real solution].
To highlight the errors induced when using the reduced
modulus, we investigated the following critical cases: (i)
an elastic indenter of E � 100 GPa and v � 0, indenting
into a rigid surface; and (ii) a rigid indenter indenting into
an elastic half-space with E � 100 GPa and � � 0. For
these two cases, the reduced modulus is the same, but the
results given by Fig. 5 show that the indentation re-
sponses of the two cases are different. According to the
analysis above, it is obvious that the correcting factors in
the work of Hay et al.20 would not be applicable to the
cases of the indenter exhibiting significant elastic defor-
mation, and new correction factors including the effect of
the application of reduced modulus need to be developed.
This issue will be addressed in Sec. IV.

IV. AN EXPLICIT EXPRESSION OF THE
INDENTATION LOAD–DISPLACEMENT CURVE
FOR A DIAMOND INDENTER INDENTING INTO
AN ELASTIC HALF-SPACE

For the case of a conical diamond indenter of 70.3°
(i.e., the angle that gives the same depth/area ratio as the
standard Berkovich indenter12,20) indenting into an elas-
tic half-space with the indenter height being much larger
than the indentation depth (a common case in nanoin-
dentation tests), the correction factors to Eq. (3) are ex-
plored. For the present issue, for the given loading con-
dition shown in Fig. 1, the correction coefficient � in Eq.
(8) should be a function of the Poisson’s ratio � and
Young’s modulus Ematerial of the indented material, the
Poisson’s ratio vindenter and Young’s modulus Eindenter of
the indenter, the half-apex angle � of the indenter, the
indentation depth h, and the indenter height L. Therefore,
it can be expressed as

� = f��, Ematerial, Eindenter, �indenter, �, L, h� .
(9)

By applying Pi theorem in dimensional analysis,34,35 Eq.
(9) is given by

� = ���,
Ematerial

Eindenter
, �indenter, �,

h

L� . (10)

For the given half-apex angle � � 70.3° and the Pois-
son’s ratio �indenter � 0.07 (the diamond indenter is as-
sumed), and when L � h, Eq. (10) can be reduced as

� = ���,
Ematerial

Eindenter
� . (11)

To make sure the parameter � is completely independent
of the parameter h/L, the ratio of h/L is taken to be 0.01.
In the work of Hay et al.,20 the indenter was assumed to
be rigid (i.e., Ematerial/Eindenter → 0); therefore, the cor-
rection factor in their article is only dependent on the
Poisson’s ratio of the indented materials. In the present
research, the Young’s modulus of the diamond indenter
is fixed at Eindenter � 1141 GPa. The Poisson’s ratio of
the indented material, �, varies from 0 to 0.5. The
Young’s modulus of the indented material varies from 1
to 1141 GPa (see Table II for detail), leading to 0.00088
� Ematerial/Eindenter � 1, which should cover most of the
engineering materials (including superhard materials).
The diamond indenter tip is studied because it is widely
used in indentation experiments (especially when indent-
ing superhard materials). The computational model is the
same as that shown in Fig. 1. The maximum indentation
depth is taken as 0.01 L. For the material properties listed
in Table II, finite element analysis was carried out; the
correction coefficients based on systematic computa-
tional simulations are given in Fig. 6. According to Fig.
6 and using least squares method, we further obtained the

FIG. 5. The indentation load–displacement curves of an elastic indenter
with E � 100 GPa and � � 0 loading on a rigid surface, and a rigid
indenter loading on an elastic half-space with E � 100 GPa and � � 0.
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explicit expression of the parameter � given by the fol-
lowing equation and also plotted in Fig. 6 as a compari-
son.

� = C1��� + C2���e
−�

C3��� , (12)

where � � Ematerial/Eindenter, and

C1��� = 0.9249 − 0.02737� − 0.02767�2 ,
(13a)

C2��� = 0.1784 − 0.1214� − 0.06767�2 ,
(13b)

C3��� = 0.3974 + 0.07173� − 0.1647�2 .
(13c)

The parameters in Eq. (12) have the following physical
meanings:

(i) C1 + C2 is the same correcting factor as that pro-
posed in the work of Hay et al.,20 which corrects the
errors between Eq. (4) and the real solution that are
caused by the Sneddon’s boundary for the case of a rigid
indenter indenting into an elastic half-space.

(ii) C2�1 − e−� � C3� for a given material reflects the
errors induced by the application of the reduced modulus,

which are plotted in Fig. 7 for different material proper-
ties. C2�1 − e−� � C3� is obtained as follows. First, for an
elastic indenter, Ai, loading into an elastic half-space, B,
the real indentation load at a given indentation depth, hg,
is assumed to be Pg,T. Second, for a rigid indenter, Ar,
indenting into an elastic half-space, D, for which the
Young’s modulus is the combined modulus of the in-
denter Ai and the elastic substrate B calculated using Eq.
(2), and the Poisson’s ratio is that of B, the real inden-
tation load at the given indentation depth hg, which is
assumed to be Pg,R. Third, the indentation load of the
elastic indenter Ai loading into B which was predicted
using Eq. (3) at the given hg is assumed to be Pg,A. The
relative error between Pg,T and Pg,R is defined as (Pg,R −
Pg,T)/Pg,A. According to the results and the previous
analysis, it can be determined that Pg,R � (C1 + C2)Pg,A

and Pg,T � �Pg,A with � given by Eq. (12). Thus,
�Pg,R − Pg,T��Pg,A = C2�1 − e−� � C3�. From Fig. 7, it
can be found that when Ematerial/Eindenter → 1 and for
materials with � � 0, the application of the reduced
modulus will result in an error of 16%.

In the present work, a further verification of the results
in Eq. (12) using finite element analysis was performed.
A conical diamond indenter of 70.3° indenting into an
elastic perfectly plastic superhard material with the Pois-
son’s ratio � � 0.0, the Young’s modulus E � 800 GPa,
and the yield strength �y � 20 GPa is analyzed. Fitting
the upper 80% of the unloading curve24 using the power
function,2 the initial unloading slope S is determined.
Using S, the maximum indentation load Pm, and the
maximum indentation depth hm as inputs, the Young’s
modulus is determined from the following procedure.

(i) Taking �t � �0 (�t signifies the true value and �0

is the initial value (e.g., �0 � 1.034).
(ii) Using the method of Oliver and Pharr,2 the re-

duced modulus can be determined from the following
equation.

TABLE II. Elast ic propert ies of materials used in the
present computations.

Ematerial (GPa)a
Eindenter (GPa),

� � 0.07

1141 1141
1000 1141

500 1141
150 1141

1 1141

aFor each one of the five cases in the table, Poisson’s ratio for the indented
material varies from 0.0, 0.3 to 0.5, resulting in a total of 15 different cases.

FIG. 6. The relationship between the correction factor � and the elastic
properties of the indented materials (for the case of h/L < 0.01, Eindenter

� 1141 GPa, �indenter � 0.07, and half-apex angle � = 70.3°).

FIG. 7. The errors induced by the application of the reduced modulus,
corresponding to different material properties.
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E* =
��S

2�t�A
, (14)

where A is the project contact area given by

A = ��tan����hm − 0.75
Pm

S ��2

. (15)

(iii) According to the reduced modulus in Step 2, the
Young’s modulus of the material is further obtained from
Eq. (2).

(iv) Based on the Young’s modulus obtained in Step 3
and the Poisson’s ratio of the material from prior knowl-
edge, � is determined from Eqs. (12) and (13).

(v) Judge if ||� − �t)|| � 	, where 	 is the error toler-
ance and is taken as 0.001 in the present work. If yes, go
to next step; if no, �t � �, go to Step 2.

(vi) When the iteration is over, the Young’s modulus
obtained in step 3 is taken as the modulus of the material.
The value of the Young’s modulus extracted from this
procedure is 824 GPa, with an error of 3% with respect
to the correct value. On the other hand, applying the
correction factor proposed by Hay et al.,20 a value of 640
GPa with an error of −20% is obtained for the Young’s
modulus. It should be noted that the contact depth in Eq.
(15) was derived by following an elastic-contact analy-
sis.2 For the elastoplastic materials that exhibit pileup
under indentation, the method can significantly underes-
timate the contact depth.36 While for the case that the
indented material exhibits very small pileup or sink-in,
Oliver and Pharr36 pointed out that the contact area given
by Eq. (15) matches the true contact area very well. For
the indentation into a superhard material, the accuracy of
Eq. (15) was first verified in the present research by
using the numerical example discussed above. The ratio
of the contact area from Eq. (15) to the contact area
determined directly from the finite element simulation is
1.02. In the numerical example above in this section, the
ratio of the contact depth hc to the deflection of the
substrate at the apex of the indenter ht is 0.84 (see Fig. 8
for hc and ht); thus, the indented material exhibits appar-
ent sink-in. To further examine the accuracy of Eq. (15)
in the case that the sink-in of the substrate is more sig-

nificant, we simulated the diamond indenter indenting
into a material for which the Poisson’s ratio is � � 0.0,
the Young’s modulus is E � 800 GPa, and the yield
strength is �y � 100 GPa. In this case, the hc/ht ratio is
0.66. The error between the contact area from Eq. (15)
and that directly obtained from the finite element simu-
lation is 3.7%. In a recent article, Fischer-Cripps et al.24

performed an interesting experiment by indenting a dia-
mond indenter into an industrial diamond substrate. Us-
ing the method of Oliver and Pharr,2 they obtained a
quite reasonable result for the Young’s modulus of the
diamond substrate. This result also confirms that Eq. (15)
works well for the analysis of the indentation into super-
hard materials.

In the work of Fischer-Cripps et al.,24 a correction
factor of 1.034 was used in Eq. (14), which is from
King.37 The correction factors reported by King37 aim at
including the effect of non-axisymmetric geometries; it is
1.034 for a triangular punch. Based on a comprehensive
analysis, Vlassak and Nix38 argued that the indentation
modulus for a triangular punch is 5.8% higher than that
for the axisymmetric punch (i.e., a correction factor of
1.058 is presented for the Berkovich indenter). For the
diamond indenter indenting into the diamond half-space,
the correction factor according to the present work [Eq.
(11)] is smaller than that given by King.37 But it should
be pointed out that the present analysis is limited to the
axisymmetric indenter; further investigation on the effect
of non-axisymmetric geometries for the deformable in-
denter shall be useful and will be performed in the near
future.

Here, it should be emphasized that the explicit results
given by Eqs. (11) and (12) are only valid for the dia-
mond indenter of 70.3°, with a Poisson’s ratio of �indenter

� 0.07, indenting into an elastic half-space with a
Young’s modulus smaller than 1141 GPa and an h/L <
0.01. We also examined the dependence of the correcting
factor � on the parameter h/L (i.e., the correcting factors
�0.02 and �0.05 corresponding to h/L < 0.02 and h/L <
0.05, respectively, are investigated). We found that the
absolute value of the relative difference between �0.01

corresponding to an h/L of <0.01 (given by Fig. 6) and
�0.02 [i.e., ||(�0.01 − �0.02)/�0.01|| is smaller than 1%, while
||(�0.01 − �0.05)/�0.01|| is smaller than 3.5%]. This means
that the results given by Eqs. (12) and (13) can be used
for larger ratios of h/L. In addition, the extension of the
present analysis to other indenters can be carried out
following a procedure similar to that used in this study.
We found that for the indenters with other half-apex
angles, when Ematerial/Eindenter → 1 the application of the
reduced modulus in Eq. (3) also leads to significant er-
rors [see Item 2 below Eq. (13) for the definition of the
error]. For example, for the indented materials with v �
0, the maximum error is about 25% for the 60° indenter;
and for the 42.28° indenter (equivalent to a cube corner

FIG. 8. A schematic drawing of a diamond indenter indenting into a
superhard substrate; ht and hc represent the deflection of the substrate
at the apex of the indenter and the contact depth, respectively.
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indenter20), the largest error is about 40%. Therefore, one
should be cautious in using the correction relationships
given in the work of Hay et al.20 to analyze the nanoin-
dentation data of superhard materials because the effect
of deformation of the indenter was not included.

V. CONCLUSIONS

Sneddon’s solution25 of a rigid indenter indenting into
an elastic half-space is the basis of the classic method of
Oliver and Pharr2 in the analysis of nanoindentation data
to determine the Young’s modulus and the hardness of
materials. To include the effect of the elastic deformation
of the indenter, in the method of Oliver and Pharr,2 the
reduced modulus is applied; however, controversy arose
recently for this common practice.21–24 The present work
is a further investigation on an elastic indenter indenting
into an elastic half-space that aims to reconcile some
apparent inconsistencies found in the literature and pro-
vides a more accurate method in extracting mechanical
properties for superhard materials using a conical in-
denter of 70.3°. In summary, the following contributions
have been made.

First, the experiments carried out by Lim and
Chaudhri23 have been simulated in detail, and the experi-
mental results and numerical solutions match each other.

Second, the present analysis shows that the indenter
size effect is the key factor that is responsible for the
large discrepancy between the numerical results of
Fischer-Cripps22 and the experimental results of Lim and
Chaudhri.23 When the elastic deformation of the indenter
is significant, the indenter size effect is negligible under
the condition of L � h, the indentation load-displacement
curve for the indenter of 70.3° is close to the modified
Sneddon’s solution2 [Eq. (3)], as shown in the analysis of
Fischer-Cripps.22 While in the case that the indenter size
effect is significant, the indentation response can largely
deviate from the modified Sneddon’s solution,2 as ob-
served in the experiments of Lim and Chaudhri.23

At last, to accurately extract the mechanical properties
of superhard materials using the method of Oliver and
Pharr,2 much attention should be paid to two aspects
when the deformation of the indenter is significant. The
first important factor is that the indenter size effect as
studied in Sec. III should be avoided (i.e., the condition
of L � h should be satisfied). Another important aspect
is the use of the correcting factor �. Both the Sneddon’s
boundary condition, as shown in the research of Hay et
al.,20 and the application of the reduced modulus will
induce errors that should be included in the corrections to
Eq. (3). In the present work, we numerically constructed
the explicit expression of the indentation load–
displacement curve of a diamond indenter of 70.3° in-
denting into elastic surfaces. When the Young’s modulus
of the indenter is much larger than that of the indented

material, the present result degenerates to the ones pro-
posed in the work of Hay et al.20; whereas, when the
deformation of the indenter is significant, the new result
presented in this work provides a more accurate evalua-
tion of Young’s modulus.
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