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Abstract

The introduction of controlled gradients in plastic properties is known to influence the resistance to damage and

cracking at contact surfaces in many tribological applications. In order to assess potentially beneficial effects of plastic

property gradients in tribological applications, it is essential first to develop a comprehensive and quantitative

understanding of the effects of yield strength and strain hardening exponent on contact deformation under the most

fundamental contact condition: normal indentation. To date, however, systematic and quantitative studies of plasticity

gradient effects on indentation response have not been completed. A comprehensive parametric study of the mechanics of

normal indentation of plastically graded materials was therefore undertaken in this work by recourse to finite element

method (FEM) computations. On the basis of a large number of computational simulations, a general methodology for

assessing instrumented indentation response of plastically graded materials is formulated so that quantitative

interpretations of depth-sensing indentation experiments could be performed. The specific case of linear variation in

yield strength with depth below the indented surface is explored in detail. Universal dimensionless functions are extracted

from FEM simulations so as to predict the indentation load versus depth of penetration curves for a wide variety of

plastically graded engineering metals and alloys for interpretation of, and comparisons with, experimental results.

Furthermore, the effect of plasticity gradient on the residual indentation pile-up profile is systematically studied. The

computations reveal that pile-up of the graded alloy around the indenter, for indentation with increasing yield strength

beneath the surface, is noticeably higher than that for the two homogeneous reference materials that constitute the

bounding conditions for the graded material. Pile-up is also found to be an increasing function of yield strength gradient

and a decreasing function of frictional coefficient. The stress and plastic strain distributions under the indenter tip with and

without plasticity gradient are also examined to rationalize the predicted trends. In Part II of this paper, we compare the

predictions of depth-sensing indentation and pile-up response with experiments on a specially made, graded model Ni–W

alloy with controlled gradients in nanocrystalline grain size.
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1. Introduction

Over the past two decades, the study of graded materials and surfaces with controlled spatial variations in
composition, microstructure and properties has evolved as an important topic in design for exceptional
resistance to deformation, fracture, fatigue and tribological damage (e.g., Suresh and Mortensen, 1998;
Suresh, 2001). The engineering of materials with graded microstructures dates back to the manufacture of
ancient Japanese swords wherein the microstructure of the steel blades was optimized for a softer and tougher
core and a hardened sharp edge (Smith, 1960). Major engineering applications involving the use of graded
materials include carburizing, nitriding, ion implantation, and step-wise or continually graded thermal spray
coatings (e.g., Suresh and Mortensen, 1998; Suresh, 2001).

Earlier studies (e.g., Hirai, 1996) of graded materials explored possibilities for enhanced performance in
high-temperature applications in aerospace components, solid oxide fuel cells and energy conversion devices.
However, the need to circumvent gradual changes in composition through diffusion over time inevitably calls
for the use of graded materials in lower temperature applications. In this regard, a potentially important
benefit of graded materials could be the suppression of cracking through optimal redistribution of stresses at
surfaces and interfaces subjected to mechanical and tribological loading (Suresh and Mortensen, 1998).
Frictionless normal indentation is a simple benchmark to characterize the mechanics of contact at surfaces
through indenters of different tip geometries and to assess many fundamental characteristics of asperity
contact as well as defect and crack nucleation at and beneath surfaces (Gerberich et al., 1996; Gouldstone
et al., 2001; Suresh, 2006). Furthermore, depth-sensing instrumented indentation has become a widely adopted
tool in recent years for the local probing of mechanical properties of thin-film, small-volume and bulk
materials and surfaces over a variety of length scales (Freund and Suresh, 2003; Cheng et al., 2004;
Gouldstone et al., 2007).

Analytical and computational results of the indentation load versus indenter penetration depth on a
continuously graded surface with controlled gradients in elastic modulus have been developed for spherical,
cylindrical and conical indenters (Giannakopoulos and Suresh, 1997). These studies reveal that when the
elastic modulus increases in some controlled fashion as a function of depth below the indented surface, the
tensile stresses that develop at the indenter contact perimeter can be redistributed to the elastically stronger
material beneath the surface. A significant outcome of this stress redistribution is that the elastic material so
graded becomes significantly more resistant to Hertzian cone crack formation during spherical indentation
(Jitcharoen et al., 1998). Such beneficial effects also carry over to situations involving frictional sliding of a
spherical indenter over the graded surface where the classical herringbone crack formation can be suppressed
with appropriate modulus gradation (Suresh et al., 1999).2

The mechanics of indentation of materials with gradients in elastic modulus as a function of depth beneath
the indented surface has been reasonably well studied (Giannakopoulos and Suresh, 1997; Jitcharoen et al.,
1998; Suresh and Mortensen, 1998; Suresh et al., 1999; Suresh, 2001). However, indentation of plastically
graded materials has remained a relatively unexplored topic because of the complexities associated with
characterizing plastic deformation over a region in which the yield strength, strain hardening exponent, tensile
strength, hardness and ductility could all vary spatially. This difficulty is further compounded by the fact that
it is extremely challenging to produce model systems of plastically graded materials in sufficient quantities
where the sole effects of gradients in a particular plastic property on overall indentation response could be
systematically controlled and evaluated. The few preliminary reports of indentation of plastically graded
materials (Nakamura et al., 2000; Suresh, 2001; Giannakopoulos, 2002; Gu et al., 2003; Cao and Lu, 2004) do
not provide sufficiently complete information on the mechanics of indentation. It is, therefore, the objective of
the present work to develop a comprehensive and quantitative mechanics framework for interpreting
instrumented indentation of plastically graded ductile metals. The companion paper, Part II, describes the
synthesis of a nanocrystalline Ni–W alloy with well-controlled gradients in plastic deformation characteristics
2Note that some specific spatial variations in mechanical properties result in an improvement in resistance to damage and failure during

normal contact when compared to an appropriate reference homogeneous structure. However, it is also possible to exacerbate damage

processes through different types of graded microstructures (Suresh and Mortensen, 1998; Suresh, 2001).
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and also compares indentation experimental results on the graded alloy with predictions of the analysis given
here (Choi et al., 2007).
2. Model setup

Contrary to the indentation of elastic materials, it is nearly impossible to derive explicit analytical
expressions of the indentation response of elasto-plastic materials of engineering interest. Thus, many studies
have utilized dimensional analysis to describe the indentation response of homogeneous elasto-plastic
materials (see some recent studies and reviews on instrumented indentation in (Cheng and Cheng, 1998, 2004;
Dao et al., 2001; Chollacoop et al., 2003; Oliver and Pharr, 2004; Cao et al., 2005; Ogasawara et al., 2005;
Wang and Rokhlin, 2005; Cao and Huber, 2006; Gouldstone et al., 2007). The general framework to extract
dimensionless functions can be applicable to any plastically graded materials with monotonic variation of
plasticity.

In this study, the case of a linear gradient in yield strength (with no spatial variation in strain-hardening
exponent) is investigated as the first step to establish fundamental framework and the first-order general trend.
The underlying mechanics principles and computational procedure remain essentially the same for nonlinear
gradients. Particular attention is devoted to the prediction of indentation force as a depth of penetration
beneath the contact surface for the linearly graded material.
2.1. Problem formulation

Fig. 1(a) schematically shows the indentation of plastically graded materials with a conical indenter.
A commonly used probe, the Berkovich indenter, is a three-sided pyramid indenter. The apex angle of the
conical indenter was chosen to be 70.31 since it is known that this angle is analogous to the more common
Berkovich indenter (e.g Oliver and Pharr, 1992; Gouldstone et al., 2007). Fig. 1(b) illustrates the profile of
gradient in plasticity analyzed in this work.
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Fig. 1. (a) Schematic diagram of plastically graded materials under conical indentation. (b) Profile of linear gradient in yield strength in

the direction of indentation depth Z and power laws of plastic deformation that governs each material point, A, B and C respectively.
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The linear gradient in yield strength from the surface is defined as

syðZÞ ¼ ssurfy ð1þ bZÞ, (1)

where b is named the index of gradient and Z is the depth from the surface. For b ¼ 0, the homogeneous case
is recovered, while for b40, the yield strength is increasing with depth and for bo0, the yield strength is
decreasing with depth. There are no spatial variations in material properties within planes parallel to the
indented surface. The plastically graded material is also elastically homogeneous.

The elastic and plastic responses are approximated, respectively, by Hooke’s law and the von Mises yield
criterion with isotropic power law hardening. Under those general conditions, the dependence of the true
stress s on the true strain e is commonly expressed as

s ¼ E� ðspsyÞ;

s ¼ R�n ðsXsyÞ;

(
(2a,b)

where E is the Young’s modulus, R the strength coefficient, sy the initial yield stress at zero offset
strain and n the strain hardening exponent not varying with depth. In this representation, the true
strain e is a uniaxial strain. The multiaxial stress state for indentation simulations is introduced by
replacing the uniaxial formulation of Eq. (2) with the appropriate von Mises effective stress and
strain measures.
2.2. Computational model setup

An axisymmetric two-dimensional finite element model was constructed to simulate the indentation
response of plastically graded materials. Fig. 2 shows the mesh design. The semi-infinite substrate
of the indented solid was modeled using 8105 four-noded, bilinear axisymmetric quadrilateral elements.
A fine mesh near the contact region and a gradually coarser mesh further from the contact region were
used to ensure numerical accuracy. The dimension of the substrate is set large enough to ignore sensitivity of
far field boundary conditions. The minimum number of contact elements in the contact zone was no less than
14 in each FEM computation. The indenter was modeled as a rigid body with the contact taken to be
frictionless, unless otherwise noted. Large deformation FEM computations were performed using ABAQUS
Standard (SIMULIA, Providence, RI, USA). A numerical subroutine was implemented that enables to
assign individual material properties to the element level. Using the subroutine, the gradient of yield strength
was introduced across the interface. For the purpose of testing the subroutine and verifying the mesh, the
results of elastically graded materials were successfully reproduced both for conical indentation and for
spherical indentation, and a mesh with 50% less elements in the contact region gives virtually the same
load–displacement response.
Indenter

Indenter

Fig. 2. Close-up view of the finite element mesh used for conical indentation simulations: (a) undeformed mesh and (b) deformed mesh.
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3. Results

3.1. Load– displacement response with plasticity gradients

Fig. 3 shows typical computational load (P) versus indentation depth (h) curves for decreasing and
increasing plasticity gradient cases and the reference homogeneous material. For all three cases, Young’s
modulus E ¼ 214GPa, the surface yield strength sy

surf
¼ 587MPa and the strain hardening exponent n ¼ 0.

The index of gradient b is �0.006 and 0.06 mm�1, respectively, for the two decreasing and increasing gradient
alloys. Using the nonlinear least-squares fitting, we fit a parabolic function P ¼ Ch2 to the homogeneous case
(R2
¼ 0.999983). The homogeneous case, for which b ¼ 0 is shown to obey the parabolic relationship where

the loading curvature, C ¼ P/h2, is a constant independent of h. With the same surface properties as the
homogeneous case, the decreasing gradient case bears less load and the increasing gradient case bears higher
load at the same indentation depth, as compared to the homogeneous case. Both plastic gradient cases deviate
from the ideal parabolic functional dependence for homogeneous materials. At a fixed indentation load P0, the
indenter penetration depth decreases as b increases from negative to positive values (Fig. 3).

3.2. Stress and strain distributions beneath the indenter

Fig. 4 shows the contours of constant von Mises effective stress around the indenter impression for
decreasing plasticity gradient, homogeneous and increasing plasticity gradient case, respectively. The three
cases are plotted at the same load of P0 ¼ 3.33mN, and correspond to the indentation depths of h1, h2 and h3,
respectively, as shown in Fig. 3. Due to the high stress concentration near the indenter tip, the material below
the indenter plastically yields and thus the von Mises stress distribution within the plastic zone corresponds to
the linear yield stress gradient for both plastically graded cases. The highest von Mises stress occurs below the
surface for the increasing gradient case, while for both the homogeneous case and decreasing gradient case the
highest von Mises stress appears on the surface directly in contact with the indenter and immediately around
the indentation impression.

Fig. 5 shows the maximum principal stress contours for decreasing plasticity gradient, homogeneous and
increasing plasticity gradient case, at the same load of P0 ¼ 3.33mN, and correspond to the indentation
depths of h1, h2 and h3, respectively, as shown in Fig. 3. Under the same indentation load, the volume of
positive tensile tress is larger (smaller) for the decreasing (increasing) gradient case than the homogeneous
case, while the largest tensile stress increases with increasing plasticity gradient b. For a sufficiently large
positive value of b in Fig. 5(c), no tensile stress develops at the indented surface which is different from the
homogeneous case as well as the decreasing gradient case. For the decreasing gradient case, the surface area
experiencing positive tensile stresses increases with higher magnitude of the negative gradient.

Fig. 6 shows the equivalent plastic strain contours around the indenter impression for decreasing plasticity
gradient, homogeneous and increasing plasticity gradient case, at the same load of P0 ¼ 3.33mN, and
correspond to the indentation depths of h1, h2 and h3, respectively, as shown in Fig. 3. Under the same
indentation load, the plastic zone size is larger (smaller) for the decreasing (increasing) gradient case than the
homogeneous case, respectively. However, if one compares the maximum values of plastic strain (not shown in
the figure), higher plastic strains occur near the indenter tip in the increasing gradient case than the
homogenous case, while lower plastic strains accumulate under the indenter in the decreasing gradient case
than the homogeneous case. Thus, higher plastic strains accumulate under the indenter over a smaller plastic
zone with increasing (positive) plasticity gradient, resulting higher pile-up ratio than the homogeneous case,
which will be shown later in Section 3.4.

We have also compared plastic strain distribution of the three cases shown in Fig. 3, all at the same 7 mm
indentation depth (figure not shown). The observed trend is exactly the same as that shown in Fig. 6, although
the relative differences between the plastic zone sizes are apparently smaller in this case when the strain
distribution maps are plotted at the same indentation depth.
3The R2 is a measure of how well the regression line represents the data, defined as R2 ¼ 1� ð
P
ðYD � YFÞ

2
Þ=ð
P
ðYD � ȲDÞ

2
Þ, where

YD is data and YF is the fitting function.
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gradient case, respectively. The three cases are plotted at the same load of P0 ¼ 3.33mN, and correspond to the indentation depths of h1,
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3.3. Dimensional analysis and universal dimensionless functions

Now, we will extract a dimensionless function to predict indentation curve for plastically graded materials
with increasing linear gradient in yield strength. As mentioned in Section 2, the general framework of the
dimensional analysis can be applicable to any plastically graded materials with monotonic variation of
plasticity.

For a self-similar sharp indenter (conical, Berkovich or Vickers, with fixed indenter shape and tip angle)
indenting normally into a plasticity gradient, the load P depends on material properties and geometrical
variables:

P ¼ Pðh;E�;ssurfy ; n;b; yÞ, (3)

where h denotes the indentation depth; E* is the reduced elastic modulus; sy
surf is the yield strength at surface; n

is the strain hardening exponent; b is the measure of the yield strength gradation as defined in Eq. (1); and y is
the half apex angle of the conical indenter. For a fixed tip angle, five-dimensional variables are required to
describe indentation load. However, it is practically impossible to perform parametric studies to cover all the
engineering materials. For example, six different values of elastic constants, surface yield strengths, hardening
exponents and index of gradient require 1296 simulations to be performed. Therefore, dimensional analysis is
used with the smallest number of independent variables so that dimensionless functions can be obtained for a
wide range of parametric space with the least effort. In addition, the dimensionless relation provides
fundamental understanding of self-similarity and scaling with respect to each dimensionless variable.

Applying the Pi theorem in dimensional analysis (Taylor, 1974) for a fixed indenter apex angle, the load P

can be represented by the dimensionless function:

P

E�h2
¼ Pð��y; n; bhÞ, (4)

where ��y ¼ ssurfy =E�. The number of arguments is now reduced to three independent governing dimensionless
parameters instead of five-dimensional variables. Define the indentation curvature C as

C ¼
P

h2
. (5)

For plastically graded case, C ¼ Cg is a function of indentation depth h. It should be noted that the
parabolic variation of indentation load with depth of penetration typically seen in homogeneous elasto-plastic
materials subjected to sharp indentation breaks down for graded materials. Furthermore, the mean contact
pressure is a function of indentation depth as well since b introduces a new length scale to the indentation
problem.

Fig. 7 shows a set of representative simulation results plotting ðCg � CHÞ=ðC
�
dfc � CHÞ covering a wide range

of bh, where Cg is the curvature of plastically graded materials for indentation by a rigid conical indenter; C�dfc
is the indentation curvature of an elastic-half space by a rigid conical indenter; CH is the indentation curvature
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of elasto-plastic homogeneous materials by a rigid conical indenter at the surface as point A in Fig. 1. As bh-
0, ðCg � CHÞ=ðC

�
dfc � CHÞ ! 0, as anticipated, and this limiting case corresponds to the indentation curvature

of a homogeneous material. When bh-N, ðCg � CHÞ=ðC
�
dfc � CHÞ ! 1, and this limiting case corresponds to

the indentation curvature of an elastic half space.
We now examine functional dependence of the three independent dimensionless variables, ey*, n and bh in

the context of indentation. In order to ensure that bh provides a unique description of indentation curvature
for arbitrary variations in b and h, it is necessary to establish that all computed values of the function
ðCg � CHÞ=ðC

�
dfc � CHÞ with different plasticity gradients b should collapse into a single curve for all

variations in h. This is demonstrated in the results plotted in Fig. 8. Although the overlap of different b values
are shown here with bh ranging from zero to seven, the scaling behavior should be valid for the entire range of
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bh up to at least 300 as shown in Fig. 7. The same scaling behavior shown in Figs. 7 and 8 are also validated
using different hardening exponents spanning from 0 to 0.5.

Since the explicit close-form dimensionless functions for homogeneous elastic case (Johnson, 1985; Fischer-
Cripps, 2000) and elasto-plastic cases (Dao et al., 2001) are available in the literature, C�dfc and CH can be
considered known or readily available using established methods. If the dimensionless function,

PC ¼
Cg � CH

C�dfc � CH
, (6)

is known, then the indentation curvature Cg can be obtained using Eq. (6). Consequently, the entire load (P)
versus indentation depth (h) curve can be obtained using Eq. (5).

Note that 0pðCg � CHÞ=ðC
�
dfc � CHÞp1 (see Fig. 7). Without any loss of generality, PC can be expressed as

PC ¼
Cg � CH

C�dfc � CH
¼ 1� gre, (7)

where 0pgrep1. By rearranging Eq. (7), the size dependence of indentation curvature of plastically graded
materials is expressed by a rule-of-mixture type formulation:

Cg ¼ C�dfcð1� greÞ þ CHgre. (8)

Thus, the problem is reduced to the determination of the following dimensionless function:

gre ¼ Preð�
�
y; n;bhÞ. (9)

A comprehensive parametric study of 320 elasto-plastic cases was conducted (see Appendix for details). This
study covered nanocrystalline (nc) materials in addition to common engineering metals with the values of
��y ¼ ssurfy =E� varied over the range of 2.13� 10�4 to 4.67� 10�2. The strain hardening exponent, n, varied
from 0 to 0.5, and Poisson ratio was fixed as n ¼ 0.3. Five different increasing gradients for b between 0.01 and
1 were computed.

In order to map these 320 cases with respect to the three independent dimensionless variables, ey*, n and bh,
the stretched exponential functional form is chosen to represent gre in Eq. (9):

gre ¼ exp½�ðkbhÞd �, (10)

where k ¼ k(ey*,n) and d ¼ d(ey*,n) are dimensionless parameters. Eq. (10) is selected since it satisfies the
asymptotic conditions, 0pgrep1, and fits all the simulation results very well. In addition, the stretched
exponential function is widely used to describe many of quasi-static thermodynamic phenomena or statistical
distributions (Williams, 1970; Chamberlin et al., 1984; Kakalios et al., 1987; Malacarne et al., 2001, 2002;
Picoli et al., 2003). Combining Eqs. (4), (5), (8) and (10), the dimensionless functional form of normalized load
is written by

P ¼
P

E�h2
¼

Cg

E�
¼

C�dfc
E�
ð1� expð�ðkðbhÞÞd
� �

þ
CH

E�
expð�ðkðbhÞÞd Þ. (11)

Here C�dfc is the indentation curvature of an elastic-half space by a rigid conical indenter:

C�dfc ¼ d
2E� tan y

p
, (12)

where d ¼ 1.0553 was obtained via simulations for the apex angle of y ¼ 70.31. In Eq. (11), CH is the
indentation curvature of elasto-plastic homogeneous materials by a rigid conical indenter at the surface,
indicated as point A in Fig. 1. The dimensionless function for the homogeneous case is known from the
literature (Dao et al., 2001; Cao et al., 2005; Ogasawara et al., 2005; Wang and Rokhlin, 2005). For example,
under frictionless condition, the previously developed functions in Dao et al. (2001) for homogeneous elasto-
plastic cases can be used to obtain CH in Eq. (11) as long as the available functions are accurate in the range of
interest. Nevertheless, in this study, we used a different fitting function for CH, Eq. (A.3), to encompass a
much wider range of material parameters as described in the Appendix.

In order to determine the P-function in Eq. (11), it is necessary to extract the function gre ¼ exp[�(kbh)d] in
Eq. (10), with respect to the governing dimensionless parameters ey*, n and bh. In this regard, the closed form
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dimensionless function was identified as follows. First, gre was plotted with respect to the dimensionless
parameter, bh, for each set of parameters n and ey*. Using a sequence of nonlinear-regression fitting
procedures, the values of k and d were determined for each case and then plotted in terms of ey* for every
different value of the parameter, n. By additional fitting procedures, the functional dependence of k and d with
respect to n were determined using the selected fitting functions. Putting these dimensionless functional forms
together led to a complete closed form dimensionless function of indentation response of plastically graded
materials. A complete set of coefficients for the universal dimensionless function for indentation response of
plastically graded materials with linear increasing gradient is listed in the Appendix. To validate the
constructed universal function, we have compared the predictions from the universal function with a number
of additional FEM simulation results which were not used as the fitting data points for the closed form
dimensionless function. For example, for the four cases with E ¼ 214GPa, sy ¼ 783MPa, b ¼ 0.06 mm�1,
n ¼ 0.05, 0.25, 0.35 and 0.45, the maximum difference in load versus displacement responses was found to be
less than 3.5%.

It is noted that, with this closed form dimensionless function, the plastic gradient can be evaluated if the
elasto-plastic properties of the surface material are known. The surface material property can be extracted by
first performing a sufficiently shallow indentation and applying the reverse algorithms available in the
literature (Gouldstone et al., 2007).

3.4. Pile-up behavior

Because of pile-up and sink-in, the true contact area can be either underestimated or overestimated by as
much as 60% for indentation with a rigid conical indenter (Bolshakov and Pharr, 1998). Thus, the pile-up and
sink-in behavior of indentation of homogeneous materials has been investigated by many researchers to
quantify the pile-up and sink-in factors to extract accurate hardness values from the indentation (Cheng and
Cheng, 2004; Wang and Rokhlin, 2005). The pile-up behavior for plastically graded materials, however, has
hitherto not been studied.

Fig. 9 shows the schematic drawing of an indentation pile-up profile after complete unloading, where hp is
the pile-up height, hr is the residual indentation depth and ar is the residual indentation impression radius. For
the sharp indentation of homogeneous materials, the ratio of the pile-up height (hp) to the residual indentation
depth (hr) is not a function of the indentation depth due to geometrical self-similarity. For plastically graded
materials, on the other hand, the ratio is not a constant, but it varies as a function of the indentation depth, h,
and the plasticity gradient, b.

Fig. 10 shows the calculated pile-up ratio, hp/hr, for the plastically graded material, homogeneous surface
material with sy ¼ sy

surf, and homogeneous material below surface with sy ¼ 2.75sy
surf, for an increasing yield

strength gradient b ¼ 0.05 mm�1. For all cases shown in this figure, the maximum indentation height before
unloading is 3.5 mm. Figs. 10(a) and (b) show the results under frictionless condition and with frictional
coefficient m ¼ 0.15, respectively. As expected, the pile-up ratio is a decreasing function of sy/E* for both
plastically graded and homogeneous cases. However, the pile-up ratio of the graded material is shown to be
noticeably higher than those for the two homogeneous reference materials that constitute the bounding
conditions for the graded material. This rather non-intuitive result is expected to be related to the higher
hp

θ Conical
Indenter

hr

ar

Unloading

Fig. 9. Schematic drawing of an indentation pile-up profile after complete unloading.
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Fig. 10. Computed pile-up ratios for plastically graded material, homogeneous surface material with sy ¼ sy
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below surface with sy ¼ 2.75sy
surf, respectively, for an increasing gradient b ¼ 0.05mm�1. For all cases shown in the figure, the maximum

indentation height before unloading is 3.5 mm: (a) frictionless and (b) with frictional coefficient m ¼ 0.15.
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Fig. 11. Computed pile-up ratio versus plasticity gradient b (b40) for sy/E* ¼ 0.00228. Two homogeneous cases, with sy ¼ sy
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surf, are also shown for comparison. For all cases shown in the figure, the maximum indentation height before unloading is 3.5mm.
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plastic strain accumulated within the plastic zone near the indentation impression shown in Fig. 6. The
increasing plasticity gradient redistributes the plastic strain closer to the surface around the indentation
impression. Compare Fig. 10(a) with Fig. 10(b), frictional force is found to noticeably reduce the pile-up
height.

Fig. 11 shows the computed pile-up ratio versus plasticity gradient b (b40) for sy/E* ¼ 0.00228. Two
homogeneous cases, with sy ¼ sy

surf and 2.75sy
surf, are also shown for comparison. Again, the maximum

indentation height before unloading for all cases is 3.5 mm. Within the studied range of plasticity gradients, the
pile-up ratio clearly increases with increasing gradient b. Again, pile-up ratios of the graded materials are
always higher than that for the two homogeneous reference materials that constitute the bounding conditions
for the graded material. With a number of preliminary simulations, we found that the pile-up ratio decreases
with decreasing gradient b which is different from the increasing gradient case. More comprehensive studies
on the decreasing gradient case are needed to obtain a more quantitative understating.



ARTICLE IN PRESS
I.S. Choi et al. / J. Mech. Phys. Solids 56 (2008) 157–171168
4. Concluding remarks

This paper describes the results of a comprehensive study of the mechanics of indentation of plastically
graded metals with a linear gradient in yield strength, and no variation in elastic modulus and strain hardening
exponent, beneath the indented surface. Key conclusions of this work are summarized as follows:
1.
 A universal dimensionless function describing the indentation response for the specific case of a linear
gradient in yield strength is formulated. The form of the universal dimensionless function is obtained by
performing a systematic parametric study using finite element analysis. This universal dimensionless
function can be applied to elasto-plastic materials in general, whereas previous studies were limited to
specific material classes and parameter sets.
2.
 Stress and strain fields produced by the indentation of the plastically graded material were studied. For a
sufficiently large positive yield strength gradient b, no tensile stress develops at the indented surface which is
different from the homogeneous case as well as the decreasing gradient case. With the same maximum load,
the plastic zone volume decreases with increasing yield strength gradient b.
3.
 The effect of plasticity gradient on the residual indentation pile-up profile is systematically examined. The
pile-up of the graded material around the indenter, for indentation with increasing yield strength beneath
the surface, is found to be higher than that for the two homogeneous reference materials that constitute the
bounding conditions for the graded material. Pile-up is also found to be an increasing function of yield
strength gradient b and a decreasing function of frictional coefficient.

In Part 2 of this paper (Choi et al., 2007), the universal dimensionless function for linearly graded plastic
properties is verified by indentation experiments on a graded nc Ni–W alloy. The experimentally measured
pile-up is also shown to be consistent with the trend identified computationally.
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Appendix

The functional form, Eq. (11), used to construct the closed-form universal dimensionless function for
indentation response of plastically graded materials with linear increasing gradient is

P ¼
P

E�h2
¼

Cg

E�
¼

C�dfc
E�
ð1� expð�ðkðbhÞÞd
� �

þ
CH

E�
expð�ðkðbhÞÞd Þ. (A.1)

Here C�dfc is the indentation curvature of an elastic-half space by a rigid conical indenter:

C�dfc ¼ d
2E� tan y

p
, (A.2)

where d ¼ 1.0553 was obtained via simulations for the apex angle of y ¼ 70.31. The indentation curvature, CH,
for the elasto-plastic homogeneous material at the surface was obtained in this study using a different fitting
function other than the ones used in the literature (e.g., Dao et al., 2001) to encompass a much wider range of
material parameter space:

CH

E�
¼ A0 þ ðA1 � A0Þ expð�ðA2�

�
yÞ

A3Þ, (A.3a)
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Ai ¼
X5
j¼0

Aijn
j ði ¼ 0; 1; 2; 3Þ, (A.3b)

where n is the strain hardening exponent, and the coefficients of Ai are listed in Table A1.
The coefficients of k and d in Eq. (A.1) are dimensionless functions expressed within the following range:

2:13� 10�4p��yp4:67� 10�2 (A.4)

and

0pnp0:5. (A.5)

The following fitting function for k was used:

k ¼ k0 þ k1 ln ��y þ k2 ln
2 ��y þ k3 ln

3 ��y, (A.6a)

ki ¼
X3
j¼0

Kijn
j, (A.6b)

where n is the strain hardening exponent, and the coefficients of ki are listed in Table A2.
The fitting function used for d was

d ¼ d0 þ d1 ln ��y þ d2 ln
2 ��y þ d3 ln

3 ��y, (A.7a)

di ¼
X3
j¼0

Dijn
j , (A.7b)

where n is the strain hardening exponent, and the coefficients of di are listed in Table A3.
Table A1

Coefficients of Eq. (A.3)

Coefficients of A0 Coefficients of A1 Coefficients of A2 Coefficients of A3

A00 1.3354 A10 �0.002530 A20 70.7313 A30 0.9536

A01 7.1992 A11 �0.3226 A21 �458.2405 A31 �2.6619

A02 �60.2183 A12 4.7091 A22 4170.9546 A32 18.9695

A03 264.4932 A13 �26.1686 A23 �17579.8138 A33 �87.6404

A04 �530.0236 A14 58.9110 A24 34056.2417 A34 181.0500

A05 390.9552 A15 �45.4883 A25 �24424.7583 A35 �135.6583

Table A2

Coefficients of Eq. (A.6)

Coefficients of k0 Coefficients of k1 Coefficients of k2 Coefficients of k3

0pnp0.3 K00 9.1807 K10 4.2482 K20 0.6634 K30 0.03481

K01 �74.9029 K11 �40.2169 K21 �7.0941 K31 �0.4121

K02 602.2585 K12 314.5440 K22 54.4175 K32 3.1180

K03 �1371.9050 K13 �709.5667 K23 �121.6850 K33 �6.9183

0.3pnp0.5 K00 37.5620 K10 18.8629 K20 3.1518 K30 0.1750

K01 �260.9178 K11 �136.0282 K21 �23.3900 K31 �1.3280

K02 654.4835 K12 341.6410 K22 58.8830 K32 3.3525

K03 �530.3133 K13 �276.6850 K23 �47.6683 K33 �2.7150
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Table A3

Coefficients of Eq. (A.7)

Coefficients of d0 Coefficients of d1 Coefficients of d2 Coefficients of d3

0pnp0.3 D00 1.1007 D10 0.1891 D20 0.02898 D30 0.001010

D01 8.0143 D11 3.7748 D21 0.5558 D31 0.02872

D02 86.9535 D12 45.0585 D22 7.8760 D32 0.4550

D03 �374.8517 D13 �191.4767 D23 �32.5267 D33 �1.8317

0.3pnp0.5 D00 22.2812 D10 10.8980 D20 1.8146 D30 0.0995

D01 �168.8878 D11 �85.5364 D21 �14.3082 D31 �0.7896

D02 443.2770 D12 224.1275 D22 37.5025 D32 2.0765

D03 �381.4817 D13 �192.6517 D23 �32.2600 D33 �1.7917
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