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ABSTRACT We present a three-dimensional computational study of whole-cell equilibrium shape and deformation of human
red blood cell (RBC) using spectrin-level energetics. Random network models consisting of degree-2, 3, . . . , 9 junction
complexes and spectrin links are used to populate spherical and biconcave surfaces and intermediate shapes, and coarse-
grained molecular dynamics simulations are then performed with spectrin connectivities fixed. A sphere is first filled with cytosol
and gradually deflated while preserving its total surface area, until cytosol volume consistent with the real RBC is reached. The
equilibrium shape is determined through energy minimization by assuming that the spectrin tetramer links satisfy the worm-like
chain free-energy model. Subsequently, direct stretching by optical tweezers of the initial equilibrium shape is simulated to
extract the variation of axial and transverse diameters with the stretch force. At persistence length p ¼ 7.5 nm for the spectrin
tetramer molecule and corresponding in-plane shear modulus m0 � 8.3 mN/m, our models show reasonable agreement with
recent experimental measurements on the large deformation of RBC with optical tweezers. We find that the choice of the
reference state used for the in-plane elastic energy is critical for determining the equilibrium shape. If a position-independent
material reference state such as a full sphere is used in defining the in-plane energy, then the bending modulus k needs to be at
least a decade larger than the widely accepted value of 2 3 10�19 J to stabilize the biconcave shape against the cup shape.
We demonstrate through detailed computations that this paradox can be avoided by invoking the physical hypothesis that the
spectrin network undergoes constant remodeling to always relax the in-plane shear elastic energy to zero at any macroscopic
shape, at some slow characteristic timescale. We have devised and implemented a liquefied network structure evolution
algorithm that relaxes shear stress everywhere in the network and generates cytoskeleton structures that mimic experimental
observations.

INTRODUCTION

The deformation of the human erythrocyte or red blood cell

(RBC) has been the topic of detailed investigation for many

decades. Interest in the mechanics of RBC can be attributed

to several factors. Firstly, changes in the propensity for large

deformation of the erythrocyte are known to influence

disease states (Mohandas and Evans, 1994) in such cases as

sickle cell anemia (Platt, 1995) and malaria (Cooke et al.,

2001; Suresh et al., 2005). Secondly, the relatively simple

structure (Byers and Branton, 1985; Marchesi, 1985; Liu

et al., 1987, 1990) of RBC serves as a model system for the

development of quantitative analysis of large deformation

whereby complexities associated with nucleated cell types

(Elson, 1988) can be avoided. Consequently, a large number

of experimental (Rand and Burton, 1964; Hochmuth et al.,

1973; Discher et al., 1994; Dobereiner et al., 1997; Henon

et al., 1999; Lee et al., 1999; Sleep et al., 1999; Lee and

Discher, 2001; Lenormand et al., 2003; Mills et al., 2004),

theoretical (Canham, 1970; Evans, 1973; Helfrich, 1973;

Skalak et al., 1973; Zarda et al., 1977; Peterson, 1985;

Elgsaeter et al., 1986; Seifert et al., 1991; Miao et al., 1994;

Hansen et al., 1997), and computational (Boal et al., 1992;

Boey et al., 1998; Discher et al., 1998; Lim et al., 2002;

Mukhopadhyay et al., 2002; Dao et al., 2003) studies have

aimed at the elucidation of elastic and viscoelastic de-

formation characteristics of the red blood cell.

The basic building block of the RBC cytoskeleton is the

spectrin heterodimer, consisting of intertwined a (280 kDa)

and b (246 kDa) polypeptide chains running antiparallel to

one other (Winkelmann and Forget, 1993). The a-chain

consists of ;22 tandem repeats of triple-helical units of 106

amino acids, whereas the b-chain consists of ;17 such

repeat units (Grum et al., 1999). Two heterodimers can self-

associate head-to-head in solution to form a tetramer. These

tetramers only bind weakly to short F-actin protofilaments.

However, upon the addition of band 4.1, strong spectrin-4.1-

actin associations called junction complexes can form. In

addition to tetramers, heterodimers, hexamers, and other

spectrin oligomers exist and can link adjacent junction

complexes in RBC as well, but they are the minority species

(Liu et al., 1990). The total count of spectrin tetramers,

dimers, hexamers, etc., that link to one particular junction

complex is named the functionality of that complex (Sleep

et al., 1999); each junction complex may be regarded as an

actin vertex, and its functionality the degree of the vertex.
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Some electron microscopy results suggest that healthy RBC

favors degree-6 vertices (Byers and Branton, 1985; Mar-

chesi, 1985; Liu et al., 1987, 1990). According to Liu and co-

workers, there are only 3% degree-5 and 8% degree-7 defect
vertices seen in the cytoskeletal network extracted from

healthy RBC, which is heavily dominated by degree-6

vertices. However, recent atomic force microscopy (AFM)

images (Takeuchi et al., 1998; Swihart et al., 2001; Liu et al.,

2003) suggest a more disordered network with significantly

lower average vertex degree, between 3 and 4.

Advances in experimental techniques capable of quanti-

fying the force-displacement response during the mechanical

stretch of single DNA, protein, or receptor-ligand complex

(Evans and Ritchie, 1997; Grandbois et al., 1999; Busta-

mante et al., 2003) have prompted computational simu-

lations with molecular-structure-informed models (Hansen

et al., 1997; Discher et al., 1998). It is now quite feasible to

simulate the entire RBC cytoskeleton in a desktop worksta-

tion based entirely on the ;105 constituent spectrins, with

some appropriate treatment for the lipid bilayers and cytosol.

Furthermore, advances in optical tweezers and other

methods (Bao and Suresh, 2003) have enabled direct

mechanical loading of living cells in large deformation to

a force resolution on the order of 1 pN, during which the

overall state of stress can be manipulated in a controlled

manner (Mills et al., 2004). The above considerations have

led to the motivation for the present work: to develop a three-

dimensional full-cell model for equilibrium shape and

deformation of RBC where the architecture of the spectrin

network is directly incorporated. The level of detail

addressed by the model is such that the structure is a network

of a large number of individual spectrin molecules (Hansen

et al., 1997; Discher et al., 1998). The constitutive response

of each of these flexible molecules and the manner in which

the interactions arise for the specific geometry of the network

form the basis for guiding energy minimization steps through

which the equilibrium shape of the RBC and its deformation

induced by stretching with optical tweezers are determined

(Dao et al., 2003; Mills et al., 2004).

MODEL FORMULATION

The starting point for the formulation adapted here is the

work of Discher and co-workers, although many aspects of

the present work depart significantly from the approach

outlined in their articles (Discher et al., 1997, 1998; Boey

et al., 1998; Lee et al., 1999). They invoked a spectrin-based

model that is intermediate between continuum and atomic

scales. The approach is particularly modified here to

incorporate the effects of random spectrin network, structural

relaxation of the in-plane shear energy, and to include the

spontaneous curvature of the lipid bilayers material (Hel-

frich, 1973; Boal, 2002; Mukhopadhyay et al., 2002).

The degrees of freedom of the model are the actin vertex

coordinates fxng, n21..N, which can move freely in three-

dimensional Cartesian space according to the generalized

force on each vertex. This is schematically illustrated in Fig.

1. Between a vertex pair (m, n), there can be a spectrin link

i21..S whose length is Li[ jxm � xnj, the assembly of which

forms a two-dimensional network. A vertex triplet (l, m, n),
mutually connected by spectrin molecules, forms a triangle

a21..P, whose area is Aa ¼ j( xm � xl) 3 ( xn � xl)j/2 and

center of mass is xa [ (xl 1 xm 1 xn)/3, and whose normal

na points toward cell exterior. Two triangles a and b are

considered to be adjacent if they share a common spectrin

link. In the original model (Discher et al., 1997), the

topological connectivities of the vertices are assigned at the

start of a simulation and are not changed during deformation,

assuming that the spectrin links are unbreakable even at large

extensions. This could be a good approximation for some

problems but not for others, such as aging and death of the

cell where one observes significant changes in network

connectivity and order (Liu et al., 2003). To address this

issue, we propose in this work a computational procedure

whereby network connectivity can be altered.

Assuming that the triangles tessellate the surface of one

contiguous volume, leaving no significant holes, the total

area of the cell can be defined as Atotal [+
a
Aa: The total

volume of the cell is computed asVtotal [+
a
ðxa � naÞAa=3;

on the basis of the continuum divergence theorem:

V ¼
RR

@Vðx � nÞdA=3; which is a reference-frame indepen-

dent and numerically robust formula, even when the RBC

undergoes a shape change from convex shapes (such as

a sphere) to nonconvex shapes (such as discocyte or

stomatocyte).

FIGURE 1 Illustration of the model using the potential from Eq. 1 for

triangle-dominated cytoskeleton. Here i21..S labels a spectrin link

connecting two adjacent junction complexes, which exerts an entirely

attractive force fWLC(Li). The expression a21..P labels triangular plaquette

of lipid material with area Aa. It leads to a repulsive energy Cq=A
q
a that

counterbalances the spectrin attraction. Two adjacent lipid plaquettes with

normal vectors na and nb also give rise to a bending energy Fbending that

depends on the angle between na and nb, in reference to a spontaneous

curvature angle u0.
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Discher et al. (1998) proposed the total coarse-grained

Helmholtz free energy of the system to be

FðfxngÞ ¼ Fin�plane 1Fbending 1Fsurface constraint 1Fvolume constraint;

(1)

in which

Fvolume constraint ¼
kvolumeðVtotal �V

desired

total Þ2kBT
2L

3

0V
desired

total

(2)

effectively imposes a constraint on the total volume Vtotal of

the cell, thereby incorporating the effect of the nearly incom-

pressible cytosol inside the RBC. The average equilibrium

length of a spectrin link L0 is 75 nm. Similarly,

Fsurface constraint ¼
ksurfaceðAtotal � A

desired

total Þ2kBT
2L

2

0A
desired

total

(3)

imposes a constraint on the total surface area of the cell

that reflects the conservation of the total number of lipid

molecules at the cell surface. The exact values of the pre-

factors kvolume and ksurface are unimportant; they are both

chosen to be 600.

Although the lipid bilayers cannot sustain steady-state

shear stress, they possess compressional and bending

stiffnesses. In the present model we assume that these two

stiffnesses are imparted to the cytoskeleton by the anchoring

transmembrane proteins. In other words the effects of the lipid

bilayer are assumed to be represented as coarse-grained local

free energies, so that only the degrees of freedom of the

cytoskeleton need to be tracked explicitly. The bending free

energy is written as

Fbending ¼ +
adjacenta;b pair

kbend½1� cosðuab � u0Þ�; (4)

in which kbend ¼ 2
ffiffiffi
3

p
k and k ¼ kc1kg/2 is the average

bending modulus (Boal and Rao, 1992) of lipid membrane,

and u0 is the spontaneous curvature angle between two

adjacent triangles (positive u0 means preference for a convex

shell shape). In the numerical evaluation of Fbending and its

resultant forces on fxng, we use the formula

cosðuab � u0Þ ¼ cosuab cosu0 1 sinuab sinu0; (5)

where cosuab¼ na � nb and sinuab¼6jna3 nbjwith the1
sign taken if (na � nb) � (xa � xb)$ 0. If a spherical surface

is tessellated with equilateral triangles, the same bending

energy of magnitude 8pk is obtained (with reference to a flat

plate) through Eq. 4, as with the continuum bending energy

functional (Boal and Rao, 1992),

~FFbending ¼
kc

2

ZZ
dAðC1 1C2 � C0Þ2 1 kg

ZZ
dAC1C2;

(6)

in which C1, C2 are the two principle curvatures, and C0 is

the spontaneous curvature constant. Note that the so-called

nonlocal bending energy (Seifert et al., 1991; Miao et al.,

1994; Mukhopadhyay et al., 2002) is not included for the

sake of simplicity. This term appears in the area-difference

elasticity model of bending energy, but not in the classical

spontaneous curvature model (Helfrich, 1973).

Although the three free-energy terms in Eqs. 2–4 above

are not markedly different from traditional cell elasticity

models, the point of departure is in the in-plane free energy,

Fin-plane. This choice is appropriate in the context of large

deformation studies such as optical tweezers experiments,

since Fin-plane is the dominant active term in Eq. 1. The

spectrin network plus the bilayer membrane is assumed to

have a total free energy of

Fin�plane ¼ +
i2spectrin links

VWLCðLiÞ1 +
a2triangular plaquettes

Cq

A
q

a

; (7)

where Li is the length of spectrin link i and Aa is the area of

triangular plaquette a. (Discher et al., 1998, define Aa as

twice the actual triangle area. This could be somewhat

confusing in practice. Consequently, Aa is taken to be the

actual spectrin triangular plaquette area in this article.) The

first sum includes all spectrin links and is the total entropic

free energy stored in the spectrin proteins, where WLC

stands for worm-like chain (Marko and Siggia, 1995;

Bustamante et al., 2003). The WLC form is adopted here

merely because it is a widely used and tested form for DNA

and certain proteins. The second sum is the elastic energy

stored in the lipid membrane and other protein materials,

with constant Cq and exponent q to be selected. Because the

second term depends only on the plaquette areas {Aa}, there

is no shear stress contribution coming from this term since

incremental shear strain would not change fAag. Discher
et al. (1998) have used q ¼ 1 in their models, in which case

the ratio between area dilatational modulus K and shear

modulus m is fixed to be 2. A more general model could

easily be developed with q 6¼ 1 to fit both the shear and

dilatational moduli. In this article we use q ¼ 1.

The worm-like chain model of Marko and Siggia (1995)

provides the force versus chain length relationship as

fWLCðLÞ ¼ �kBT

p

1

4ð1� xÞ2
� 1

4
1 x

� �
; x[

L

Lmax

2 ð0; 1Þ;

(8)

in which Lmax is the maximum or contour length of the chain,

L is the instantaneous chain length (x is the dimensionless

ratio between L and Lmax), and p is the persistence length.

Integration of Eq. 8 gives the result (Discher et al., 1998) that

VWLCðLÞ ¼ �
Z L

0

djfWLCðjÞ ¼
kBTLmax

4p
3

3x
2 � 2x

3

1� x
: (9)

When x is small,

VðLÞ ¼ 3kBTLmax

4p
3 x

2
1 . . . ; (10)
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and hence,

L �

R
0
L exp � 1

kBT
3

3kBTLmax

4p
3 x

2

� �
dL

R
0
exp � 1

kBT
3

3kBTLmax

4p
3 x

2

� �
dL

; Lmax3

ffiffiffiffiffiffiffiffi
p

Lmax

r

¼ p3

ffiffiffiffiffiffiffiffi
Lmax

p

r
; (11)

which corresponds to a phenomenological picture where N¼
Lmax/p rigid monomers of length p are connected in a random
walk (Discher et al., 1998). Because, in this description, the

directions of the nth and the n11th monomers are deemed

completely independent, p is also defined as the character-

istic decay length of the line-tangent autocorrelation function

Æl(L) � l(L 1 x)æ.
Previous simulations (Boal and Rao, 1992; Boey et al.,

1998; Discher et al., 1998; Lim et al., 2002) used the Monte

Carlo method to explore the free-energy landscapes of RBC

shape. For the total free energy F(fxng) expressed in Eq. 1,

we are able to derive the forces

fn [� @FðfxngÞ=@xn (12)

in analytical forms, and implement them to perform coarse-

grained molecular dynamics (CGMD) simulations (Rudd

and Broughton, 1998) at T ¼ 300 K. In the present CGMD

method, we integrate the Newtonian equations of motion,

mnẍn ¼ fn 1 fextn ; n 2 1::N; (13)

using the sixth-order Gear predictor-corrector algorithm

(Allen and Tildesley, 1987) to follow the trajectories of all

junction complexes fxng with time, where ffextn g are ex-

ternally applied forces on the vertices, which are set to

zero for equilibrium shape determination, but are nonzero for

some vertices in optical tweezers stretching simulations.

Since Eq. 13 is only meant to be an efficient scheme to

sample free-energy landscapes, mn is the fictitious mass of

the vertex (instead of a real kinetic mass) that is arbitrarily

chosen to be 107 Dalton. A constant temperature of 300 K is

maintained using a feedback control scheme (Berendsen

et al., 1984), with the characteristic temperature-control time

constant chosen to be 300 time steps.

CYTOSKELETON STRUCTURE GENERATION

The degree of an actin vertex is defined to be the number of

spectrin links that connect to it; the vertex at the center shown

in Fig. 1 is a degree-6 vertex. From experimental images

(Byers and Branton, 1985; Liu et al., 1987, 1990, 2003;

Swihart et al., 2001), it seems reasonable to assume that the

cell surface is tessellated by non-overlapping polygons,

formed by joining vertices by spectrin links. Currently, the

potential given in Eq. 1 can only be applied if the surface is

tessellated by triangles, since only the topological triangles

are guaranteed to be planar, so that Aa in the in-plane energy

and na , nb in the bending energy are always well-defined. In
contrast, the vertices of a topological square may not lie in

one plane, making Aa, na , nb ill-defined. By partitioning

topological polygons into triangles, the potential in Eq. 1 in

principle may be extended in its original form to other

networks; however, this partition is not unique and the

computation involved seems excessive. Thus, a simpler

potential using quantities similar to Aa, na, nb, but differing
in details, may be necessary for future investigations. In this

article, we construct different network structures that satisfy

certain macroscopic requirements (such as isotropy, thus

giving zero in-plane shear elastic energy), and analyze the

general issues associated with elasticity and strength, but will

stop short of doing direct stretch CGMD simulations to them

due to lack of potential, except with the degree-6 dominated

network, for which Eq. 1 is adapted.

A model cytoskeleton that covers an entire closed surface

needs to be produced by an automated structure generator.

Two kinds of network generation schemes have been used:

1), an ordered network generated by recursively dividing an

icosahedron and projecting the vertices onto a spherical

surface, referred to as the icosahedron network, and 2),

random networks generated by adapting the inherent

structure (Stillinger, 1999) of a two-dimensional liquid

equilibrated on any closed surface, hereafter referred to as the

random network or liquefied network. Macroscopic cell

shape artifacts have been found to result with the adoption of

the ordered network (Scheme 1), due to internal residual

stress fields generated by the 12 topologically necessary

degree-5 defects (disclinations) (Bausch et al., 2003; Gov

and Safran, 2005), which are long-ranged and thus difficult to

correct. Therefore, the description of the Scheme-1 generator

is left in the Supplementary Materials that accompanies this

article. Its only connection to the present results is that we use

the Scheme-1 structure to jump-start the random network

generation via random decimation and melting.

To generate a random network, we employ CGMD

simulations of fictitious points constrained to move on

a parametric surface, such as that of a sphere or biconcave

shape. These points interact with each other via the Lennard-

Jones (Allen and Tildesley, 1987) or Stillinger-Weber

(Stillinger and Weber, 1985) potentials. The system of

points is gradually heated until it melts to a liquid and

uniformly covers the surface. This serves several purposes.

First, a randomized structure is generated. Second, any

possible initial long-range inhomogeneity such as a residual

stress field is quickly relaxed as the particles diffuse around.

At the particle level, there are local inhomogeneities; at

coarser levels, there is no difference between any parts of

the surface. A liquid structure ensures that the particles are

neither too close nor too far away from their nearest

neighbors, which is not the case for a completely random

sample of points on the surface.

The CGMD simulations performed here are different from

those in Results, below, for we use the Lennard-Jones or

3710 Li et al.
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Stillinger-Weber potential instead of Eq. 1, which allows the

network connectivities to change with time. (Two particles

are considered nearest neighbors and connect by a bond

whenever their distance is less than a cutoff distance RC,

usually chosen to be the locale of the minimum between the

first and second peaks of the radial distribution function.)

These potentials do not have out-of-plane bending energy

and surface area/volume constraints yet, so we must arti-

ficially constrain the points to move on an analytical surface.

We use the three-dimensional surface formula of

y ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðx2 1 z

2Þ=R2

q
½c0 1 c1ðx2 1 z

2Þ=R2

1 c2ðx2 1 z
2Þ2=R4�; (14)

which can describe a variety of surface shapes. The param-

eter set (R,c0,c1,c2) ¼ (3.27 mm, 1,0,0) describes a spherical

surface, whereas another parameter set (R,c0,c1,c2) ¼ (3.91

mm, 0.1035805, 1.001279, �0.561381) describes the ex-

perimentally measured average unstressed biconcave shape

(Evans and Skalak, 1980). By smoothly varying from the

first parameter set to the second parameter set using a linear

interpolation schedule with time, one may continuously

morph a spherical surface into a biconcave surface.

The initial structure is taken from the icosahedron network

with 40,962 vertices on the spherical surface. Among them,

12,289 vertices are randomly deleted. The remaining 28,673

vertices are taken to be the fictitious particles constrained to

move only on the analytical surface, and interact with each

other via the Lennard-Jones potential, which naturally prefers

a close-packed triangular lattice at zero temperature. The

lengthscale s of the Lennard-Jones potential is chosen so the

equilibrium lattice constant (a0 ¼ 1.11145s) of the said

triangular lattice is exactly L0 ¼ 75 nm. We then raise the

temperature until the structure melts. The sphere’s radius R is

simultaneously shrunk continuously from 3.98 mm to 3.27

mm from beginning to the end of the simulation. We observe

the onset of melting by linear growth of the mean-squared

displacement of a vertex with time: jxn (t) � xn(0)j2 } t,
signifying the onset of self-diffusion. Inspection of configura-

tional snapshots, e.g., Fig. 2 a, shows completely homoge-

neous and disordered structures, which have 61.1% degree-6

vertices, 31.7% degree-5 vertices, 6.2% degree-4 vertices,

and ,1% in total of degree-2, 3, 7 vertices (two vertices are

considered connected if their separation is ,103 nm).

FIGURE 2 Random networks gener-

ated by equilibrating various fictitious

two-dimensional liquids on a spherical

surface (diameter 6.53 mm). The color

of each ball labels the degree of the

actin vertex (2, cyan; 3, magenta; 4,

black; 5, yellow; 6, red; 7, blue; 8,

green; and 9, white). (a) Degree-6

dominant network (28,673 vertices)

generated by spreading Lennard-Jones

liquid on the spherical surface. This

network has 61.1% degree-6, 31.7%

degree-5, 6.2% degree-4, and ,1% in

degree-2,3,7 vertices. The surface is

still mainly tessellated by triangles,

which allows us to use the Discher

potential later on. (b) Degree-4 domi-

nant network (24,372 vertices) with

52.8% degree-4, 30.2% degree-3,

14.2% degree-5, and 2.0% degree-2

vertices. This network has a large

number of squares and pentagons,

which cannot be modeled by a potential

similar to Eq. 1. (c) Degree-3 dominant

random network (18,637 vertices) with

46.0% degree-3, 30.4% degree-2,

15.6% degree-4, 6.4% degree-1, and

1.1% degree-5 vertices. Observe the

occurrence of topological polygons

with 10 sides and up, some of which

have large aspect ratios. Panels b and c

are created using the Stillinger-Weber

potential.
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We employ the network structures shown in Fig. 2 a (and

Fig. 3 a) for subsequent equilibrium shape and optical

tweezers stretching simulations. Since they have no residual

shear stress, they do not exhibit shape artifacts like with the

ordered icosahedron network (see Supplementary Materials).

It is not possible to generate degree-3 or -4 dominant liquids

using the Lennard-Jones potential without cavitation.

Therefore, we invoke another generic potential with angular

forces—the Stillinger-Weber potential (Stillinger and We-

ber, 1985), which naturally prefers lower coordination

numbers. At the beginning of the structure generation we

remove an additional 4301 and 10,036 vertices from the

28,673-vertex network shown in Fig. 2 a, so only 24,372 and
18,637 vertices remain in Fig. 2, b and c, respectively. These
structures are then evolved in CGMD above the melting

point on a spherical surface of radius R ¼ 3.27 mm with the

Stillinger-Weber potential, whose basic lengthscale s is

taken to be identical to that of the Lennard-Jones potential.

Subsequently, after sufficiently long equilibration, the

network is dominated by Fig. 2 b, degree-4; and Fig. 2 c,
degree-3 vertices. Cytoskeletal networks as imaged by AFM

(Takeuchi et al., 1998; Swihart et al., 2001; Liu et al., 2003)

appear to be dominated by degree-3 and 4 vertices with

square, pentagon, and hexagon-like tessellations. So on

a phenomenological level we have created similar cytoskel-

eton structures in the computer, in the same spirit as the

Monte Carlo methods for microstructure reconstruction

(Yeong and Torquato, 1998; Torquato, 2002) and diffraction

data inversion (McGreevy, 2001). Lacking guiding princi-

ples based on the underlying biochemical and physical mech-

anisms, our liquefied random network generator seems to be

the best approach available at this time.

The above algorithm is also related to a physical

hypothesis that we propose here and will partially justify

by numerical evidence later: over a timescale that is long

compared to the timescale of the optical tweezers experi-

ments, the actin vertices of the RBC do behave like a liquid

as they relax the in-plane shear elastic energy, for any whole-

cell shape. An equivalent analogy would be that the

cytoskeleton is like a slowly-flowing two-dimensional glass,

which cannot hold any shear elastic energy indefinitely.

However, if fast deformation is imposed, it can manifest

a large instantaneous shear modulus. This happens if the

imposed deformation rate far exceeds the cytoskeleton

remodeling rate, which theoretically should proceed (albeit

very slowly) in the direction of relaxing the in-plane shear

elastic energy according to the thermodynamic principle of

maximum dissipation. A topologically frozen spectrin

network thus seems to be a reasonable assumption to model

optical tweezers stretching, which occurs experimentally

over a timescale of seconds, and if the applied load is less

than what can break individual spectrin molecules (displace-

ment excursions beyond the WLC-like continuous force-

displacement curve) by brute force. The in-plane hydrostatic

energy, however, cannot be relaxed because of the overall

area constraint. Swapping neighbors and changing the con-

nectivity under the total area constraint can relax the shear

energy but will do nothing to the stored hydrostatic energy.

Furthermore, it seems difficult to relax the bending energy

because it resides in the membrane, and molecular exchange

between the two lipid layers is difficult (Mukhopadhyay

et al., 2002).

Another important consequence of the present hypothesis

is that when evaluating competing RBC equilibrium shapes

based on free-energy minimization, we do not need to take

the in-plane shear elastic energy into account since it always

relaxes to zero. One only needs to consider the bending

energy and in-plane hydrostatic elastic energy contributions,

which cannot be relaxed by cytoskeleton remodeling, at least

if the surface is to remain fully covered by a uniform

FIGURE 3 Similar as Fig. 2 except

the various liquids live on a biconcave

surface described by analytical formula

(Eq. 14) with parameters (R,c0,c1,c2) ¼
(3.91 mm, 0.1035805, 1.001279, and

�0.561381). The same color encoding

scheme as Fig. 2 is used. (a) Degree-6

dominant network (28,673 vertices).

(b) Degree-4 dominant random network

(24,372 vertices). (c) Degree-3 domi-

nant random network (18,637 vertices).
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cytoskeleton (no fracture occurs). Thus, even though the

instantaneous in-plane shear elastic energy will be shown

later to overwhelm the bending energy in optical tweezers

stretching experiments, it has no bearing on determining the

long-term equilibrium shape at zero stress, e.g., biconcave

versus cup shape competition. This assertion agrees with the

traditional bending-energy minimization concept of RBC

equilibrium shape determination (Canham, 1970; Helfrich,

1973). Were this not the case, i.e., if a significant portion of

the in-plane shear energy could be permanently stored with

respect to a certain reference shape, then it would be nearly

impossible to obtain the biconcave shape as the ground-state

shape. (The trivial exception occurs when the biconcave

shape is set to be the reference state.) For example, we will

show that if we use the sphere as the permanent reference

state for in-plane elastic energy, the bending modulus k

needs to be revised upward by a decade compared to the

experimental consensus, to .2 3 10�18 J, to stabilize the

biconcave shape versus the cup shape. The slow-liquid

network hypothesis is a physically transparent and numer-

ically consistent way to understand these disparate results.

In the next section we will show that by turning off the in-

plane energy in Eq. 1, upon volume deflation of the Fig. 2

a sphere, the simulation using Eq. 1 will spontaneously give

the biconcave shape as the equilibrium ground-state,

confirming the classic continuum bending-energy minimiza-

tion shape prediction (Canham, 1970; Helfrich, 1973).

Unfortunately, we cannot use that particular biconcave

cytoskeleton for deformation simulation because upon

turning on the in-plane energy, which we must do to compute

the optical tweezers stretching response, the biconcave

cytoskeleton remembers its reference state to be the spherical

state (since during the volume deflation using the Discher

potential, the topology has not changed), and subsequently

the biconcave shape givesway to the cup shape aswe just start

to stretch the cell. Theoretically, a reliquification process

should accompany the volume deflation and shape changes.

However, at present the random network generator can only

work with analytical surface formulas. This means that to get

a shear-stress relaxed biconcave cytoskeleton, we are not, at

this time, able to use the numerical volume deflation with Eq.

1, but must use an analytic volume deflation scheme that can

work with the random network.

We therefore morph an analytic surface from spherical to

biconcave by slowly changing the parameters (R,c0,c1,c2) ¼
(3.27 mm, 1,0,0) / (3.91 mm, 0.1035805, 1.001279,

�0.561381) in Eq. 14, with Fig. 2, a–c, configurations as the
starting configurations, and running CGMD on the time-

varying parametric surface using the Lennard-Jones or

Stillinger-Weber potential above the melting point. The

surface area and coordination number of the cytoskeleton

remain largely unchanged during the morphing process (see

the final results Fig. 3, a–c), but the volume steadily

decreases from 146 mm3 to 94.1 mm3. The Lennard-Jones

and Stillinger-Weber potentials do not have the bending

energy and area/volume constraints, so the shape evolu-

tion here is governed by an analytic formula rather than from

the energetic model itself. The justification for this process

is that once we switch on the potential in Eq. 1 for the

cytoskeleton structure of a given shape, the free-standing,

relaxed structure has nearly the same shape as the analytic

formula, as illustrated in Fig. 4, a and b, for the biconcave

shape before and after Eq. 1 relaxation, respectively. We

have now achieved in Fig. 4 b configuration the ultimate goal

of a free-standing biconcave cytoskeleton relaxed with the

Eq. 1 potential, which is free of shear elastic energy any-

where. One can now commence optical tweezers stretching

simulations with the Eq. 1 potential, using the fixed Fig. 4

b cytoskeleton connectivity.

There are legitimate concerns about the validity of using

Eq. 4 when the triangles are not of equal sizes and shapes.

This issue falls in the general category of how to properly

express bending energy in terms of the discrete vertices of

topological polygons. A complete treatment of this problem

may involve least-square fitting of all the vertices of adjacent

topological polygons by a smooth surface patch to extract the

local curvatures, and also obtaining the projected areas of

these topological polygons onto that fitted mathematical

surface. Although this problem inevitably requires detailed

FIGURE 4 (a) Cross-sectional view of Fig. 3 a configuration, obtained by
constraining the CGMD vertices to an analytical surface formula, Eq. 14. (b)

Relaxed cytoskeleton after removing the Eq. 14 analytical constraint and

turning on the Eq. 1 potential. The vertices can no longer change their

connectivities in b, in contrast to in a. The shape of b is not entirely

symmetric due to thermal fluctuations. The parameters used are: L0¼ 75 nm,

Lmax ¼ 3.17 L0 ¼ 237.75 nm, p ¼ 0.1 L0 ¼ 7.5 nm, q ¼ 1, ksurface ¼ 600,

kvolume ¼ 600, and kbend ¼ 200 kBT, u0 ¼ 1�. (c) Relaxed cytoskeleton if we
use Eq. 15 bending energy expression instead of Eq. 4. Panels b and c have
nearly the same shape, and deviate only slightly from the analytic shape (a).
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further study, for the present purposes, we test a simple

variation of Eq. 4,

Fbending ¼ +
adjacenta;b pair

kbend½1� cosðuab � u0Þ�
AaAb

ÆAa9Ab9æ
; (15)

in which the bending energy contribution from two adjacent

triangles is weighted by their area product and normalized by

the mean product over all such triangle pairs, to reflect the

fact that smaller adjacent plaquettes should give smaller

contributions. Although Eq. 15 is far from a rigorous ap-

proximation ofEq. 6 for all limiting cases, the fact that the final

relaxed shape shown in Fig. 4 c using the Eq. 15 bending

energy expression is only very slightly different from Fig. 4

b using Eq. 4, suggests that this correction may not be very

important numerically.

For reference, the low-coordination cytoskeletons on the

biconcave surface are shown in Fig. 3, b and c, obtained using
the same analytic morphing procedure as the configuration in

Fig. 3 a and Fig. 4 a. We note that as the average coordination

number decreases, larger and larger holes appear in the net-

work. For instance, we can easily find 10-sided-and-up poly-

gons in Fig. 3 c, which are absent in Fig. 3, a or b. By
inspecting the AFM micrographs (Takeuchi et al., 1998;

Swihart et al., 2001), it appears that Fig. 3 b best resembles

real cytoskeleton micrographs. We have also performed

CGMD liquefied structure simulations at even lower spectrin

densities, and found that large holes start to percolate when

the average vertex coordination drops below 3.

RESULTS

In the CGMD simulations given below using the potential

from Eq. 1, we use degree-6 dominated random networks. In

the program we simply ignore polygons that are not triangles,

which are small minorities in these networks (Figs. 2 a, 3 a,
and 4 b), and do not add their contributions in the Hami-

ltonian. Note that the network topology is fixed in the ensuing

simulation. Therefore, if the starting cytoskeleton happens

to have zero shear elastic energy such as Fig. 2 a, that state es-
sentially serves as the permanent reference state of in-plane

shear energy for the ensuing simulations using Eq. 1.

Equilibrium shape determination

Our simulations in this section employ full-cell models

without imposing any artificial constraints such as axisym-

metric shape or even planar reflection symmetry (half-cell

model). To eliminate as much of any possible bias toward

any particular shape as possible, the starting geometry for the

simulation is a perfect sphere whose surface comprises the

triangulated spectrin network. The surface area of this sphere

is intended to be the same as the actual RBC, which is

achieved almost exactly in the random network

(Asphere
total ¼ 134:1 mm2) such as Fig. 2 a. The RBC is initially

completely filled with cytosol. The initial volume of the

cytosol is thus significantly higher than that in a biconcave

RBC. As the simulation progresses with time t, the cytosol

volume Vdesired
total ðtÞ is reduced slowly using what is termed

here as volume deflation. The initial desired volume is

Vdesired
total ðt ¼ 0Þ ¼ V

sphere
total ; with V

sphere
total ¼ pD3

0=6 being the

volume of the perfect sphere with surface area Adesired
total ¼

Asphere
total ¼ pD2

0: The final desired volume is set to be

Vdesired
total ðtfinalÞ ¼ 0:65Vsphere

total ; to match the RBC volume.

The simulation is performed with a linear deflation schedule,

V
desired

total ðtÞ ¼ V
desired

total ð0Þ1 t

tfinal
V

desired

total ðtfinalÞ �V
desired

total ð0Þ
� �

;

(16)

while keeping Adesired
total ðtÞ ¼ Asphere

total fixed.

Since prior calculations (Discher et al., 1998; Lee et al.,

1999) did not report the generation of biconcave equilibrium

shape for the RBC, we first seek to obtain the equilibrium

shape directly by the original formulation, Eq. 1. The

parameters used in the initial simulations (L0 ¼ 75 nm, Lmax

¼ 3.17 L0 ¼ 237.75 nm, p ¼ 0.075 L0 ¼ 5.625 nm, q ¼ 1,

ksurface ¼ 600, kvolume ¼ 600, kbend ¼ 69 kBT, u0 ¼ 0) are

identical to those employed in the earlier stress-free model
(see Discher et al., 1998). This parameter set leads to the

following linear elastic properties for the cytoskeleton-lipid

bilayers composite cell wall: shear modulus m ¼ 11 mN/m;

area dilatational modulus K ¼ 22 mN/m; uniaxial tension

Young’s modulus E ¼ 29 mN/m; Poisson’s ratio n ¼ 1/3;

and average bending modulus k¼ 8.33 10�20 J. In deriving

the above properties we have followed the approach of

Discher et al. (1997) and Hansen et al. (1997). The analytic

derivations are described briefly in the Supplementary

Materials and in detail in J. Li, M. Dao, and S. Suresh

(unpublished data).

If the original formulation is used, and if we adopt the

spherical state as the reference state for in-plane shear energy

(because the connectivity of the deflated cytoskeleton is

inherited from the spherical cytoskeleton), then the bi-

concave shape cannot be stabilized using the original

parameter set. Instead, the cup-shape (Fig. 5) is the ground

state. At kbend ¼ 69 kBT, the biconcave shape is metastable

and is so weak that even a small thermal fluctuation can

transform it into the cup shape, via a long-wavelength soft

mode (Peterson, 1985) that breaks the top-bottom reflection

symmetry of the biconcave cell.

As we raise kbend from 69 kBT to 1000 kBT while keeping

the other parameters fixed, we observe active competition

between the biconcave and the cup shape. However, it is not

until kbend � 4000 kBT, or k � 5 3 10�18 J, that the

biconcave ground state becomes dominant, in the sense that

from any random shape the cell quickly relaxes to a bicon-

cave shape that looks similar to Fig. 4 b.
Assuming the fixed-topology cytoskeleton with the

spherical cytoskeleton as the reference state is the correct

model, we realize that the equilibrium shape is mainly
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controlled by the competition between the bending energy

Fbending and the in-plane elastic energy Fin-plane in the

Hamiltonian (Eq. 1). From dimensional analysis, it can be

argued that the total bending energy for the whole cell scales

as k, whereas the total in-plane deformation energy scales

with mAsphere
total : For the discocyte shape to occur as possible

global energy minimum, the dimensionless ratio,

l[
k

mA
sphere

total

; (17)

must be greater than a critical value ld, with ld ;10�3.

Otherwise, the stomatocyte (cup) shape easily wins over the

discocyte shape by virtue of lower free energy. Lim et al.

(2002) used m ¼ 2.5 mN/m and k ¼ 2.0 3 10�19 J, which

gives l ¼ 6 3 10�4. However, their model is slightly

different, using an ellipsoidal state as the shear stress-free

reference state. They also noted that the biconcave ground

state is nontrivial to achieve, with necessary fine-tuning in

the stress-free reference state.

As will be seen next, our optical tweezers experiments

indicate that m is in the range of 4–10 mN/m (Mills et al.,

2004). If the fixed-topology model with the sphere as the

reference state is correct, then k needs to be at least 1 3

10�18 J for the biconcave shape to be stable; and for the

minimum to be really robust, k needs to be ;2 3 10�18 J.

However, recent experimental measurements of k seem to

converge on ;2 3 10�19 J (Ben-Jacob, 2002; Humpert and

Baumann, 2003). Thus, it seems that the spherical reference

state for in-plane elastic energy is likely to be incorrect.

Another popular choice of the zero shear energy reference

state is the discocyte itself (Zarda et al., 1977), in which case

the stabilization of the discocyte as ground state is almost

trivial because any other shape would have positive shear

strain energy. Therefore, one only needs to make sure that

the discocyte has lower bending energy than other shapes to

guarantee it to be the ground state. This is the case for a rather

wide range of cell volume and u0 (Canham, 1970; Helfrich,

1973; Seifert et al., 1991). To independently check this we

artificially scale Fin-plane down to 1% of its original

magnitude in the CGMD simulation, effectively turning off

Fin-plane. We then perform volume deflation, and indeed

observe spontaneous shape change from spherical to bi-

concave, and that the biconcave shape minimum is stable

against very large random shape disturbances. This confirms

the bending-energy minimization concept (Canham, 1970;

Helfrich, 1973) of RBC equilibrium shape selection.

We thus face a dilemma in choosing a material reference

state for the in-plane elastic energy. Although it is appealing

to use a problem-independent reference state such as a flat

plate, or a spherical surface, it deviates from experimental

range of parameters. On the other hand, although using

a position-dependent reference state gives the correct

behavior, it seems too trivial because one easily obtains the

shape one puts in. It therefore seems that a good policy is to

ignore the in-plane shear energy (assuming it to be zero)

during equilibrium shape optimization, but turn it on in

subsequent optical tweezers stretching simulation. This

dichotomy can be rationalized microscopically if we assume

that cytoskeleton remodeling occurs at a timescale much

slower than the optical tweezers loading rate; thus, whereas

the long time behavior of the cytoskeleton could be like

a liquid or a glass, the short time behavior is elastic. This

completes the rationale for the hypothesis proposed in the

last section. Phenomenological models are invoked here to

describe the network structure evolution for fixed shapes and

during shape morphing, by simulating various two-di-

mensional liquids on the surface, which, given enough

time, always relaxes the shear strain energy to zero, for any

shape.

Optical tweezers simulation

It is well known that for the RBC (equilibrium diameter ;8

mm) to pass through small capillaries, the narrowest of which

is only ;3 mm in inner diameter, the cell needs to transform

from the equilibrium biconcave shape to a bullet or parachute

shape (Fung, 1993), with maximum in-plane strain in some

part of the membrane on the order of 100%. This condition is

somewhat mimicked in our optical tweezers experiments. A

back-of-the-envelope calculation indicates that when

FIGURE 5 Cup-shape cytoskeleton as the global

energy minimum obtained using Eq. 1, and with the

spherical cytoskeleton Fig. 2 a as the initial (and

therefore the reference) state, after deflation procedure

at 65% cytosol volume. The parameters used are: L0 ¼
75 nm, Lmax ¼ 3.17 L0 ¼ 237.75 nm, p ¼ 0.075 L0 ¼
5.625 nm, q ¼ 1, ksurface ¼ 600, kvolume ¼ 600, and

kbend ¼ 69 kBT, u0 ¼ 0, which gives the shear modulus

m ¼ 11 mN/m; area dilatational modulus K ¼ 22 mN/

m; uniaxial tension Young’s modulus E ¼ 29 mN/m;

Poisson’s ratio n ¼ 1/3; and average bending modulus

k ¼ 8.3 3 10�20 J. The cup-shape is found to be the

ground-state unless we increase k beyond 2 3 10�18 J

keeping other parameters fixed, or if we use another

reference state, such as Fig. 4 b, which already has the

in-plane shear stress relaxed to zero.
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stretched by the optical tweezers to a maximum axial strain

of;100%, elastic energy on the order of 5000 eV (;200 pN

3 8 mm/2) is injected into the cell. This energy is mostly

taken up by the in-plane shear elastic energy, which over-

whelms the original bending energy that is on the order of

10–100 eV.

In the optical tweezers experiments (Mills et al., 2004)

with which our computations are compared, two diametri-

cally opposite ends of an RBC are firmly and nonspecifically

attached to silica beads; one bead is translated through

contact with a glass slide, whereas the other is trapped by the

laser. In the present simulations, we apply time-dependent

total force Fext(t) to N1 ¼ 0.05N vertices of the cytoskeleton

in the x-direction (an arbitrary axial diameter direction

shown in Fig. 6 a), which are chosen to be 5% of vertices that

have the largest x-coordinates at the beginning of the

simulation. Correspondingly, apply�Fext(t) total force to N�
¼ 0.05N vertices that have the smallest x-coordinates at the
beginning of the simulation. Thus, fextn ¼ 6FextðtÞ=ð0:05NÞ
if vertex n is in N1/N�, and 0 if otherwise. The axial

diameter is computed as a function of time by jxmax � xminj,
where xmax is the maximum x position among the N1 atoms,

and xmin is the minimum x position among the N� atoms. The

transverse diameter is computed as 2 3 max
n¼1::N

ffiffiffiffiffiffiffiffiffiffiffiffi
y2n1z2n

q
; when

the coordinate frame origin is placed at the center of mass of

the RBC.

The CGMD simulation is carried out with the following

parameters: L0 ¼ 75 nm, Lmax ¼ 3.17 L0 ¼ 238 nm, p ¼ 0.1

L0¼ 7.5 nm, q¼ 1, ksurface¼ 600, kvolume¼ 600, kbend¼ 200

kBT, u0 ¼ 1�. This parameter set leads to the following linear

elastic properties for the cytoskeleton-lipid bilayers com-

posite: shear modulus m ¼ 8.3 mN/m; area dilatational

modulus K¼ 16.6 mN/m; uniaxial tension Young’s modulus

E ¼ 22.1 mN/m; Poisson’s ratio n ¼ 1/3; and average

bending modulus is k ¼ 2.4 3 10�19 J. Snapshots of the

cytoskeleton at intermediate stretching forces are shown in

Fig. 6. To retest the issue of the choice of bending energy

expression used, we compared the cross sections obtained

using Eq. 4 and Eq. 15 in Fig. 7, at the intermediate load of

100 pN. We see that the differences are rather small.

Fig. 8 shows the computed variation, for the initial free-

standing cytoskeleton shown in Fig. 4 b, of the increase in

the axial diameter and the decrease in the transverse diameter

of the RBC as a function of the force applied by the optical

tweezers up to a maximum value of ;200 pN. Also

superimposed on these predictions, for comparison, are the

experimental measurements of changes in these diameters as

a function of the optical force and a fully three-dimensional

finite-element simulation based on a continuum, large

deformation, third-order hyperelasticity model for the

deformation of the RBC membrane comprising the cytosol

of fixed volume (see Dao et al., 2003 and Mills et al., 2004

for further details). In the finite-element simulations, the key

parameters of interest in the characterization of large

deformation of the RBC are the in-plane shear modulus m

and the bending modulus k. For the accepted range of

literature values of k ¼ 1 3 10�19 ;9 3 10�19 J for the

human red blood cell (Evans and Skalak, 1980; Sleep et al.,

FIGURE 6 RBC shape evolution at different optical tweezers stretch

forces using Eq. 1 and Fig. 4 b cytoskeleton initial state. The parameters used

are: L0 ¼ 75 nm, Lmax ¼ 3.17 L0 ¼ 237.75 nm, p ¼ 0.1 L0 ¼ 7.5 nm, q ¼ 1,

ksurface ¼ 600, kvolume ¼ 600, and kbend ¼ 200 kBT, u0 ¼ 1�. This parameter

set gives shear modulus m ¼ 8.3 mN/m; area dilatational modulus K ¼ 16.6

mN/m; uniaxial tension Young’s modulus E ¼ 22.1 mN/m; Poisson’s ratio

n ¼ 1/3; and average bending modulus k ¼ 2.4 3 10�19 J.

FIGURE 7 RBC cross sections calculated at optical tweezers stretch load

of 100 pN, with the parameters of Fig. 6, using (a) bending energy

expression Eq. 4, or (b) bending energy expression Eq. 15.
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1999), negligible influences were found in both the axial and

transverse responses with respect to k (Dao et al., 2003;

Mills et al., 2004). The finite-element results were thus

computed using a typical value of bending modulus with k¼
2 3 10�19 J. The third-order hyperelasticity model (Mills

et al., 2004) used in finite-element simulations entails an

initial in-plane shear modulus (m0) and one at large stretch

ratios (mf). From Mills et al. (2004), we estimate that m0 ¼
7.3 mN/m (5.3 ;11.3 mN/m range covers most of the data

scatter). Fig. 8 shows the finite-element model predictions of

the axial and transverse cell diameters using an initial shear

modulus value of 8.0 mN/m. The finite-element model curve

shown here takes the third-order hyperelasticity constant

C3 to be G0/20 in Eq. 4 b of Mills et al. (2004).

Fig. 8 also reveals the predicted variation, from the present

spectrin-level model, of axial and transverse diameters of the

RBC subjected to large deformation by optical tweezers. The

shear modulus of 8.3 mN/m so estimated is fully consistent

with values of 4–9 mN/m reported in the literature (e.g.,

Boal, 2002) on the basis of micropipette aspiration experi-

ments. CGMD simulations of increase in axial diameter

during large deformation match experiments well, whereas

the attendant decrease in transverse diameter overpredicts

experimental and finite-element results by ;15%.

There are also some significant discrepancies at small-to-

intermediate strain ranges, namely the CGMD response

appears to be too stiff initially. In the finite-element

simulations (Dao et al., 2003; Mills et al., 2004), it is

necessary to adopt a third-order hyperelasticity model to fit

the experimental data well; that is, to capture the hardening

effect at large stretch ratios. The close matching of

simulations versus experiments depends on the detailed

strain hardening response of the hyperelasticity model. The

uniaxial stress-strain response of the homogenized WLC

sheet (see Supplementary Materials) indeed hardens, but at

above 50% tensile strain and comes too late to allow a better

match between the CGMD simulation and the experimental

results in Fig. 8. The purely entropic WLC spring is,

therefore, not likely to be a perfect representation of the

spectrin molecule and associated proteins, and some

enthalpic contributions may be necessary to initiate the

hardening response earlier. The present formulation allows

easy replacement of the WLC relation Eq. 8 by any other

single-molecule force-displacement response that can be

measured experimentally (Evans and Ritchie, 1997; Grand-

bois et al., 1999; Bustamante et al., 2003).

CONCLUSION

This article reports fully three-dimensional, spectrin-level

random network models of full-cell equilibrium shape

evolution and large elastic deformation in human red blood

cells. In addition, we have formulated a new network

generation algorithm that relaxes shear stress everywhere in

the network and generates cytoskeleton structures that are

consistent with microscopy observations. A significant out-

come of the computational simulations predicated on this

exercise is the realization that when the spectrin network is

permitted to undergo constant remodeling so as to fully relax

the in-plane elastic energy at any macroscopic shape,

accepted literature values of elastic moduli values stabilize

the stress-free equilibrium discocyte shape. We also demon-

strate the evolution of discocyte and stomatocyte shapes

based on the approach of Discher and co-workers (Discher

et al., 1997, 1998; Boey et al., 1998; Lee et al., 1999) and

discuss the competitions between these shapes in relation to

the potential parameters and reference state used. The

computational methods of this work are also used to develop

spectrin-level simulations of RBC deformation using optical

tweezers. The predicted deformation characteristics are seen

to compare reasonably with recent experimental data.

SUPPLEMENTARY MATERIALS

Description of the icosahedron network generation scheme

and the analytical derivations of the elastic constants and

nonlinear stress-strain responses of homogenized WLC sheet

can be found in an online supplement to this article, at BJ

Online at http://www.biophysj.org.
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FIGURE 8 Optical tweezers stretching response up to a maximal tensile

load of 200 pN. The figure shows experimental data of stretching force

versus axial and transverse diameters of the RBC, from Mills et al. (2004).

Also shown are the three-dimensional finite-element simulations of the large

deformation of RBC using a hyperelasticity constitutive model for the cell

membrane (Dao et al., 2003; Mills et al., 2004). See text for further

discussion of this model and for choice of material parameters. Results from

the present spectrin-level simulations using CGMD techniques are shown as

solid lines.
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