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Abstract

The mechanical deformation characteristics of living cells are known to in.uence strongly their
chemical and biological functions and the onset, progression and consequences of a number of
human diseases. The mechanics of the human red blood cell (erythrocyte) subjected to large
deformation by optical tweezers forms the subject of this paper. Video photography of the cell
deformed in a phosphate bu1ered saline solution at room temperature during the imposition
of controlled stretching forces, in the tens to several hundreds picoNewton range, is used to
assess experimentally the deformation characteristics. The mechanical responses of the cell during
loading and upon release of the optical force are then analysed to extract the elastic properties
of the cell membrane by recourse to several di1erent constitutive formulations of the elastic and
viscoelastic behavior within the framework of a fully three-dimensional 5nite element analysis. A
parametric study of various geometric, loading and structural factors is also undertaken in order to
develop quantitative models for the mechanics of deformation by means of optical tweezers. The
outcome of the experimental and computational analyses is then compared with the information
available on the mechanical response of the red blood cell from other independent experimental
techniques. Potential applications of the optical tweezers method described in this paper to the
study of mechanical deformation of living cells under di1erent stress states and in response to
the progression of some diseases are also highlighted.
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1. Introduction

The deformation of human red blood cell (erythrocyte) has long been a topic of
considerable scienti5c interest and real-life signi5cance (see, for example, Evans and
Skalak, 1980; Fung, 1993; Boal, 2002). The human red blood cell with a biconcave
shape and an average diameter of about 8 �m has a typical life span of 120 days during
which time it circulates through the human body nearly half a million times. During the
course of its circulation, it undergoes severe elastic deformation as it passes through
narrow capillaries whose inner diameter is as small as 3 �m. The ‘biconcave’ shape
of the red blood cell is transformed into a ‘bullet’ shape during blood .ow through
small capillaries, and the cell recovers fully to its original shape when the constraint
or loading causing the shape change is released.
Studies of the deformation characteristics of the human red blood cell and its mem-

brane have been of interest in the biomechanics literature for several reasons.

(1) The red blood cell has a relatively simple structure in that its membrane compris-
ing the phospholipid bilayer with the intervening hydrophobic molecular network
contains a .uid (cytosol) of 5xed volume and known viscosity. The red blood cell
does not contain a nucleus. Consequently, it has often been regarded as a “model
system” in the study of single living cells. In light of these considerations, the
mammalian red blood cell constitutes a convenient system for fundamental stud-
ies of how cell membranes convert mechanical forces into biological responses,
and how structural, chemical and biological signals and changes in the cell a1ect
the manner in which cell membranes detect, produce or support mechanical forces
(e.g., Bao and Suresh, 2003).

(2) The simple, axisymmetric, biconcave shape of the red blood cell is relatively more
amenable to the development of detailed theoretical/computational models than
other cells of more complex geometry. Early studies of cell mechanics have mostly
visualized the red cell as a thin elastic membrane which surrounds a viscous .uid
(e.g., Hochmuth et al., 1979).

(3) The rounded disc shape of the red blood cell readily facilitates single cell me-
chanical deformation experiments such as those involving micropipette aspiration
or optical tweezers (see later discussion).

(4) Blood .ow in microcirculation is in.uenced signi5cantly by the deformability of
the red blood cell which, in turn, is determined by such mechanical and geometrical
factors as the surface area, elasticity and viscosity of the cell membrane and the
volume and viscosity of the cytosol.

(5) There is a direct connection between the progression of certain inherited diseases
and the mechanical deformation characteristics of the red blood cell. Consider the
case of sickle cell disease which is caused by a defect in the haemoglobin struc-
ture as a result of the substitution of thymine for adenine in the �-globin gene,
and the attendant encoding of valine instead of glutamic acid in the sixth position
of the haemoglobin �-chain (Platt, 1995). As a consequence of this abnormality
haemoglobin, which transports oxygen to the organs and tissues in the body, clus-
ters episodically. The shape of the red cell is altered and its deformability and
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biorheology (ability to be transported through the blood vessels normally) are ad-
versely a1ected. This can result in severe pain as the tissues surrounding the blood
vessels receive insuHcient oxygen.

(6) It is now realized that the red blood cell can serve as the site for the maturation
of intracellular parasites which can lead to the progression of fatal diseases by
a1ecting the mechanical deformation and functional properties of the cell itself.
Consider the case of malaria, the most widespread parasitic disease of humans that
claims the lives of some 2–3 million people annually. This disease is caused by
the protozoa of the genus Plasmodium Falciparum (see, for a review, Cooke et al.,
2001). The structure of the cell cytoplasm, the shape of the cell and the molecular
constitution of its membrane are altered during the maturation of the parasite in the
cell so that red blood cell progressively loses its ability to undergo large deforma-
tion (Glenister et al., 2002; Lim et al., 2003); furthermore, the adhesiveness of the
red cell with other cells, such as the vascular endothelium, is also increased (Cooke
et al., 2001). Interestingly, patients with sickle cell disease exhibit resistance to
malaria.

Characterization of deformation of red blood cell has been achieved through a variety
of experimental techniques. Most common among these methods is the micropipette as-
piration technique (Evans, 1973; Hochmuth et al., 1973; Hochmuth and Waugh, 1987),
in which the stepwise increase of a suction pressure causes the cell to be drawn into
a glass tube, whose inner diameter, in conjunction with the aspiration pressure, can be
appropriately chosen so as to control the extent of deformation. The pressure is held
over a certain duration during which the deformation of the cell is recorded by means
of optical microscopy. The method can also be used, under appropriate conditions, to
assess the viscoelastic relaxation characteristics of the cell upon release of the aspira-
tion pressure. By matching the experimentally observed geometry changes of the whole
cell for given loading and con5gurational parameters of the experiment with theoret-
ically predicated responses, the elastic modulus, viscosity and characteristic time for
relaxation of the cell membrane can be extracted from such experiments (Evans and
Skalak, 1980). With recent advances in micromechanical and nanomechanical charac-
terization tools which can monitor/impose force and displacement to a resolution on
the order of picoNewton (10−12 N) and nm (10−9 m), respectively, there is a constant
search for additional experimental tools which can provide further insights into the
mechanical deformation characteristics of living cells (see Van Vliet et al., 2003, for a
comprehensive review). In particular, there is a continual need to develop new exper-
imental methods that are capable of imposing widely di1ering stress states on living
cells in a controlled mode and with high precision, so that the multiaxial deformation
characteristics of single cells and membranes in a .uid environment can be accurately
captured.
Development of experimental techniques based on optical or laser traps (also com-

monly referred to as optical or laser tweezers) has facilitated mechanical deformation
of whole biological cells at forces ranging from tens to hundreds of pN. This technique
is predicated on the phenomenon that upon passing through a high-refractive-index di-
electric object, the photons from the laser beam undergo a change in momentum which
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then exerts a force on the object and pushes it towards the focal point of the laser
beam. This results in the object being “trapped” by the laser beam. For example, a
dielectric bead of silica when so trapped by a laser beam can be physically moved as
the laser beam is displaced. If such a bead is attached strongly to the surface of a cell,
it serves as a handle or grip and displaces the cell membrane. The physics of optical
traps is described in detail elsewhere (Sheetz, 1998). The optical tweezers method can
be used to stretch the cell directly in one or more directions by trapping beads that
are strategically attached to the cell surface through speci5c or non-speci5c binding.
Human red blood cells have been stretched directly using optical traps to maximum
forces of 60 pN by recourse to two or three bead attachments on cell surfaces (HKenon
et al., 1999; Sleep et al., 1999; Lenormand et al., 2001). Such forces, however, are
insuHcient to induce large diameter changes in the human red blood cell which is
representative of the extent of large deformation commonly encountered in vivo. These
initial studies did not capture the complete deformation characteristics of the cell by
continuously monitoring the changes in axial and transverse diameters during loading
and unloading of the cell. In order to overcome these restrictions, the present study
and the parallel e1ort of Lim et al. (2004) have sought to re5ne and extend the op-
tical tweezers method for the study of large deformation of single biological cells, by
providing the following innovations: (a) direct stretching of the cell to optical forces
as large as 600 pN, nearly an order of magnitude larger than that achieved previously
for stretching the blood cell, (b) the use of larger bead sizes so that any possibility
of the heating of the cell by laser light is completely avoided, and (c) use of a fully
three-dimensional computational model of cell deformation, with the cytosol included
inside the cell membrane, to extract key elastic and viscoelastic properties of the cell
membrane from the optical tweezer experiments.
Drawing on the parallel work of Lim et al. (2004), this paper provides a detailed

discussion of the mechanics of large deformation of the human red blood cell by
recourse to computational simulations. In particular, systematic parametric analysis of
the e1ects of cell membrane shear and bending rigidity, the cell interior volume, the
variations in cell diameter, the conditions of contact between the cell membrane and
the beads trapped by the laser on the large deformation characteristics of the cell are
addressed in this paper with a view to elucidate the mechanics of optical tweezers
experiments for the study of living cells. The present computational simulations are
also carried out in the context of a variety of available constitutive descriptions of the
cell membrane. The implications of the predictions are assessed in light of the optical
tweezers experiments and in comparisons with results obtained from other techniques,
such as micropipette aspiration, wherever appropriate.

2. Background on experimental methods

The experimental set up used to impose large deformation on the human red blood
cell using optical tweezers is schematically sketched in Fig. 1. The key component
of this set up is a 1:5 W diode pumped Nd:YAG laser source (Cell Robotics,
Albuquerque, NM) connected to an inverted microscope (Leica Microsystems,
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Fig. 1. Illustration of the optical trap setup which comprises the laser source, the inverted microscope, a
CCD camera and a video recorder. The sample consists of two silica microbeads, 4:12 �m in diameter
non-speci5cally binded to the red cell at diametrically opposite points. The left bead is anchored to the
surface of the glass slide. The right bead can be trapped using the laser beam and stretching force applied
to it via the movement of the laser beam.

Wetzlar, Germany). The laser beam is used to trap a high-refractive-index silica bead
which is attached to the cell surface. The 1:5 W laser beam when used with sil-
ica microbeads of 4:12 �m in diameter can generate large forces that are nearly an
order of magnitude higher than those used for deforming red blood cells in pre-
vious studies (HKenon et al., 1999; Sleep et al., 1999; Parker and Winlove, 1999).
Two silica microbeads, which act as handles, are attached diametrically across the
cell through non-speci5c binding as shown in Fig. 1. As the present optical tweez-
ers system is designed to consist only of a single optical trap, one of the microbeads
is adhered to the glass surface while the other is free to be trapped using the laser
beam. By moving one of the beads with the laser beam, the cell is directly stretched.
The trapping force exerted on the microbead can be changed, up to a maximum
value of about 600 pN, by varying the laser power setting. Thereafter, changes in
axial (in the direction of stretch) and transverse (normal to that of stretch) diam-
eters are recorded using a CCD camera and video recorder. The red blood cell,
placed in a phosphate bu1ered saline solution, was stretched by optical tweezers in
the room temperature laboratory environment. Further details of sample preparation,
force calibration, experimental set up and data collection can be found in Lim et al.
(2004).
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3. Theoretical background and computational model

3.1. Constitutive response

As illustrated in Fig. 2(a), the human red blood cell membrane comprises the phos-
pholipid bilayer, the underlying spectrin network and transmembrane proteins. The
(composite) cell membrane structure is commonly modelled as an incompressible ef-
fective continuum, Fig. 2(b). Evans (1973) suggested that the relationship between the
membrane shear stress Ts (in units of force per unit length) and deformation is of the
form:

Ts = 2��s =
�
2
(�21 − �22); (1a)

Ts =
1
2
(T1 − T2) and �s ≡ 1

2
(�1 − �2) = 1

4
(�21 − �22); (1b)

�1�2 = 1; (1c)

where T1 and T2 are the in-plane principal membrane stresses, �1 and �2 are the in-plane
principal Green’s strains of the membrane, �1 and �2 are the principal stretch ratios,
� is the membrane shear modulus (assumed to be constant and expressed in units
of force per unit length) and �s is the shear strain. Note that Eq. (1c) re.ects the
assumption that the total membrane area is constant during deformation. For the case

(a)

(b)

Effective Continuum 
Material

In-plane shear modulus: µ
Bending stiffness: B

membrane thickness: h0

Spectrin network

Transmembrane
proteins

Human Red Blood Cell 
Membrane Structure
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Fig. 2. Illustration of the e1ective continuum shell model. (a) The human red blood cell membrane structure
comprises the lipid bilayer, the spectrin network and transmembrane proteins. (b) The (composite) cell
membrane structure is modelled using a hyperelastic e1ective continuum material.
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of uniform deformation, the ratios of the current diameter to the initial diameter in
the axial and transverse directions of the cell correspond approximately to the stretch
ratios �1 and �2, respectively. However, for the experiments using the micropipette
aspiration and optical trap techniques, the deformation is nonuniform. The constitutive
model described in Eq. (1) has been used for interpreting the mechanical response of
the red blood cell in numerous experimental studies conducted using the micropipette
aspiration technique (Evans, 1973; Evans and Skalak, 1980).
Large deformation response of the red blood cell has also been analyzed using other

variations of such continuum constitutive models. One such approach is predicated on
use of a hyperelastic e1ective material model (Lim et al., 2004). The simplest 5rst
order formulation in this case is the incompressible (constant volume) neo-Hookean
form where the strain energy potential function (Simo and Pister, 1984) is given by

U =
G0

2
(�21 + �

2
2 + �

2
3 − 3); (2)

where G0 is the initial bulk shear modulus, and �i (i=1; 2; 3) are the principal stretches.
If the membrane is assumed to be incompressible, �1�2�3 = 1. The potential function
in Eq. (2) de5nes the nonlinear elastic stress–strain behavior. The neo-Hookean hy-
perelastic potential is known to be reasonably accurate when the maximum strain is
on the order of 100%. For a hyperelastic thin membrane subjected to uniaxial stretch
(T2 = 0), the uniaxial membrane stress T1 can be derived from Eq. (2),

T1 = h
@U
@�1

= G0h0(�1:51 − �−1:5
1 ); (3)

where h is the current membrane thickness, and h0 is the initial membrane thickness.
Therefore, under uniaxial stretch the membrane shear stress is

Ts =
1
2
(T1 − T2) = G0h0

2
(�1:51 − �−1:5

1 ) (4)

and the (instantaneous) membrane shear modulus � is given as

�(�1) =
1
2
@Ts
@�s

=
3G0h0(�0:51 + �−2:5

1 )

4(�1 + �−3
1 )

: (5)

From Eq. (5), the initial in-plane membrane shear modulus is found to be �0=0:75G0h0.
Fig. 3(a) schematically shows the shear stress versus shear strain response of such a
neo-Hookean hyperelastic material during uniaxial stretch. The membrane shear mod-
ulus typically decreases from its initially high value, �0, to a relatively smaller value,
�l, at larger strains, before attaining a higher value, �f , again prior to 5nal failure. The
slope of the membrane shear stress (Ts) versus shear strain (2�s) is therefore a de-
creasing function of shear strain from the initial to the intermediate region, as shown in
Fig. 2(b). For the simple 5rst order neo-Hookean material formulated in Eq. (2), only
the 5rst stage (�0) and the second stage (�l) are present. Speci5cally, �l is taken here at
a relatively large stretch ratio of �1=3 under uniaxial tension. As shown later, the strain
values introduced in the cell membrane during large deformation in the present optical
trap experiments correspond to the intermediate region of the stress–strain curve in
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Fig. 3. Schematic illustration of the hyperelastic constitutive response used in some of the computational
simulations. (a) Uniaxial stress–strain response. (b) The variation of the membrane shear modulus with the
progression of deformation in the early region and in the in-between region, where strains are representative
of the large deformation response achieved in the present optical tweezer experiments. The 5nal deformation
regime with the shear modulus of �f is not shown in this 5gure.

Fig. 3(a) where the membrane shear modulus is close to �l. Therefore, the present
analysis does not include the deformation response indicated by the dashed line in
Fig. 3(a) (i.e., that corresponding to the 5nal shear modulus, �f ). When the constant
membrane area constraint, i.e. the condition that �1�2 = 1 (with the third principal
stretch, �3 = 1) is enforced in Eq. (2), the constitutive description of Eq. (2) becomes
equivalent to that of Eq. (1), where the in-plane membrane shear modulus stays at a
constant value of � = G0h0 throughout the entire deformation history.

For a thin shell structure, the key parameters of interest in the characterization of
large deformation are the in-plane shear modulus � and the bending modulus B. For
the accepted range of literature values of B0 = 1:7 × 10−19–7 × 10−19 N m for the
human red blood cell (Evans, 1983; Sleep et al., 1999), our simulations indicate that
the force required to produce a given stretch ratio in the axial or transverse direction
varied by less than 5%, when stretching force was larger than 50 pN. Therefore, only
the results obtained using a typical value of B0 = 2 × 10−19 N m are presented here.
In conducting the parameter studies, the initial shear modulus value �0 can be chosen
5rst. This subsequently determines the uniaxial large strain membrane shear modulus
�l. By incrementally varying the values of �0 (as well as �l), the closest 5t to the
experimental axial and transverse diameters during large deformation stretch determines
the estimated membrane shear modulus value.
The cytosol is assumed to be a .uid which acts to preserve the interior volume (V0)

of the red blood cell during deformation as well as to maintain the even distribution
of the internal (hydraulic) .uid pressure (p) on the inner membrane surface, i.e.

V (t) = V0 and pe(t) = p(t); (6)

where V (t) is the current cell interior volume and pe(t) is the normal pressure acting
on the internal surface of each shell element (cell membrane) of the 5nite element
mesh at any instantaneous time t. The viscous energy dissipation of the cytoplasm
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within the red cell 5lled with concentrated haemoglobin solution is known to be two
orders of magnitude smaller than that of the membrane (Evans and Hochmuth, 1976).
The viscosity of the cytosol can therefore be ignored. In order to explore possible
e1ects of cell membrane permeability, companion computations without cytosol were
also carried out in the present work.

3.2. Computational model

Evans and Fung (1972) estimated the shape of human red blood cells and an average
biconcave shape function was given as

Z =±0:5R0

[
1− X 2 + Y 2

R20

] 1
2
[
C0 + C1

X 2 + Y 2

R20
+ C2

(
X 2 + Y 2

R20

)2
]
; (7a)

R0 = 3:91 �m; C0 = 0:207161; C1 = 2:002558; and

C2 =−1:122762; (7b)

where 2R0 is the average cell diameter in the axial direction. Di1erent initial cell di-
ameter values ranging from 7 to 8:5 �m in Eq. (7) can be explored to investigate
the e1ect of cell size variations. Fig. 4(a) shows the original equilibrium shape of the
three-dimensional biconcave model of the red blood cell constructed using the dimen-
sions speci5ed in Eq. (7). The stretching force is applied to the silica microbeads which
are attached diametrically at opposite ends of the cell. The silica beads are modelled
as rigid spheres and are assumed to be attached to the cell over a small oval region
with a diameter of between 1 and 2 �m so that the 5nal contact conditions could be
properly simulated. Because of symmetry, it suHces to model only half of the red
blood cell. Fig. 4(b) shows the original mesh of the biconcave model which contains
12,000 three-dimensional shell elements. Four-noded, bilinear, reduced integration shell
elements are used. The simulations have been performed using the commercially avail-
able general purpose 5nite element package, ABAQUS (ABAQUS, 2002). Fig. 4(c)
shows an axisymmetric spherical shell model which was used for some simulations in
an attempt to develop a basis for comparison with the results derived from the more
realistic biconcave cell model. Another reason for performing additional simulations
with the spherical shell model is that some recent studies (Parker and Winlove, 1999)
on small deformation of red cells using optical traps invoked analysis of spherical ge-
ometry in the interpretation of experiments. Thus, the trends extracted from the present
work could be systematically compared with prior studies. Similar to the case of the
biconcave model, the silica beads are assumed to be attached to the spherical cell over
a small circular region with diameter between 1 and 2 �m. Computations using the
red cell model with and without the cytosol were performed. All the results presented
below in the parametric studies pertain to conditions where the cytosol is included in
the computational simulations, unless speci5ed otherwise.
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Fig. 4. Finite element model setup of the three-dimensional geometry of the human red blood cell. (a) Original
shape of the three dimensional biconcave model. The rigid silica beads were assumed to be attached to the cell
over a small oval region with a diameter between 1 and 2 �m. Only half of the red blood cell was modelled
because of symmetry. (b) Original mesh design of the biconcave model, where 12,000 three-dimensional
shell elements were used in the simulations. (c) Companion axisymmetric spherical model. The silica beads
were assumed to be attached to the cell over a small circular region with a diameter between 1 and 2 �m.
The cytosol can be e1ectively modelled as a hydraulic .uid.

4. Results

Fig. 5(a) shows a sequence of optical images revealing large deformation response of
a red cell at di1erent stretching forces. At stretch force of 340 pN, the axial diameter of
the cell increased by 50% and the transverse diameter was reduced by more than 40%.
Fig. 5(b) is a plot of the computational results of the plane view of the cell at di1erent
values of imposed stretching forces. The presence of a volume-preserving .uid inside
the cell was assumed in these simulations, following the approximations outlined in the
previous section. Fig. 5(b) also contains contours of constant maximum principal strain
on the cell membrane. Note that, as anticipated, regions of cell membrane in physical
contact with the silica beads undergo the maximum strain, which is as much as 100
–120% at the maximum force of 340 pN indicated in the 5gure. With the initial value
of the membrane shear modulus taken to be �0 = 22:5 �N=m, and with the contact
diameter dc between the bead and cell 5xed at 2 �m, the value of membrane shear
modulus �l in the intermediate stage of large deformation which led to quantitative
agreement, in axial and transverse diameters at di1erent force levels, between the sim-
ulation and experiment was found to be 13:3 �N=m. Fig. 5(c) shows the deformation
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Fig. 5. Large deformation of the stretched red blood cell loaded from 0 to 340 pN. (a) Experimental
observations. (b) Computed contour maps (plan view) of the constant maximum principal strain distribution
(simulations with cytosol). (c) One half of the full three-dimensional biconcave shape of the erythrocyte at
di1erent loading forces (with cytosol). (d) Computed contour maps (plan view) of the constant maximum
principal strain distribution (simulations without cytosol). (e) One half of the full three-dimensional biconcave
shape of the erythrocyte at di1erent loading forces (without cytosol). All simulations were performed with
�0 = 22:5 �N=m (the corresponding �l = 13:3 �N=m).

of the three-dimensional biconcave shape (half model view) in response to di1erent
loading forces. It is clear from this 5gure that the cell geometry accommodates large
deformation during unidirectional stretch by the folding of the membrane. The single
camera view used to record the experimental images did not facilitate clear documen-
tation of such folding during the optical trap experiment. However, the existence of
a shaded region in the interior of the cell during large deformation stretching experi-
ments (which can be viewed in the video images posted in the supplementary material
available electronically along with this paper) appears to suggest possible occurrence
of such folding.

4.1. Parametric analyses

Figs. 5(d) and (e) show computational results of the corresponding plan view and
half-cell three-dimensional view of the cell deformed at di1erent forces by invoking
the rather hypothetical assumption that the cell interior does not contain any .uid.
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Fig. 6. Experimental and computational force versus displacement curves. The black line with error bar
is the experimental observation. The solid and dashed lines are the computational predictions of the cell
diameters using an in-plane shear modulus of �l = 13:3 �N=m (with �0 = 22:5 �N=m), simulated with and
without cytosol, respectively. Both the axial and transverse diameters are computed. The cytosol is seen
having limited e1ect on the mechanical properties of the cell structure under large deformation uniaxial
stretch, especially along the axial direction.

The absence of the cytosol is found to a1ect only slightly the axial and transverse
diameters of the cell at di1erent force levels. However, Fig. 5(e) suggests that without
the cytosol, the centre of the biconcave disk “caves in”, with the top membrane touching
the bottom at higher stretching forces. This is not the case for the model with cytosol
as shown in Fig. 5(c) where there is never any contact between di1erent parts of the
cell membrane. The results of computer simulations of the optical tweezer experiments
thus illustrate how the cytosol serves to maintain the internal cell volume and precludes
contact between di1erent parts of the cell.
A quantitative comparison of predicted and measured changes in axial and transverse

diameters of the red cell is provided in Fig. 6 for simulations with and without cytosol.
This 5gure also shows the experimentally measured changes in axial and transverse
diameters of the red cell at di1erent stretching forces, along with the typical scatter in
experimental data estimated from at least eight di1erent experiments for each load. The
responses observed for the change in axial diameters for models with or without cytosol
were very close. However, for changes in the transverse diameter, the response was
sti1er for the model with cytosol. The results indicate that for uniaxial direct stretch
experiments, the incompressible cytosol contributes little to the axial deformability of
the cell but has an important e1ect for deformation in the transverse direction.
In order to explore, in a parametric manner, the e1ect of varying the membrane

shear modulus on cell deformation with optical tweezers, additional simulations were
performed with two di1erent initial values of �0: 18.8 and 30 �N=m. For these two
cases, the membrane shear modulus �l in the large deformation range in Fig. 3 was
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Fig. 7. Variation of measured axial and transverse diameter (solid line with scatter band) of red cell against
stretching force of optical tweezers during large deformation. The solid and dotted lines represent computa-
tional predictions for the axial/transverse diameter with �l=11:1 and 17:7 �N=m (the corresponding �0=18:8
and 30 �N=m), respectively, invoking the hyperelastic constitutive response, Eq. (2), and assuming constant
cell interior volume. The computational model uses the three-dimensional biconcave disk with a contact
diameter of 2 �m. Also shown are the predictions of simulations assuming both constant membrane area
and constant cell interior volume, represented by long dashed lines, using the model given by Eq. (1).

chosen such that the experimental trends of changes in axial and transverse diameters
as functions of the variations in stretching force were both matched by computational
predictions. The resulting values of �l were found to be 11.1 and 17:7 �N=m, respec-
tively, for �0 = 18:8 and 30 �N=m. The contact size dc was again taken to be 2 �m.
Comparisons of predicted and measured changes in axial and transverse diameters of
the cell are plotted in Fig. 7. Simulations performed using �l of 11.1 and 17:7 �N=m
were able to encompass the experimental trends reasonably well over the full range of
large deformation, but less so for axial diameter at small deformations.
The in-plane shear modulus range, �l =11:1–17:7 �N=m, estimated from our analysis

using the constitutive description of Eq. (2) for large deformation with optical tweezers
compares with the range of 6–10 �N=m estimated previously from micropipette aspira-
tion experiments (Evans and Skalak, 1980; Fung, 1993). Alternatively, if we invoke the
constitutive response given in Eq. (1) with constant area for the cell membrane in our
three-dimensional computational simulation, the present optical tweezers experimental
data can be matched by the choice of a 5xed value of the membrane shear modulus,
�0 =�l =�f = 20 �N=m over most of the variations in axial and transverse diameter of
the cell with the applied force (see Fig. 7). It should be considered that the stress state,
loading mode and experimental artefacts (e.g., friction between the cell membrane and
the micropipette walls in the aspiration experiments versus the contact loading at the
opposite ends of the cell in the tweezers method) are very di1erent in the two cases.
It is also interesting to note that Sleep et al. (1999) reported shear modulus values
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Fig. 8. Deformed meshes of the biconcave red cell model loaded from 0 to 340 pN. These deformed meshes
(half model top view) are computed using in-plane shear modulus �l = 11:1, 13.3 and 17:7 �N=m (with
corresponding �0 = 18:8, 22.5 and 30 �N=m), respectively. The red cell’s structural rigidity is seen quite
sensitive to variations in in-plane shear modulus of the membrane.

of up to 200 �N=m for the human red blood cell stretched by two trapped beads in
an optical trap setup at a maximum force of 15 pN. They rationalize this apparent
discrepancy by postulating that the membrane shear modulus from micropipette aspira-
tion is lower than their results possibly due to the phase separation at the membrane.
Additional factors could include the failure of the integral membrane proteins to follow
the membrane .ow during entry to capillary (Discher and Mohandas, 1996).
Fig. 8 illustrates the e1ects of membrane shear modulus on the con5gurational

changes induced on the cell surface during stretching with optical tweezers. This 5g-
ure shows the top view of the deformed meshes of the biconcave red cell model
when subjected to stretching forces of 145, 280 and 340 pN computed using in-plane
shear modulus of �l = 11:1, 13.3 and 17:7 �N=m (with corresponding �0 = 18:8,
22.5 and 30 �N=m), respectively, for the case without the cytosol. Also shown for
comparison are the corresponding results with the cytosol included and with �l =
13:3 �N=m (�0 =22:5 �N=m). The red cell’s structural rigidity is observed to be sensi-
tive to variations in in-plane shear modulus of the membrane. A higher shear modulus
value indicates the red cell as being more rigid, as can be observed in the reduction
in the change in axial diameter. A comparison of columns 1 (simulations with cy-
tosol) and 3 (simulations without cytosol) in Fig. 8 shows that the deformed meshes
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Fig. 9. The predicted e1ects of varying the cell diameter D from 7, 7.82 to 8:5 �m, respectively. The axial
diameter is found rather sensitive to the variations in cell diameter, while the transverse diameter is much
less sensitive to the same variations in cell diameter. The result provides an explanation for the much wider
scattering in axial response observed experimentally.

modelled with or without cytosol are quite similar, except that the transverse rigid-
ity is considerably increased with the cytosol, consistent with the results plotted in
Figs. 5 and 6.
In order to study the e1ect of the cell size variations, calculations were carried out

using three di1erent cell diameters, D=7:0, 7.82 and 8:5 �m, respectively. The in-plane
shear modulus �l was chosen to be 13:3 �N=m (with �0 =22:5 �N=m) and the contact
size dc was taken to be 2 �m. Fig. 9 shows the predicted e1ects of varying the cell
diameter D from 7 to 8:5 �m. The axial diameter is found to be rather sensitive to the
variations in cell diameter, while the transverse diameter is less sensitive to the same
variations in cell diameter. The result provides an explanation for the much greater
scatter in the experimentally observed changes in axial diameter than in the trans-
verse diameter (see the experimental data and their scatter in both axial and transverse
directions in Figs. 6, 7 and 9).
Taking the same set of mechanical properties of the membrane at �l = 13:3 �N=m

(with �0 =22:5 �N=m), and the same contact diameter at dc =2 �m, Fig. 10 compares
the experimental data with the results obtained using the axisymmetric spherical model
and the biconcave model, both computed with cytosol. The initial diameter of the
spherical cell model was taken to be the same as the biconcave model at 7:82 �m. It
is clear that the predicted axial diameter from the spherical model matches very well
with that from the biconcave model as well as experiments. However, the spherical
model predicts a much sti1er response in the transverse direction as compared to the
biconcave model and experiments. Using the spherical model, one can easily match
either the axial diameter or the transverse diameter by tuning the shear modulus, but
it is not possible to match diameters in both directions well without using the more
appropriate biconcave model.
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Fig. 10. Comparison of the axisymmetric spherical model and the biconcave model with respect to the
experimental results. The predicted axial diameter from the spherical model matches excellently with that
from the corresponding biconcave model as well as the experimental curve. However, the spherical model
predicted much more sti1 response in the transverse direction than the biconcave model when being compared
with the experimental results.

Taking the initial cell diameter at 7:82 �m and the shear modulus at �l =13:3 �N=m
(with �0 = 22:5 �N=m), this average biconcave cell shape has an internal volume of
Vave=94:1 �m3 (Evans and Fung, 1972). Keeping the same membrane shell and 5lling
the internal cell volume with 75%, 100% and 125% of the cytosol Vave (assuming no
air), the change in the axial and transverse diameters of the red cell that contain
di1erent initial cell interior volumes were computed. The cell interior volume was
kept at the initial value during the entire loading process (i.e. no .ow of cytosol
across membrane during stretching). Fig. 11 shows the predicted e1ects of varying the
cell interior volume while assuming no .uid exchange across the cell membrane. The
volume variation is seen to have little e1ect on the cell’s axial response. However,
adding or subtracting 25% of the volume of the cell e1ectively sti1ens or softens,
respectively, the responses in the transverse diameter under direct uniaxial stretch.
Parametric studies were also performed to consider the experimentally observed scat-

ter in terms of the contact diameter dc while still keeping the cell size at 7:82 �m and
the membrane shear modulus at �l = 13:3 �N=m (with �0 = 22:5 �N=m). Fig. 12(a)
demonstrates that more compliant axial responses and almost identical transverse re-
sponses are predicted when the contact diameter decreases from 2 to 1:5 �m and then
to 1 �m. The result is again consistent with the much narrower scatter in the transverse
response as observed experimentally. Fig. 12(b) shows the range of �l and �0 values
extracted for the present optical tweezers experiments assuming di1erent values, dc,
for the diameter of contact between the beads and the cell membrane. It is clear that
while there is a geometrical e1ect of contact size on the large deformation response,
the appropriate range of shear modulus values estimated in Fig. 12(b) is not drastically
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Fig. 11. The predicted e1ects of varying cell interior volume. The cell interior volume is seen having limited
e1ect on the cell’s axial response. However, adding or extracting 25 vol% internal .uid e1ectively sti1ens
or softens respectively the transverse rigidity of the cell under direct uniaxial stretch.

altered by the particular choice of dc. In this respect, we note that prior studies of small
deformation of human red blood cells using optical tweezers (HKenon et al., 1999; Sleep
et al., 1999; Parker and Winlove, 1999) assumed essentially a point contact between
the beads and the cell membrane. It is evident that such an assumption can lead to
a more pronounced variation in the shear modulus estimate than that extracted from
5nite contact diameter simulations which match experiments more closely.

4.2. E7ect of the membrane viscosity

When the stretching force imposed by the optical tweezers is released at the point
of maximum deformation, the cell returns to its original shape. Using this relaxation
response of the cell, the viscoelastic properties of the cell membrane can also be esti-
mated. Adding the viscoelastic term to the constitutive behavior of the cell membrane,
Eq. (1) or (4) can be modi5ed as (Evans and Hochmuth, 1976),

Ts = T 0
s + 2�

@ ln �1
@t

; tc =
�
�
; (8)

where T 0
s is the membrane shear stress without taking the membrane viscosity into

account, and � is the coeHcient of surface viscosity of the cell membrane, t is time,
and tc is the characteristic time for relaxation.

When the external stretching force by optical tweezers is released, i.e. T 0
s = 0 in

Eq. (8), the characteristic time tc for the recovery of the red blood cell can be assessed
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Fig. 12. The predicted e1ects of varying the contact diameter dc. (a) More compliant responses are observed
when the contact diameter decreases from 2, 1.5 to 1 �m, respectively. (b) The range of �l and �0 values
extracted for the present optical tweezers experiments assuming di1erent values, dc, for the diameter of
contact between the beads and the cell membrane. It is clear that while there is a geometrical e1ect of
contact size on the large deformation response, the appropriate range of shear modulus values estimated is
not drastically altered by the particular choice of dc.

by recourse to the simple expression proposed by Hochmuth et al. (1979):
(�21 − 1)(�21;max + 1)

(�21 + 1)(�21;max − 1)
= exp

(
− t
tc

)
; (9)

where �1;max is the initial (maximum) value of the stretch ratio of the red cell. When
the best 5t to the experimental data on cell relaxation from eight di1erent tests is made
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Fig. 14. The e1ect of the membrane viscosity during loading stage assuming the upper bound values of
tc = 0:25 s, � = 22:5 �N=m in Eq. (8), and a stretch rate �1 = 0:3 s−1.

using Eq. (9), the characteristic time is estimated to be tc = 0:19± 0:06 s. This range
of values is slightly higher than the value of 0:1 ∼ 0:13 s estimated from micropipette
aspiration experiments (Chien et al., 1978; Hochmuth and Waugh, 1987). The loading
response can also be determined by incorporating the viscoelastic term on the right-hand
side of the second term of Eq. (8), by recourse to the three-dimensional computational
simulation. Figs. 13 and 14 shows a comparison of the predicted changes in axial
diameter of the cell as a function of the stretching force, with and without the membrane
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viscosity term in Eq. (8). It is evident that the error caused by neglecting membrane
viscosity during the loading stage is negligibly small. The transverse diameter change
(not shown here) is also not in.uenced in any signi5cant manner because of the
addition of the viscoelastic correction term. Thus the results presented in Figs. 5–12
appear to capture reasonably accurately the overall large deformation loading response
of the cell membrane even when the viscoelastic correction factor is ignored.

5. Concluding remarks

We have demonstrated, both in this paper and in our parallel recent work (Lim
et al., 2004), that optical tweezers can be used to investigate systematically the large
deformation characteristics of the human red blood cell in direct stretch. The present
paper provides details of the mechanics of such deformation whereby parametric anal-
yses of the e1ects of various geometric and material parameters could be examined
within the context of loading by means of optical tweezers. The forces through which
the deformation is induced in this work are nearly an order of magnitude larger than
those achieved previously on red blood cells with optical tweezers (HKenon et al.,
1999; Sleep et al., 1999). The method demonstrated here for large deformation test-
ing of living cells provides a potentially powerful new experimental tool, with force
capabilities in the range of tens to hundreds of pN, which could complement other
techniques such as micropipette aspiration (Evans, 1973; Evans and Skalak, 1980) and
atomic force microscopy (Rotsch et al., 1999; Wu et al., 2002). By facilitating direct
stretching of a biological cell to large strains in direct tension, the optical tweezers
method provides the .exibility to explore the mechanical responses at stress states that
are signi5cantly di1erent from those possible with other techniques. In addition, the
.exibility of the method to load the cell surface at multiple contact points by the appro-
priate choice of the number, size and spatial distribution of the beads o1ers additional
capabilities for mechanical testing.
The experimental results obtained for the large deformation of red blood cells in

a phosphate bu1ered saline solution at room temperature have been analysed using a
variety of constitutive models and within the framework of a fully three-dimensional
computational simulation. An outcome of the exercise is a quantitative assessment of
the predictions of di1erent hyperelastic and viscoelastic constitutive formulations on
the overall deformation characteristics of the cell subjected to direct tensile stretch by
optical tweezers. Also assessed is the characteristic time for relaxation of the red blood
cell upon release of the applied force. These results, in conjunction with a wealth of
information available in the literature on the deformability of red blood cells probed
by other techniques such as micropipette aspiration (see the preceding section), also
point to the possible e1ects of loading mode and stress state on the inferred mechanical
response.
The constitutive models used in this study to extract mechanical properties of the cell

membrane have been predicated upon continuum analysis. It is clear from the present
simulations that, even within the context of continuum analysis, the large deformation
response is strongly in.uenced by a variety of parameters including the loading mode,
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contact conditions, geometry and assumed material constitutive characteristics. Recent
approaches to analyse large deformation response of red cell membranes (Boey et al.,
1998; Discher et al., 1998) have also introduced molecular level models of the defor-
mation of spectrin network in the cell membrane, within the context of Monte Carlo
simulations. The results of these simulations were assessed in light of results obtained
from micropipette aspiration experiments where the modulus values were found to be
consistent with the experimentally extracted values (which were discussed earlier). It
should also be recognized that models of cell membrane deformation alone do not
capture the dynamic structural changes that evolve in the cell interior. For example,
the cytoskeleton could also constitute a structural basis for deformation, mechanical
sensing and mechanochemical transduction by providing a mechanical linkage from
the extracellular matrix to the cell membrane to the cell interior (e.g., Maniotis et al.,
1997).
Ongoing experimental studies (Lim et al., 2003) have also revealed that the present

optical tweezers method can be successfully used to identify clearly the connections
between red blood cell membrane deformability and the progression of certain types of
diseases. In particular, direct stretch experiments involving optical tweezers of normal
red blood cells and cells infested in a controlled manner with malaria parasites have
revealed quantitative correlations between loss of membrane deformability and exposure
to the parasite, at force resolutions on the order of tens of picoNewtons. Such results
o1er appealing possibilities for further extensions of the present work for diagnostics
and drug treatment of diseases.
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