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Icosahedron Network Generator 
 
An initial spectrin network (see Fig. 1(a)) is generated to cover a spherical surface using a 
public-domain software (Weber et al., 2002). It employs a recursive division and 
projection algorithm. The first approximation of a sphere is an icosahedron with 12 
vertices and 20 (initially equilateral) triangular faces. Every level of refinement 
subdivides each triangular face by a factor of 4. After each refinement, the vertices are 
projected to the sphere surface. A total of six refinements are made. The final network 
has 20×46 = 81,920 triangular faces, 40,962 junction complexes, and 122,880 spectrin 
links. Almost all the vertices on the icosahedron network are degree-6. However, a 
topological minimum of twelve degree-5 vertices (defects) must be present when 
mapping any triangular network onto a sphere, which is achieved exactly by the 
icosahedron network here. Fig. 2(b) shows a closer look at one of twelve such defects. 
The structure is rendered using AtomEye, a public-domain molecular visualization 
software (Li, 2003). 
 
In the ensuing CGMD simulations using this structure, we have found shape artifacts 
associated with these degree-5 vertices, as for instance a greater propensity to form 
extruded corners near these defects; see e.g. Figs. 1(c) and 1(d).  These are obtained using 
the volume deflation procedure detailed in the main text. After some analysis, it is found 
that these artifacts are caused by a global residual stress distribution which is long-
ranged, and therefore are rather difficult to be removed. The icosahedron cytoskeleton 
structure generator used here leads to a residual stress field (in-plane) for the following 
reason. Basically, 20 flat triangular pieces of membrane (if the spontaneous curvature 
angle θ0 is zero) are deformed to “patch up” a spherical surface. The stress-free states of 
these membranes are equilateral triangles. But in order to patch up a spherical surface 
without leaving gaps, these pieces should first be stretched on their circumferences. This 
is done implicitly in the recursive division and projection procedure.  
 
As evidence of such geometrically necessary in-plane stretching, consider the angle at the 
tip of a piece of membrane (see Fig. 1(b)).  It is 60° in the stress-free state, but must 
become 360°/5=72° if it is to cover a spherical surface.  As such, spectrin links a, b of 
originally equal lengths must now become unequal: b ≠ a, creating hoop stresses around 
the defect. This is not merely a local condition: one may alternatively draw a much larger 
loop around the defect, count the numbers of circumferential versus radial spectrin links, 
and realize that the circumferential links must be stretched compared to the radial ones, 
which leads to residual stress field deep within each “crystalline” membrane piece. This 
is a fundamental geometrical consequence of our ordered network structure. It turns out 
to be highly nontrivial to come up with a network generation algorithm to create an 
ordered cytoskeleton structure (meaning a small number of defects arranged in symmetric 
fashion) that covers a spherical surface with equilateral triangles as tiling units, which 
also gives small residual stresses.   
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Another problem with the icosahedron network generator is that there are limited choices 
for the size of the network. If the icosahedron is refined 5 times, 10,242 junction 
complexes are obtained; for a six-fold refinement, there are 40,962 junction complexes.  
The real RBC has about 30,000 junction complexes if tessellated by triangles. In order to 
use the icosahedron network with L0 = 75 nm, the spherical RBC model needs to be 
significantly larger than the real RBC, with total area sphere 2

total 200 mA µ= , total volume 
sphere 3
total 265 mµΩ =  and diameter (before deflation procedure) 0 7.97 mD µ= .  In contrast, a 

spherical RBC which has the same surface area as the actual biconcave RBC average 
(Evans and Skalak, 1980) should have sphere 2

total 134.1 mA µ= , sphere 3
total 146 mµΩ = and 

0 6.53 mD µ= . A random network generator is developed in the main text which 
satisfactorily addresses both the residual stress and size problems. This random network 
generator is also not limited to creating just triangular networks. 
 
 
Large Deformation Elasticity of WLC Sheet 
 
Suppose that the spectrin network is a 2-D triangular crystal (Fig. 2) with Bravais lattice 
vectors ( )x ya a≡ ,a  and ( )x yb b≡ ,b . The four numbers { }x y x ya a b b, , ,  completely specify 
the geometry of the system.  For a given reference lattice, { }x y x ya a b b, , ,  can be made 
equivalent to two diagonal and one off-diagonal strain and one rotational degree of 
freedom. Then, 

( )x x y yb a b a≡ − = − , − ,c b a  (1) 
 

2 2 2 2 2 2( ) ( )x y x y x x y ya a a b b b c b a b a≡| |= + , ≡| |= + , ≡| |= − + − .a b c   (2) 
All triangles in the perfect crystalline state have the same area:  

 0 1 2
1 1
2 2 x y y xA A A A a b a b= = = = | × |= | − | .a b  (3) 

If a right-handed system is always chosen, that is, if b  is always chosen to be counter-
clockwise toa , then the above symbols ||  for absolute values can be omitted.  
 
The next step is to perform a nonlinear elasticity analysis for the given Bravais 
lattice{ },a b . Each vertex is connected to 6  spectrin links, but each link is shared by two 
vertices, such that each vertex has three links associated with it.  These three links are 
conveniently chosen to be a , b , c , respectively, with the associated WLC energy being 

WLC WLC WLC( ) ( ) ( )V a V b V c+ + . Similarly, each vertex is connected to 6  triangular 
plaquettes, but a triangular plaquette is shared by 3  vertices. Thus each vertex really has 
two affiliated plaquettes, with associated membrane energy being 2 q

qC A−× . So for each 
vertex that occupies a current area 2A  the associated strain energy is 

WLC WLC WLC( ) ( ) ( ) 2 n
nV a V b V c C A−+ + + . Using the Virial theorem (Allen and Tildesley, 

1987), the Cauchy stress is derived as:  
   

1WLC WLC WLC( ) ( ) ( )1
2

q
q

f a f b f ca a b b c c qC A
A a b cαβ α β α β α β αβτ δ

⎡ ⎤
− −⎢ ⎥

⎢ ⎥
⎢ ⎥⎣ ⎦

= − + + − .           (4) 
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with 

2 2
20 0 max 0 B 0 0B

0 0 max2 2
max 0 0 0

3 3 (6 9 4 )1 1 ( ) .
4 4(1 ) 4 16 (1 )q

A A L x k T x xk TC x x L
qL x p x pq x

⎧ ⎫
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

− +
= ⋅ − + =

− −
  (5) 

  
where a = b = c = x0Lmax and 2

0 0 max3( ) 4A x L= /  when ταβ = 0. In the case of 1q =  
(Discher et al., 1998),  
 

3 4 2
max 0 B 0 0

1 2
0

3 3 (6 9 4 )
64 (1 )

L x k T x xC
p x

− +
= .

−
                                        (6) 

 
The pure shear stress-strain response of the homogenized WLC sheet, envisioned solely 
as a triangulated network of molecules with WLC potential, undergoing large elastic 
deformation is plotted in Fig. 3 on the basis of the foregoing analysis.   
 

Linear Elastic Area Compression Modulus K  of WLC Sheet 

When maxa b c L x= = =  and the angle between ,a b  is exactly 60 o , the Cauchy stress is 
diagonal:  

 2 1B
max2

max

31 1 1 ( )
2 4(1 ) 4 2

q
q

k T x xL qC A
A pL x x

αβ
αβ αβ

δ
τ δ− −⎡ ⎤⎧ ⎫

= ⋅ − + − .⎨ ⎬ ⎢ ⎥−⎩ ⎭ ⎣ ⎦
          (7) 

 
The resulting pressure is  

1 B max
2

3 1 1
4 4(1 ) 4

q
q

k TxLP qC A x
Ap x

− − ⎧ ⎫
= − − + .⎨ ⎬−⎩ ⎭

                        (8) 

 
The linear elastic area compression modulus K  is defined as,  

0 0

1
log 2 logA A x x

P PK
A x= =

∂ ∂
≡ − = − .

∂ ∂
                                (9) 

 
After some derivations,  
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2 0B
0 02

max 0 0

1 2(1 )3 1( )(6 9 4 )
4 (1 ) 2 1

xk TK q x x
pL x x

⎧ ⎫+ −
= + − + + .⎨ ⎬− −⎩ ⎭

                    (10) 

 
Fig. 4 shows the variation of pressure with the equibiaxial area strain of the effective cell 
wall, triangulated with the spectrin molecular network. In contrast to the shear 
deformation (Fig. 3), the WLC sheet area expansion response softens initially for (A/A0)-
1 < 2, and begins to harden above this value. 

Linear Elastic Shear Modulus µ  of WLC Sheet 

Consider a reference lattice in equilibrium with the coordinates 
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 ( )0 0 max 0 0 max 0 0 max
3 1 3 10 1

2 2 2 2
x L x L x L

⎛ ⎞ ⎛ ⎞
= , , = , , = − , ,⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
a b c      (11) 

If an incremental engineering shear strain γ is imposed on this lattice,  

 21 2
( )ˆ ˆ

2 1 x y Or r′ ′/⎛ ⎞
= , = , ∆ | |≡| | − | |=| | + ,⎜ ⎟/⎝ ⎠

J r rJ r r r r
γ

γ γ
γ

             (12) 

then,  

 2
0 max 0 max

3 1 3 3 ( )
2 4 2 4 4

x L a x L O
⎛ ⎞

= + , + , ∆ = + ,⎜ ⎟⎜ ⎟
⎝ ⎠

a γ γ γ γ  

 2
0 max 1 ( )

2
x L b O⎛ ⎞= , , ∆ = ,⎜ ⎟

⎝ ⎠
b γ γ  

2
0 max 0 max

3 1 3 3 ( )
2 4 2 4 4

x L c x L O
⎛ ⎞

= − + , − , ∆ = − +⎜ ⎟⎜ ⎟
⎝ ⎠

c γ γ γ γ        (13) 

 
and  

2
0(det 1) ( )A A O∆ ≡ − = ,J γ                                   (14) 

 
Using the WLC force–displacement response,  

WLC 0 WLC 0 WLC 0 B
02

0 0 0 0 max 0

( ) ( ) ( ) 1 1
4(1 ) 4

f a f b f c k T x
a b c px L x

⎧ ⎫
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

= = = − − + ,
−

     (15) 

 
it can be shown (Dao, Li and Suresh, 2005) that  

xyd
d

≡
τ

µ
γ

 0B
02 3

max 0 0 0

3 3 3 4
4 4(1 ) 4 2(1 )

xk T x
pL x x x

⎧ ⎫
= − + + .⎨ ⎬− −⎩ ⎭

          (16) 

 
This equation provides an explicit expression for the shear modulus of the cell membrane 
which is envisioned as comprising a triangulated network of WLC spectrin molecules 
anchored at actin notes. 

 

Linear Elastic Young’s Modulus E  and Poisson’s ratio ν  of WLC Sheet  

For small deformations, the sheet is an isotropic elastic medium, with  
 
 ( ) 1 2ijkl ij kl ik jl il jkC i j k l= + + , , , , ∈ , .λδ δ µ δ δ δ δ                                    (17) 
 
which complies with all symmetry requirements and tensor-transformation law:  

 
' ' ' ' ' ' ' 'ii jj kk ll ijkl i j k lQ Q Q Q C C=                                                  (18) 

 
In matrix notation,  
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2 0
2 0

0 0

λ + µ λ⎛ ⎞
⎜ ⎟= λ λ + µ⎜ ⎟
⎜ ⎟µ⎝ ⎠

C  (19) 

 
Note that K = λ + µ , or Kλ = − µ , such that 

21
2 2

2
2

2 0

⎛ ⎞λ⎛ ⎞λ + µ λ λ + µ −⎛ ⎞ ⎜ ⎟⎜ ⎟ = λ + µλ⎜ ⎟ ⎜ ⎟⎜ ⎟−λ λ + µ⎝ ⎠⎜ ⎟ ⎜ ⎟λ + µ⎝ ⎠ ⎝ ⎠

               (20) 

 
The Young’s modulus is therefore: 

             
2 24 4 42 ,
2 2

KE
K

λ µ + λµ µ
= λ + µ − = =

λ + µ λ + µ + µ
                    (21) 

 
and the Poisson’s ratio is:  

2
K
K

λ − µ
ν = =

λ + µ + µ
                                    (22) 

Unlike pair-potential systems (Van Vliet et al., 2003), ν in general is not 1/3. However, if 
q = 1, then ν happens to be 1/3. One may directly verify that Eq. (18) is exactly twice of 
Eq. (31) when q = 1.  This result was confirmed in a recent measurement, where K/µ was 
found to be 1.9 (Lenormand et al., 2001). 
 
Fig. 5 shows the uniaxial stress–strain response of the spectrin-network sheet, plotted 
from the above analysis. It is seen here that in both tension and compression, linear 
elastic response occurs for an extensional strain of up to about 0.4, beyond which 
significant hardening is evident.  
 
See Dao, Li and Suresh (2005) for detailed developments of the derivations in this 
supplementary material. 
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Fig. 1: Icosahedron network and shape artifacts caused by this ordered network structure. 
(a) Icosahedron network generated by mapping an icosahedron onto a sphere, and 
recursively partitioning six times. It contains 40,962 vertices, with diameter 7.97 µm. The 
brown particles represent degree-6 vertices, whereas the red particles represent degree-5 
vertices. (b) A closer look at a degree-5 vertex (degree-6 vertices are rendered silver here 
to increase the contrast). There are 12 such defects among the 40,962 vertices, which are 
the geometrical minimum in order to cover a sphere. There is long-ranged hoop stress 
field around the defect because the spectrin angle is ~72º instead of the ideal 60º, so 
b=1.176a. (c) Global shape artifact caused by degree-5 defects. We use the Discher 
model and the numerical volume deflation procedure to reduce the cytosol volume to 
approximately 85% of the full sphere. In this parameter regime extrusions should not 
appear. Note there is a degree-5 vertex right at the tip of every extrusion. (d) Shape 
artifact at 65% cytosol volume. 
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Fig. 2: Coarse-grained WLC sheet (crystal) model. The geometry is established fully by 
the two local Bravais lattice vectors a = (ax, ay) and b = (bx, by), from which the Cauchy 
stress τ can be derived as shown in the Appendix.  
 
 

 
 
Fig. 3:  Stress versus strain response of the triangulated cell sheet comprising the spectrin 
molecular network under pure shear.  a0 = ( 3 / 2 , 1/2)L0 and b0 = (0, 1) L0.  
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Fig. 4: A plot of the pressure versus biaxial area strain for the triangulated spectrin 
molecular network.  
 
 

 
Fig. 5:  Uniaxial stress versus strain response with a0 = ( 3 / 2 , 1/2)L0 and b0 = (0, 1) L0.  


