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Abstract

A methodology for interpreting instrumented sharp indentation with dual sharp indenters with different tip apex
angles is presented by recourse to computational modeling within the context of finite element analysis. The forward
problem predicts an indentation response from a given set of elasto-plastic properties, whereas the reverse analysis
seeks to extract elasto-plastic properties from depth-sensing indentation response by developing algorithms derived
from computational simulations. The present study also focuses on the uniqueness of the reverse algorithm and its
sensitivity to variations in the measured indentation data in comparison with the single indentation analysis on
Vickers/Berkovich tip (Dao et al. Acta Mater 49 (2001) 3899). Finite element computations were carried out for 76
different combinations of elasto-plastic properties representing common engineering metals for each tip geometry.
Young’s modulus,E, was varied from 10 to 210 GPa; yield strength,sy, from 30 to 3000 MPa; and strain hardening
exponent,n, from 0 to 0.5; while the Poisson’s ratio,n, was fixed at 0.3. Using dimensional analysis, additional closed-
form dimensionless functions were constructed to relate indentation response to elasto-plastic properties for different
indenter tip geometries (i.e., 50°, 60° and 80° cones). The representative plastic strainer, as defined in Dao et al. (Acta
Mater 49 (2001) 3899), was constructed as a function of tip geometry in the range of 50° and 80°. Incorporating the
results from 60° tip to the single indenter algorithms, the improved forward and reverse algorithms for dual indentation
can be established. This dual indenter reverse algorithm provides a unique solution of the reduced Young’s modulus
E∗, the hardnesspave and two representative stresses (measured at two corresponding representative strains), which
establish the basis for constructing power-law plastic material response. Comprehensive sensitivity analyses showed
much improvement of the dual indenter algorithms over the single indenter results. Experimental verifications of these
dual indenter algorithms were carried out using a 60° half-angle cone tip (or a 60° cone equivalent 3-sided pyramid
tip) and a standard Berkovich indenter tip for two materials: 6061-T6511 and 7075-T651 aluminum alloys. Possible
extensions of the present results to studies involving multiple indenters are also suggested.
 2003 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Depth-sensing instrumented indentation, where
the indenter penetration force P can be continu-
ously monitored as a function of the depth of pen-
etration h into a substrate during both loading and
unloading, has been a topic of considerable experi-
mental and theoretical studies during the past two
decades (e.g., [1–15]). Methods to extract material
properties from instrumented indentation response
have been investigated in a number of studies (e.g.,
[1,4,6,12,13,16–23]).

The underlying theoretical framework of plastic
indentation dates back to the work by Hill et al.
[25], who developed a self-similar solution for
spherical indentation of a power law plastic
material. Extending such an approach to sharp
(Berkovich and Vickers) indentation, elastic–plas-
tic analyses of Berkovich and Vickers indentation
have been reported within the context of small-
strain finite element simulations [19,26]. Exten-
sions of these computational models included
attempts to extract elasto-plastic properties from a
single indentation load–displacement curve
[17,21,22]. With the application of dimensional
analysis to the computational results of large defor-
mation sharp indentation, correlations between ela-
sto-plastic properties and indentation response
have also been proposed for bulk [1,12,13,20] and
coated [24] material systems.

Our previous study [1] of instrumented inden-
tation involving a single sharp indenter established
a set of dimensionless functions, which took into
account the pile-up/sink-in effects and finite strain
beneath the indenter. These functions were used to
predict the indentation response from a given set
of elasto-plastic properties (forward algorithms),
and to extract the elasto-plastic properties from a
given set of indentation data (reverse algorithms).
A representative strain of er=3.3% for a Berkovich
or Vickers indenter (equivalent to a 70.3° cone)
was identified with which the indentation loading
curvature could be normalized independently of
the material hardening exponent for a very wide
range of elasto-plastic properties. For most com-
mon metallic systems, a single set of elasto-plastic
properties was extracted from a single P–h curve.
The accuracy of the analysis, however, was found

to be sensitive to the small experimental errors [1].
Cheng and Cheng [20] and Venkatesh et al. [22]
discussed the uniqueness issue and presented a
number of computationally non-unique cases.

It is clear that two important fundamental issues
remain which require further investigation:

1. Uniqueness of the reverse analysis for the range
of material properties examined; and

2. The accuracy and sensitivity of the reverse
analysis.

In this paper, these issues will be addressed
within the context of dual sharp indentation, con-
tinuum analysis and experimental observations.

2. Framework for analysis

2.1. Problem formulation and nomenclature

Fig. 1(a) schematically shows the typical P–h
response of an elasto-plastic material to sharp
indentation. The loading response is governed by
Kick’s Law,

P � Ch2 (1)

where C is the loading curvature. At the maximum
depth hm, the indentation load Pm makes a pro-
jected contact area of Am. The average contact
pressure is thus defined as pave = Pm /Am, com-
monly referred as the hardness of the indented
material, in accordance with the standard for com-
mercially available indenter. Upon unloading, the

initial unloading slope is defined as
dPu

dh |
hm

, where

Pu is the unloading force. At the complete
unloading, the residual depth is hr. The area under
the loading portion is defined as the total work Wt;
the area under the unloading portion is defined as
the recovered elastic work We; and the area
enclosed by the loading and unloading portions is
defined as the residual plastic work Wp = Wt�We.

Fig. 1(b) schematically shows the typical stress–
strain response of power law material, which, to a
good approximation, can be used for many pure
and alloyed engineering metals. The elasticity fol-
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Fig. 1. (a) Schematic illustration of a typical P–h response of
an elasto-plastic material to instrumented sharp indentation. (b)
The power law elasto-plastic stress–strain behavior used in the
current study.

lows Hook’s law, whereas the plasticity follows
von Mises yield criterion and power law hardening.
True stress and true strain are related via the fol-
lowing equation:

s � �Ee for s�sy

Ren for s�sy

(2)

where E is the Young’s modulus, R a strength coef-
ficient, n the strain hardening exponent and sy the
initial yield stress at zero offset strain. In the plastic
region, true strain can be further decomposed to
strain at yield and true plastic strain: e = ey + ep.
For continuity at yielding, the following condition
must hold.

sy � Eey � Reny (3)

Thus when s � sy, Eqs. (2) and (3) yield

s � sy�1 �
E
sy

ep�n

. (4)

A comprehensive framework using dimensional
analysis to extract closed form universal functions
was developed earlier [1]. A representative plastic
strain er was identified as a strain level which
allows for the construction of a dimensionless
description of indentation loading response, inde-
pendent of strain hardening exponent n; er=3.3%
for Berkovich, Vickers or 70.3° apex-angle cone
tip. It was also found that for most cases, three

independent quantities—C,
dPu

dh |
hm

and
hr

hm
—

obtained from a single P–h curve are sufficient to
uniquely determine the indented material’s elasto-
plastic properties under certain ranges of validity
(see Table 6 of [1]). Although the estimation of sy

and n in certain ranges could be prone to consider-
able sensitivity from a variation in these three P–
h characteristics (see Table 7 of [1]), a reverse
analysis algorithm proposed in [1] predicts stress
at representative strain, s0.033, robustly.

It is expected that, with different indenter geo-
metries (i.e., different apex angles), the representa-
tive strain would be different (e.g., er=er(q)). In
fact, a ±2° variation in apex angle can result in a
±20% change in loading curvature C (see Fig. 12
of [1]). This observation suggests a possibility of
determining sy and n more precisely using dual
indenter geometries (two representative stresses).
An additional representative stress sr can be ident-
ified from a loading curvature of a P–h curve using
a second indenter of which its tip geometry is dif-
ferent from Berkovich/Vickers. The question
remains whether two P–h curves from two differ-
ent indenter tips can yield unique solution for a
broader range of material’s elasto-plastic properties
with improved accuracy than previously demon-
strated with a single indentation.

2.2. Dimensional analysis and universal
functions

For a sharp indenter of apex angle q, the load
required to penetrate into a power law elasto-plas-
tic solid (E, n, sy and n) can be written as
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P � P(h,E∗,sy,n,q), (5)

where

E∗ � �1�n2

E
�

1�n2
i

Ei
��1

(6)

is reduced Young’s modulus, commonly intro-
duced [27] to include elasticity effect (Ei, ni) of
an elastic indenter. Define sr as the stress at the
representative strain er in Eq. (4); Eq. (5) can be
rewritten as

P � P(h,E∗,sr,n,q) (7)

Using dimensional analysis, Eq. (7) becomes

P � srh2�1q�E∗

sr

,n,q�, (8a)

and from Eq. (1),

C �
P
h2 � sr�1q�E∗

sr
,n,q�. (8b)

where �1q is a dimensionless function.
A complete set of universal dimensionless func-

tions for a single indenter is listed in Appendix A
(Eqs. (A.1)–(A.6)) for an apex angle of 70.3°
(Berkovich and Vickers equivalent). In the current
study, �1q functions at different apex angles (e.g.,
50°, 60° or 80°) will be constructed. The original
algorithms in [1] can be modified to accurately pre-
dict the P–h response from known elasto-plastic
properties (forward algorithms) and to systemati-
cally and uniquely extract the indented material’s
elasto-plastic properties from two sets of P–h data
of two different indenter geometries (reverse
algorithms).

2.3. Computational model

It is generally known that an axisymmetric two-
dimensional finite element model can be used to
capture the result of a full three-dimensional model
as long as the projected area/depth of the two mod-
els are equivalent. Computations were performed
using the general purpose finite element package
ABAQUS [28]. Fig. 2(a) schematically shows the
conical indenter, where

q = the included half angle of the indenter

hm= the maximum indentation depth
am= the contact radius measured at hm

Am= the true projected contact area with pile-up or
sink-in effects taken into account.

For both Berkovich and Vickers indenters, the
corresponding apex angle q of the equivalent cone
was chosen as 70.3°. Fig. 2(b) shows the mesh
design for the axisymmetric analysis. The indented
solid spanned over a hundred times contact radius
to ensure semi-infinite boundary condition. The
model comprised of 8100 four-noded, bilinear axi-
symmetric quadrilateral elements with a fine mesh
near the contact region and a gradually coarser
mesh further away to ensure numerical accuracy.
At the maximum load, the minimum number of
contact elements in the contact zone was no less
than 12 in each FEM computation. The mesh was
well-tested for convergence and was determined to
be insensitive to far-field boundary conditions. In
all finite element computations, the indenter was
modeled as a rigid body; the contact was modeled
as frictionless; and large deformation FEM compu-
tations were performed.

2.4. Comparison of experimental and
computational results

Two aluminum alloys (6061-T6511 and 7075-
T651) were prepared, as described elsewhere [1],
for indentation using a Berkovich tip and a second
indenter tip with different geometry. The speci-
mens were indented on a commercial nanoindenter
(MicroMaterials, Wrexham, UK) with the Berkov-
ich, 60° cone and 60° cone equivalent 3-sided
pyramid1 at a loading/unloading rate of approxi-
mately 4.4 N/min. For the Berkovich tip, the
maximum loads for both aluminum alloys were 3
N with a repetition of six tests. For the other two
indenter tips, the Al6061-T6511 specimens were
indented to 1.8 and 2.7 N with a repetition of 3
and 10 tests, respectively; whereas the Al7075-
T651 specimens were indented to 3 N with a rep-
etition of six tests. From all the tests, the data were

1 The 60° cone equivalent 3-sided pyramid is designed such
that its projected contact area/depth equals to that of 60° cone.
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Fig. 2. Computational modeling of instrumented sharp indentation. (a) Schematic drawing of the conical indenter, (b) mesh design
for axisymmetric finite element calculations

repeatable. For comparison with the single inden-
tation results, the Berkovich indentation data of
Al6061-T6511 specimens examined in the current
study were taken directly from [1].

Fig. 3 shows the typical indentation response of
the 6061-T6511 aluminum specimens under
Berkovich and 60° cone indenter tips, superim-
posed with the corresponding finite element com-
putations. Fig. 4 shows the same for the 7075-T651
aluminum. Using experimental uniaxial com-
pression (see Fig. 4 of [1]) as an input for the
simulation, the resulting P–h curves agree well

Fig. 3. Experimental (Berkovich and 60° cone tips) versus
computational indentation responses of both the 6061-T6511
aluminum specimens.

Fig. 4. Experimental (Berkovich and 60° cone tips) versus
computational indentation responses of both the 7075-T651
aluminum specimens.

with the experimental curves, as demonstrated in
Figs. 3 and 4.

3. Computational results

A comprehensive parametric study of 76 cases
was conducted (see Appendix B for a complete list
of parameters) representing the range of para-
meters of mechanical behavior found in common
engineering metals. Values of Young’s modulus E
ranged from 10 to 210 GPa, yield strength sy from
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30 to 3000 MPa, strain hardening exponent n from
0 to 0.5, and Poisson’s ratio n was fixed at 0.3.
The axisymmetric finite element model was used
to obtain computational results, unless otherwise
specified.

The dimensionless functions �1q for different
apex angles (e.g., 50°, 60° or 80°) were constructed
in addition to the �1q function at 70.3° angle
(Berkovich and Vickers equivalent) presented earl-
ier [1]. It is noted that the apex angle of 60° is
commonly used in commercial indenters for scan-
ning the surface profile or performing indentation
tests. The second indenter tip geometry is chosen
to be 60° cone.

3.1. Representative strain and dimensionless
function �1 as a function of indenter geometry

The first dimensionless function of interest is
�1q in Eq. (8a,b). Using subscript “a” to denote
q = 70.3° in Eq. (8a,b), it follows that

�1a�E∗

sr,a
,n,q � 70.3°� �

Ca

sr,a
(9)

It was found in [1] that for q = 70.3° a representa-
tive strain of 0.033 could be identified, such that a

polynomial function �1a� E∗

s0.033
� =

Ca

s0.033

fits all 76

data points within a ±2.85% error (see Appendix
A for a complete listing of the function). It is worth
noting that the corresponding dimensionless func-
tion �1a normalized with respect to s0.033 was
found to be independent of the strain hardening
exponent n.

Following the same procedure, one can identify
the �1q functions with different apex angles (i.e.,
different tip geometries). Three additional angles
were studied here. For q = 60°, a representative
strain of 0.057 could be identified, where a closed-

form function �1b� E∗

s0.057
� =

Cb

s0.057

(see Appendix

A for a complete listing of the function) fits all 76
data points within a ±2.51% error; here the
subscript “b” is used to denote the case for q =
60°. For q = 80°, a representative strain of 0.017
could be identified, where a closed form function

�1c� E∗

s0.017
� =

Cc

s0.017
(see Appendix A for a com-

plete listing of the function) fits all 76 data points
within a ±2.71% error; here the subscript “c” is
used to denote the case for q = 80°. For q = 50°,
a representative strain of 0.082 could be identified,

where a closed-form function �1d� E∗

s0.082
� =

Cd

s0.082

(see Appendix A for a complete listing of the
function) fits all 76 data points within a ±2.49%
error; here the subscript “d” is used to denote the
case for q = 50°. The representative strain can be
correlated with the half tip angle via a simple linear
function (see Fig. 5(a)).

er(q) � �2.185 � 10�3q (10a)

� 0.1894 for q in degree

or a more accurate quadratic function, within
±1.63% error,

Fig. 5. (a) A relationship between representative strain and
indenter apex angle. (b) A generalized dimensionless function
�1q for q = 50°, 60°, 70.3° and 80°.
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er(q) � 2.397 � 10�5q2�5.311 � 10�3q (10b)

� 0.2884 for q in degree

To extend the capability of the present dual
indentation algorithm, the choice for the second
indenter geometry can be chosen between 50° and
80°. By correlating the coefficients in Eqs. (A.1),
(A.7), (A.8) and (A.9) with apex angle q,

�1q�E∗

ser
,q� =

Cq
ser

(see Appendix A for a complete

listing of the function) fits all 4 × 76 = 304 data
points within a ±3% error, as shown in Fig. 5(b).

3.2. Forward analysis algorithms

In the following sections, the dual indenter geo-
metries of the 70.3° and 60° pair are examined.
The forward analysis leads to prediction of the P–
h response from known elasto-plastic properties.
Following the procedure outlined in [1], an
updated forward analysis algorithm for generalized
dual indentation is shown in Fig. 6. The complete
prediction of P–h response can be readily con-
structed for q = 70.3° using dimensionless func-
tions �1a to �6a, while the prediction of loading
curvature can be obtained for any q�[50°,80°]
using �1q.

To verify the accuracy of the proposed algor-
ithms, uniaxial compression and Berkovich inden-
tation experiments were conducted in two well-
characterized materials: 6061-T6511 aluminum
and 7075-T651 aluminum (see Fig. 4 of [1]).
Additional indentation experiments using a differ-
ent tip geometry (either a 60° cone or an equivalent
3-sided pyramid) were performed on both 6061-
T6511 and 7075-T651 aluminum samples. The
mechanical property values used in the forward
analysis were obtained directly from Table 3 of [1],
where (E, n, sy, n) are (66.8 GPa, 0.33, 284 MPa,
0.08) and (70.1 GPa, 0.33, 500 MPa, 0.0122) for
Al6061-T6511 and Al7075-T651, respectively.
Tables 1–3 list the predictions from the forward
analysis (using �1a to �6a and �1b) for 6061-
T6511 aluminum specimens, along with the values
extracted from the Berkovich indentation, the 60°
cone indentation, and the 60° cone equivalent 3-
sided pyramid indentation experiments, respect-
ively. Tables 4 and 5 list the predictions from the

forward analysis (using �1a to �6a and �1b) for
7075-T651 aluminum specimens, along with the
values extracted from the Berkovich indentation
and the 60° cone equivalent 3-sided pyramid
indentation experiments, respectively. From Tables
1–5, it is evident that the present forward analysis
results are in good agreement with the experi-
mental P–h curves.

3.3. Reverse analysis algorithms

Since a single P–h curve is sufficient for esti-
mation of the elasto-plastic properties, the use of
two complete P–h curves would give redundant
information. Therefore, there are many possible
ways to construct the reverse analysis algorithm;
however, the most reliable path is presented here.
The proposed reverse algorithm utilizes a complete
P–h curve obtained under Berkovich or Vickers
indenter and a loading portion of a second P–h
curve under a conical indenter of apex angle
q�[50°,80°] (or its equivalent 3-sided pyramid). In
the present study, q = 60° is chosen. The dimen-
sionless functions �1a to �6a and �1q allow us to
construct an improved reverse algorithm. A set of
the dual indentation reverse analysis algorithms is
shown in Fig. 7.

To verify the dual indentation reverse algor-
ithms, six Berkovich indentation curves shown in
Table 1 and three 60° cone indentation curves
shown in Table 2 from 6061-T6511 aluminum
specimens were first analyzed (using �1a to �6a

and �1b). Table 6 shows the dual indentation
results, along with the single indentation results
from [1]. In the reverse analyses, each case com-
prises one set of Berkovich indentation parameters
shown in Table 1 and an average loading curvature
Cb shown in Table 2 for the 60° cone indentation.

Additional verification for the dual indentation
algorithms was performed on 7075-T651 alumi-
num specimens. Six Berkovich indentation P–h
curves shown in Table 4 and six 60° cone equival-
ent 3-sided pyramid indentation curves shown in
Table 5 were analyzed (using �1a to �6a and
�1b). Table 7 shows the dual indentation results,
along with the single indentation results. In the
reverse analyses, each case comprises one set of
Berkovich indentation parameters shown in Table
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Fig. 6. Dual indentation forward analysis algorithms.

4 and an average loading curvature Cb shown in
Table 5 for the 60° cone equivalent 3-sided pyra-
mid indentation.

According to the flow chart shown in Fig. 7, the
predictions of E∗ and s0.033 by the dual indentation
algorithm should yield the similar accuracy to
those by the single indentation algorithm.

From Tables 6 and 7, it is clear that the pro-
posed reverse algorithms yield accurate estimates
of s0.033, s0.057 and E∗, and give reasonable esti-
mates of sy (especially after taking an average
from the six indentation results), which agree well
with experimental uniaxial compression data. It is
noted that changing the definition of sy to 0.1%

or 0.2% (instead of 0%) offset strain would not
affect the main conclusions. According to the flow
chart shown in Fig. 7, the improvement of the
dual indentation algorithm over the single inden-
tation algorithm reflects upon yield strength (and
consequently strain hardening exponent) esti-
mation, as clearly illustrated by comparing the
first and last columns in Tables 6 and 7. This
improved calculation of plastic properties is likely
due to the fact that the second indenter geometry
results in more accurate estimations of the second
representative stress s0.057 at 5.7% plastic strain in
addition to the representative stress s0.033 at 3.3%
plastic strain.
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Table 1
Forward analysis on Al 6061-T6511 for Berkovich indentation experiments (max. load = 3 N) [1]

Al 6061-T6511 Ca (GPa) %error Ca
a Wp /Wt %error Wp /WtdPu

dh |
hm

(kN/m) %error
dPu

dh |
hm

Test A1 27.4 �1.6 4768 1.6 0.902 0.8
Test A2 28.2 1.2 4800 2.3 0.905 1.2
Test A3 27.2 �2.4 4794 2.2 0.904 1.1
Test A4 27.3 �2.2 4671 �0.4 0.889 �0.6
Test A5 27.0 �3.2 4762 1.5 0.889 �0.6
Test A6 27.6 �0.9 4491 �4.2 0.891 �0.4
Average 27.4 4715 0.896
Forward prediction 27.9 4691 0.894
(assume n = 0.33 and
Berkovich c∗)
STDEVb 0.6 110.9 0.007
STDEV/Xprediction 2.1% 2.4% 0.8%

a All errors were computed as (Xtest�Xprediction) /Xprediction, where X represents a variable.

b STDEV = �1
N

ΣN
i = 1(Xtest�Xprediction)2, where X represents a variable.

Table 2
Forward analysis on Al 6061-T6511 for 60° cone experiments
(max. load = 1.8 N)

Al 6061-T6511 Cb (GPa) %error Cb
a

Test B1c 11.27 0.0
Test B2c 11.23 �0.4
Test B3c 11.32 0.5
Average 11.27
Forward prediction (60° 11.27
cone)
STDEVb 0.04
STDEV/Xprediction 0.3%

a All errors were computed as (Xtest�Xprediction) /Xprediction,
where X represents a variable.

b STDEV = �1
N

ΣN
i = 1(Xtest�Xprediction)2, where X represents

a variable.

4. Uniqueness of the dual indentation forward
and reverse analysis

4.1. Uniqueness of the forward analysis

In order to verify the proposed forward algor-
ithms, computational results from the 76 sets of
elasto-plastic parameters were taken as input to

Table 3
Forward analysis on Al 6061-T6511 for 60° cone equivalent 3-
sided pyramid indentation experiments (max. load = 1.8 N)

Al 6061-T6511 Cb (GPa) %error Cb
a

Test B1p 12.03 6.8
Test B2p 11.39 1.1
Test B3p 11.97 6.2
Average 11.80
Forward prediction (60° cone 11.27
equivalent 3-sided pyramid)
STDEVb 0.60
STDEV/Xprediction 5.4%

a All errors were computed as (Xtest�Xprediction) /Xprediction,
where X represents a variable.

b STDEV = �1
N

ΣN
i = 1(Xtest�Xprediction)2, where X represents

a variable.

predict the entire P–h responses of q = 70.3° and
the loading curvature for q = 60°. Each of the for-
ward analyses resulted in a single set of output

�Ca,
hr

hm
,
dPu

dh |
hm

and Cb�, which agrees well with the

FEM-predicted P–h response.
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Table 4
Forward analysis on Al 7075-T651 for Berkovich indentation experiments (max. load = 3 N)

Al 7075-T651 C (GPa) %error Ca Wp /Wt %error Wp /WtdPu

dh |
hm

(kN/m) %error
dPu

dh |
hm

Test A1 40.7 �7.1 3636 1.4 0.839 1.8
Test A2 42.6 �2.8 3637 1.4 0.831 0.9
Test A3 41.5 �5.5 3498 �2.5 0.829 0.6
Test A4 40.7 �7.2 3636 1.4 0.835 1.3
Test A5 40.8 �7.0 3566 �0.5 0.834 1.2
Test A6 41.2 �6.0 3600 0.4 0.831 0.8
Average 41.2 3595 0.833
Forward prediction 43.9 3585 0.824
(assume n = 0.33 and
Berkovich c∗)
STDEVb 1.6 51.7 0.00956
STDEV/Xprediction 3.7% 1.4% 1.2%

a All errors were computed as (Xtest�Xprediction) /Xprediction, where X represents a variable.

b STDEV = �1
N

ΣN
i = 1(Xtest�Xprediction)2, where X represents a variable.

Table 5
Forward analysis on Al 7075-T651 for 60° cone equivalent 3-
sided pyramid indentation experiments (max. load = 3 N)

Al 7075-T651 Cb (GPa) %error Cb
a

Test B1p 17.41 �7.9
Test B2p 17.52 7.4
Test B3p 16.95 �10.4
Test B4p 17.75 �6.2
Test B5p 18.08 �4.4
Test B6p 17.90 �5.4
Average 17.60
Forward prediction (60° cone equi-
valent 3-sided pyramid) 18.92
STDEVb 1.37
STDEV/Xprediction 7.2%

a All errors were computed as (Xtest�Xprediction) /Xprediction,
where X represents a variable.

b STDEV = �1
N

ΣN
i = 1(Xtest�Xprediction)2, where X represents

a variable.

4.2. Uniqueness of the reverse analysis

In order to verify the proposed reverse analysis
algorithms, the 76 cases of the forward analysis
(output) results were used as input to verify the

uniqueness of the reverse analysis algorithms. All
76 cases resulted in a single, accurate re-construc-
tion of the initial elasto-plastic parameters. For the
single indentation reverse algorithm in [1], two
cases out of the same group of 76 cases resulted in
no solution. The improvement over our previously
proposed reverse algorithm [1] came from the fact
that the dimensionless function �2a or �3a, which
is not monotonic in n when E∗ /s0.033 � 50 for
�2a or s0.033 /E∗ � 0.005 for �3a, is no longer
used in the present reverse algorithm. Within the
range of our current study, the dual indentation
algorithm resolves the uniqueness problem.

Cheng and Cheng [20] discussed the non-
uniqueness issues by showing that multiple stress–
strain curves could result in a visually similar load-
ing and unloading curve. However, such cases
were based on the FEM results of 68° apex angle.
Following an approach similar to that in Cheng and
Cheng [20] for our FEM results of 70.3° apex
angle, Fig. 8 shows a set of three visually similar
FEM indentation responses of steel with different
yield strength and strain hardening exponent. It is
worth noting two points here. First, when these
three visually similar FEM indentation responses
(small but with finite differences in the P–h
characteristics) were input into the single indenter
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Fig. 7. Dual indentation reverse analysis algorithms.

reverse algorithm [1], three unique sets of mechan-
ical properties can still be obtained, although the
accuracy is sensitive to small experimental scatters.
Second, using a second indenter for analysis helps
in reducing the non-uniqueness problem and
improving the accuracy, as clearly shown by the
different loading curvatures of the second inden-
tation response from 60° cone tip. The dual inden-
tation reverse algorithm shown in Fig. 7 is thus
capable of accurately performing the reverse analy-
sis on these three curves.

5. Sensitivity of the dual indentation analysis

5.1. Sensitivity of the forward analysis

Similar to the sensitivity analysis performed in
our previous work [1], a ±5% change in any one
input parameter (i.e., E∗, sy or n) would lead to
variations of less than ±7.6% in the predicted

results �Ca,
hr

hm
,
dPu

dh |
hm

and Cb�. The rather small
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Table 6
Dual Indentation Reverse Analysis on Al 6061-T6511 (assume n = 0.3)

Al 6061-T6511 Single [1] Dual (+Bave)

sy (MPa) %err sy E∗ (GPa) %err E∗ s0.033 %err s0.033 s0.057 %err s0.057 sy (MPa) %err sy

(MPa) (MPa)

Test A1 333.1 17.3 67.6 �3.7 334.5 �1.0a 353.9 0.7 261.7 �7.9
Test A2 349.4 23.0 66.1 �5.8 349.4 3.4 355.3 1.1 322.7 13.6
Test A3 332.8 17.2 66.5 �5.3 332.8 �1.5 355.0 1.0 246.5 �13.2
Test A4 171.0 �39.8 75.0 6.8 322.9 �4.5 348.0 �1.0 225.2 �20.7
Test A5 128.0 �54.9 77.8 10.8 315.9 �6.5 346.0 �1.6 204.4 �28.0
Test A6 278.5 �1.9 67.9 �3.4 337.4 �0.2 353.7 0.6 272.9 �3.9
Average 265.5 70.1 332.1 352.0 255.6
Uniaxial Exp 284 70.2 338 351.6 284
STDEVb 87.7 4.5 12.2 3.6 47.1
STDEV/Xexp 30.9% 6.5% 3.6% 1.0% 16.6%

a All errors were computed as (Xrev. analysis�Xexp) /Xexp, where X represents a variable.

b STDEV = �1
N

ΣN
i = 1(Xrev. analysis�Xexp)2, where X represents a variable.

Table 7
Dual indentation reverse analysis on Al 7075-T651 (assume n = 0.3)

Al 7075-T651 Single Dual (+Bave)

sy (MPa) %err sy E∗ (GPa) %err E∗ s0.033 %err s0.033 s0.057 %err s0.057 sy (MPa) %err sy

(MPa) (MPa)

Test A1 320.2 �36.0 79.5 0.5 537.6 �12.9a 585.2 �10.5 380.4 �12.3
Test A2 314.6 �37.1 81.5 �2.6 566.9 �8.2 581.9 �11.0 511.1 �26.7
Test A3 332.1 �33.6 77.2 0.8 557.6 �9.7 589.4 �9.8 447.8 �9.1
Test A4 289.7 �42.1 79.7 2.8 536.8 �13.1 584.9 �10.5 376.7 2.4
Test A5 316.0 �36.8 78.0 4.4 542.5 �12.1 587.8 �10.1 390.1 8.0
Test A6 279.7 �44.1 80.0 4.2 545.4 �11.7 584.5 �10.6 410.3 23.8
Average 308.7 79.3 547.8 585.6 419.4
Uniaxial exp 500 73.4 617.5 653.6 500
STDEVb 192.14 6.1 70.6 68.0 93.5
STDEV/Xexp 38.4% 8.3% 11.4% 10.4% 18.7%

a All errors were computed as (Xrev. analysis�Xexp) /Xexp, where X represents a variable.

b STDEV = �1
N

ΣN
i = 1(Xrev. analysis�Xexp)2, where X represents a variable.

variability confirms the robustness of the forward
algorithm.

5.2. Sensitivity of the reverse analysis

The sensitivity of the estimated mechanical

properties to variations in the input parameters
obtained from dual P–h curves was investigated for
the 76 cases examined in this study. For each of
these cases, the sensitivity of the estimated elasto-
plastic properties to variations in the four P–h

curve parameters—Ca,
dPu

dh |
hm

,
Wp

Wt
and Cb—about
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Fig. 8. Dual indentation forward analysis algorithms.

their respective reference values (as estimated from
the forward analysis) was analyzed. The variations

of ±1%, ±2%, ±3% and ±4% in Ca,
dPu

dh |
hm

,
Wp

Wt

and

Cb about their forward prediction values were fed
into the reverse algorithm. The outputs from
reverse algorithm were statistically compared with
the original values of elasto-plastic properties. The
standard deviations (STDEV) were calculated for
each ±x% variation, thus sampled over 2 × 76 =
152 data points, and compared with that of single
indentation. Table 8 lists the specific values of
STDEV of the dual indentation normalized with
that of the single indentation at ±2% Ca, ±2%
dPu

dh |
hm

and ±1%
Wp

Wt

, typically found in the experi-

mental scattering. Other variations in the P–h curve
parameters follow the similar trend shown in Table
8. Significant improvement of yield strength (for a
two-parameter power law plastic constitutive law)
was achieved due to the second plasticity para-
meter, s0.057, which can be predicted as robustly
as s0.033. For instance, within ±1% experimental
error in Wp /Wt, the average error in the estimated
yield strength was reduced by 80% using the dual
indentation algorithm.

6. Extension to multiple-indentation analysis

To further improve the accuracy and reduce the
sensitivity of the reverse algorithm, multiple

Table 8
Normalized standard deviations in properties estimation using
dual indentation reverse algorithm

±2% Ca ±2%
±1%

Wp

Wt
dPu

dh |
hm

(Output)
change in

(Input)
change in

Normalized E∗ 1 1 1
STDEV
in estimated s0.033 1 1 1
propertiesa sy 1 0.45 0.20

(n�0.1)
sy 0.83 0.34 0.18
(n�0.1)
pave 1 1 0.53

a The normalized STDEV is calculated from STDEVdual /

STDEVsingle, where STDEV = �1
N

ΣN
i = 1(Xvaried�Xreference)2 and

Xvaried represents a percentage deviation from Xreference.

indenter geometries may be used. This multiple
indentation analysis requires a complete inden-
tation curve of Vickers/Berkovich indenter and a
loading indentation curve of other tip geometries,
q�[50°,80°]. A set of the multiple indentation
reverse algorithms is shown in Fig. 9. It is similar
to that of dual indentation except at the last step
where yield strength and strain hardening exponent
are to be determined. For each indenter geometry
(q), a pair of representative strain and stress can
be determined using generalized dimensionless
function �1q and erq in Eqs. (A.10) and (10a,b),
respectively. By statistically fitting (least square
error) these stress/strain values with the power
hardening equation (Eq. (4)), sy and n can be
determined.

On the other hand, the dual indentation algor-
ithms shown in Fig. 6 can be easily extended to
different tip geometries q�[50°,80°]. Given a set
of elasto-plastic properties, one can predict a com-
plete indentation response for Vickers/Berkovich
indenter and a loading indentation response for
arbitrary indenter tip geometries.
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Fig. 9. Multiple indentation reverse analysis algorithms.

7. Conclusions

In this study, dimensional analyses and large
deformation finite element studies were performed
to address the uniqueness problem in the extraction
of material properties from instrumented sharp
indentation and to improve the accuracy and sensi-
tivity of the algorithms used to extract such proper-
ties. The key results of this investigation can be
summarized as follows:

1. Using dimensional analysis, additional univer-
sal, dimensionless functions were constructed to
correlate elasto-plastic properties of materials
with indentation response for 50°, 60° and 80°
cone (or their equivalent 3-sided pyramids).
Choosing a pair of Berkovich (or Vickers) and
60° cone (or its equivalent 3-sided pyramid),
forward and reverse analysis algorithms were
established based on the identified dimen-
sionless functions. These algorithms allow for
the calculation of indentation response for a

given set of properties, and also for extraction
of some plastic properties from a dual set of
indentation data, thus obviating the need for
large-scale finite element computations after
each indentation test.

2. Assuming large deformation FEM simulations
and an isotropic power law elasto-plastic consti-
tutive description within the specified range of
material parameters, the present reverse algor-
ithms using dual indenters (Berkovich/Vickers
and cone of 60° apex angle) were able to predict
a single set of values for E∗, sy and n. Further-
more, the full stress–strain response can be esti-
mated from the power law assumption.

3. The accuracy of the dual indentation
forward/reverse algorithms were verified in two
aluminum alloys (6061-T6511 and 7075-T651)
with an improvement over the single indentation
forward/forward algorithms.

4. The proposed dual indentation forward algor-
ithms work well and robustly with similar sensi-
tivity to the single indentation forward algor-
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ithms; a ±5% error in any input parameter
results in less than ±7.6% in the predicted values

of Ca,
hr

hm
,
dPu

dh |
hm

or Cb.

5. The proposed dual indentation reverse algor-
ithms were found to predict E∗, s0.033 and
s0.057 quite well, and sy reasonably well for the
cases studied. Comprehensive sensitivity analy-
ses show that sy displayed much reduced sensi-
tivity to all P–h parameters due to the second
plasticity parameter that can be robustly esti-
mated; whereas, E∗, s0.033, s0.057 and pave dis-
played similar sensitivity to the single inden-
tation algorithms.

6. The extension of forward/reverse algorithms to
using multiple indenter geometries, 50°�q�
80°, was proposed with generalized functions of
representative strain and indentation loading
curvature.

We note that while this paper was in press, an
independent computational study using multiple
indenters was published in Acta Mater [30]. Their
findings extended our earlier work [1] and were
consistent with the results presented here. The
present paper addresses new results which include
experimental verification and the uniqueness of the
reverse analysis.
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Appendix A

In this appendix, eight dimensionless functions
used in the current study are listed.
�1a,�2a,�3a,�4a,�5a,�6a were constructed in our
earlier work [1], and �1b,�1c and �1d are con-
structed in the current study. These functions can
be used to formulate dual indentation forward and
reverse algorithms in addition to single inden-
tation algorithms.

�1a �
Ca

s0.033

� �1.131�ln� E∗

s0.033
��3

� 13.635�ln� E∗

s0.033
��2

(A.1)

�30.594�ln� E∗

s0.033
�� � 29.267

�2a� E∗

s0.033

,n� �
1

E∗hm

dPu

dh |
hm

� (

�1.40557n3 � 0.77526n2 � 0.15830n

�0.06831)�ln� E∗

s0.033
��3

� (17.93006n3

�9.22091n2�2.37733n (A.2)

� 0.86295) �ln� E∗

s0.033
��2

� (

�79.99715n3 � 40.55620n2 � 9.00157n

�2.54543) �ln� E∗

s0.033
�� � (122.65069n3

�63.88418n2�9.58936n � 6.20045)

�3a�s0.033

E∗ ,n� �
hr

hm
� (0.010100n2

� 0.0017639n

�0.0040837) �ln�s0.033

E∗ ��3

� (0.14386n2 � 0.018153n (A.3)

�0.088198)�ln�s0.033

E∗ ��2

� (0.59505n2
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� 0.034074n�0.65417)�ln�s0.033

E∗ ��
� (0.58180n2�0.088460n�0.67290)

�4a �
pave

E∗ �0.268536�0.9952495 (A.4)

�
hr

hm
�1.1142735

�5a �
Wp

Wt
� 1.61217�1.13111

�1.74756��1.49291�
h

r
h

m
�

2.535334

� (A.5)

�0.075187� hr

hm
�1.135826�

�6a �
1

E∗	Am

dPu

dh |
hm

� c∗ (A.6)

where values of c∗ are tabulated in Table A.1.
For q = 60°,

�1b �
Cb

s0.057

� �0.154�ln� E∗

s0.057
��3

� 0.932�ln� E∗

s0.057
��2

� 7.657�ln� E∗

s0.057
��(A.7)

�11.773

For q = 80°,

�1c �
Cc

s0.017

� �2.913�ln� E∗

s0.017
��3

Table A.1
The values of c∗ used in the study [1]

c∗ Small deformation Large deformation
linear elastic solutiona elasto-plastic solutionb

Conical 1.128 1.1957
Berkovich 1.167 1.2370
Vickers 1.142 1.2105

a King [29].
b Proposed in [1].

� 44.023�ln� E∗

s0.017
��2

(A.8)

�122.771�ln� E∗

s0.017
�� � 119.991

For q = 50°,

�1d �
Cd

s0.082
� 0.0394�ln� E∗

s0.082
��3

�1.098�ln� E∗

s0.082
��2

� 9.862�ln� E∗

s0.082
�� (A.9)

�11.837

For any q in [50°,80°], the general fit function for
�1q is

�1q �
Cq
ser

� (�2.3985 � 10�5q3

� 6.0446 � 10�4q2 � 0.13243q

�5.0950)�ln�E∗

ser
��3

� (0.0014741q3

�0.21502q2 � 10.4415q

�169.8767)�ln�E∗

ser
��2

� (�3.9124 (A.10)

� 10�3q3 � 0.53332q2�23.2834q

� 329.7724)�ln�E∗

ser
�� � (2.6981

� 10�3q3�0.29197q2 � 7.5761q

� 2.0165)

Appendix B

In this study, large deformation finite element com-
putational simulations of depth-sensing indentation
were carried out for 76 different combinations of
elasto-plastic properties that encompass the wide
range of parameters commonly found in pure and
alloyed engineering metals; Young’s modulus, E,
was varied from 10 to 210 GPa, yield strength, sy,
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Table B.1
Elasto-plastic parameters used in the present study

E (GPa) sy (MPa) sy/E

19 combinations 10 30 0.003
of E and σy

a 10 100 0.01
10 300 0.03
50 200 0.004
50 600 0.012
50 1000 0.02
50 2000 0.04
90 500 0.005556
90 1500 0.016667
90 3000 0.033333

130 1000 0.007692
130 2000 0.015385
130 3000 0.023077
170 300 0.001765
170 1500 0.008824
170 3000 0.017647
210 300 0.001429
210 1800 0.008571
210 3000 0.014286

a For each one of the 19 cases listed above, strain hardening
exponent n is varied from 0, 0.1, 0.3 to 0.5, resulting in a total
of 76 different cases.

from 30 to 3000 MPa, and strain hardening
exponent, n, from 0 to 0.5, and the Poisson’s ratio,
n, was fixed at 0.3. Table B.1 tabulates the elasto-
plastic parameters used in these 76 cases.
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