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Abstract—A physically based computational micromechanics model is developed to study random and
discrete microstructures in functionally graded materials (FGMs). The influences of discrete
microstructure on residual stress distributions at grain size level are examined with respect to material
gradient and FGM volume percentage (within a ceramic-FGM-metal three-layer structure). Both
thermoelastic and thermoplastic deformation are considered, and the plastic behavior of metal grains is
modeled at the single crystal level using crystal plasticity theory. The results are compared with those
obtained using a continuous model which does not consider the microstructural randomness and
discreteness. In an averaged sense both the micromechanics model and the continuous model give
practically the same macroscopic stresses; whereas the discrete micromechanics model predicts fairly high
residual stress concentrations at the grain size level (i.e. higher than 700 MPa in 5-6 vol% FGM grains)
with only a 300°C temperature drop in a Ni-Al:O; FGM system. Statistical analysis shows that the
residual stress concentrations are insensitive to material gradient and FGM volume percentage. The need
to consider microstructural details in FGM microstructures is evident. The results obtained provide some
insights for improving the reliability of FGMs against fracture and delamination. © 1997 Acta

Metallurgica Inc.

1. INTRODUCTION

Functionally graded materials (FGMs) are spatial
composites within which the composition of each of
the two material phases that form the FGMs varies
along their thickness direction. The variation is
designed to be tailorable so as to achieve predeter-
mined responses to given mechanical and thermal-
mechanical loadings. Within a FGM, the different
material phases have different functions. In a
metal-ceramic FGM, the metal-rich side is placed in
the region where mechanical performance, such as
toughness, needs to be stronger; and the ceramic-rich
side, which has better thermal resistance, is exposed
to high temperatures, or placed in the region where
there is a potentially severe temperature variation.
Also, FGMs can reduce the thermal mismatch at the
interfaces of bimaterials and, therefore, largely
reduce the possibility of fracture caused by the
mismatch. Applications of FGMs include aerospace,
power generation, furnaces and others where strong
material performance, especially the ability to resist
thermal shock, is required or expected.

Material gradients, induced by the change in
material properties, make FGMs different in behav-
ior from homogeneous materials and traditional
composite materials. Over the past few years, there
have been a number of works, both theoretical and
experimental, to study the responses of FGMs to
mechanical and thermal loads under various loading
conditions, for various geometries and in various

deformation and fracture mechanisms, including
elastic and plastic aspects and crack propagation
[1-11]. Most of the previous studies above focused on
the continuous approach which considers that the
material properties change continuously, as shown in
Fig. 1(b). The continuous model gives correct
solutions to such problems as elastic deformation in
the ceramic-rich side and plastic deformation in the
metal-rich side, when the scale considered is much
larger than that of the grain sizes of the constituent
material phases. It also gives a good prediction for
damage initiation from an imperfection, such as a
void or crack, when the size of the imperfection is
much larger than the grain size.

The microstructures in FGMs are discrete and
random in nature, as schematically shown in Fig. 1(a).
The strongly heterogeneous microstructure is likely,
at least possible, to cause locally concentrated
residual stresses during thermal or mechanical
loading. These locally concentrated stresses, es-
pecially those high in tension, may act to initiate
small cracks and voids. The development of these
small-scale failures may lead to large-scale failures
and result in the fracture of the whole structure.
Experiments on Si-C FGM by Sohda et al. [11]
showed that the porous microstructure has a much
better resistance against delamination and crack
propagation than the companion dense microstruc-
ture, where the latter has a higher level of local
stresses. Also pointed out by Finot et al. [6], to study
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the local stress distributions and concentrations
within the FGM, microstructural details such as the
heterogeneous microstructure and local plastic
deformation must be considered carefully. The
objective of this study is, therefore, to explore the
microstructural randomness and discreteness vs
macroscopic material gradients and geometries with
respect to the thermal residual stresses and local
residual stress concentrations within FGM micro-
structures. A discrete computational micromechanics
model is developed. In our discrete micromechanics
model, the ceramic grains are treated to be elastically
deformed as the typical ceramic materials; the metal
grains undergo thermo-elastoplastic, finite defor-
mation, and are treated using crystal plasticity
theory. The results, as will be seen in the later
sections, show that local stress concentration at the
grain size level is significant. For the purpose of
comparison, we also solve the problem by the
continuous model.

The plan of the paper is as follows. Both the
continuous and discrete models are described in
Section 2, where a brief description is given of the
crystal plasticity theory used for metal grains.
Numerical results are presented in Section 3. In
Section 3.1, results using the continuous model are
presented, where influences of different gradients on
macroscopic residual stresses are reviewed. In Section
3.2, results using the discrete micromechanics model
are presented, the macroscopic residual stresses as
well as the local stress concentrations are explored
using different material gradients and FGM volume
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percentages. In Section 3.3, the contribution of
plastic deformation within the discrete micromechan-
ics model is studied. In Section 3.4, a short summary
is given on the statistical analysis of the residual stress
concentrations with respect to material gradient,
FGM volume percentage as well as the plastic
relaxation. Finally, discussions and conclusions
follow in Section 4.

2. THE CONTINUOUS AND DISCRETE MODELS

The model geometry, as shown in Fig. 2, consists
of three layers: the ceramic layer is on the left side;
the metal layer is on the right side; and the FGM is
sandwiched between them. As a model system, we
choose the metal to be Ni, and the ceramic to be
AL O, in this study. The FGM is, therefore, Ni-Al,O;
FGM. Both continuous and discrete models for the
FGM, including the numerical consideration, are
described below.

2.1. The continuous model

We define x as the relative distance from the
ceramic—-FGM interface, i.e. x =0 stands for the
ceramic-FGM interface and x =1 stands for the
FGM-metal interface. For the continuous model for
the FGM, the effective material properties are
assumed to follow the “rule of mixture™:

A(x) = Vuew(X)Amerat + Veeramic(X) Aceramic, (1)

Material Gradient

Material

// Property

eramic

Metal

o]

(b) Continuous Model

Schematic drawings of functionally graded materials (FGMs): (a) discrete and random

microstructure in reality, and (b) continuous gradient modeling often used.
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Fig. 2. Schematic drawings of ceramic~-FGM-metal three-layer structures used to model the functionally
graded materials, with (a) continuous model and (b) discrete micromechanics model. The insert to (b)
shows the deformation gradient decomposition for a metal single crystal.

where A stands for either the elastic constants, E
(Young’s modulus) and v (Poisson’s ratio), or the
thermal expansion coefficient o; Vumaa(x) and
Veenmic(x) are the volume fractions of metal and
ceramic, respectively, at the position x. The simplified
material property form overlooks the interactions of
the two material phases at the microscopic level, so
it leads to an approximate solution. The more
accurate material property variation form at the
macroscopic level requires a better understanding of
FGM microstructure and its deformation, which are
the focus of this study. We will only obtain the elastic
solution for the continuous model, and it is mainly
for comparison with the solution obtained by the

discrete model. Plastic deformation of the sandwich
structure was studied using a continuous model in
Giannakopoulos et al. [5] and Finot et al. [6].

The thermoelastic solution in this case may be
obtained analytically [5]. Here, a finite element
method is used for the purpose of examining its
accuracy for FGMs. In the implementation, the
FGM layer is divided into 30 micro-layers, as shown
schematically in Fig. 2(a), and the material properties
of each micro-layer are taken to be constants,

2.2. The discrete micromechanics model

We have developed a computational micromechan-
ics model for FGMs using the crystal plasticity
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theory. Figure 2(b) shows the model geometry for a
FGM consisting of the metallic and ceramic grains
randomly distributed within it. The macroscopic
material properties obtained by statistical processing
of the random distribution of the metal and ceramic
grains vary continuously along the thickness direc-
tion, and give their desired variation forms. Each of
the metal grains has its own crystal orientation (also
randomly distributed) which is shown by the angle ¥
in Fig. 3, and its thermoplastic behavior is assumed
to be governed by crystal plasticity theory. The
ceramic grains are modeled using the standard linear
elasticity theory.

The two-dimensional idealization shown in Fig. 3
was introduced by Harren et a/. [12], Harren and
Asaro [13] and McHugh et al. [14] for f.c.c. or b.c.c.
polycrystals and their metal matrix composites. The
three slip systems are arranged in an equilateral
triangle, and the reference laboratory base vectors X;
are at an angle i with respect to reference crystal base
vectors a,. The slip directions in this model geometry,
s;, §; and ss, represent the close-packed directions of
an assemblage of close-packed circular cylinders.
Since, in a two-dimensional model two independent
slip systems can accommodate arbitrary increment of
plastic strain, the three independent slip systems here
resemble the redundancy exhibited by both f.c.c. and
b.c.c. crystals. We note that using traditional metal
plasticity theories (i.e. J; flow theory) would give us
similar results for Ni (f.c.c.). If any low-symmetry
crystals (say NiAl or TiAl) are involved, then crystal
plasticity theory is necessary to account for the
orientation dependent deformation behavior.

The single crystal constitutive theory, in its present
form, was developed by Asaro and his coworkers
[14-21]. The theory which will be briefly described
below builds on the pioneering work by Taylor [22]
and Hill and Rice [23].

.
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Fig. 3. Two-dimensional model single crystal slip geometry
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base vectors a;.
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The total deformation gradient is decomposed into
plastic (FF), thermal (F"), and lattice (F*) parts, as
shown in the insert of Fig. 2(b). If uw is the
displacement vector and X the material position
vector with respect to the reference (undeformed)
state, F =1+ 0u/0X (I is the second-order identity
tensor) and

F = F*F"F". 2

Plastic deformation occurs by the flow of material
through the lattice, via simple shearing, across planes
with unit normals m, and in directions s, ; here m, and
s, represent a crystallographic slip plane normal and
a slip direction, respectively, and z is an index that
designates a slip system. If , is the slip rate on the
o slip system, then the velocity gradients of this
plastic shear flow can be written as

IP.pr-! =Zi’1sima, 3)

x

where the summation is over all active slip systems.
The thermal parts of the velocity gradients are
described as

PR =0x a=Y Yaaa, @
! J
where 0 represents temperature and « is a tensor
whose components, «;, with respect to the time
independent Cartesian base vectors, a,, are the
thermal expansion coefficients. The base vectors are
aligned with the crystal lattice in the reference
configuration in some standard way, e.g. in cubic
crystals. It is most convenient to align the a; base
vectors with the cube axes, in which case a would be
diagonal with all components equal.
In general, 7, will be a function of temperature,
stress state and material state. As a specific example
we have used expressions such as

I'n
. . T,
yazasgn{r,}ﬂg—‘} (5)

to represent strain rate sensitive power-law type
behavior. In the expression, n is the material rate
sensitivity parameter, 7, is the resolved shear stress on
the slip system a, and g, > 0 is its current strength.

The slip system hardness, g,, is obtained by the
path-dependent integration of the evolution
equations of the form:

o = Y g Glinl + €26: 7 = j S fuldr, (6)
B 0 =

where 7, is the accumulated sum of slips, A is a
matrix of hardening moduli and gf is the rate of
change of slip system hardness with respect to
temperature alone. The initial condition for this
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Table 1. Elastic properties used for the computations
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E (GPa) v a (K1)
Al:O: 380 0.25 7.4 x 10-°
Ni 214 0.35 15.4 x 10-¢
evolution is given by
gd(ya = 0’ 0) = go(e), (7)

where 0 is the temperature.

The detailed development of these constitutive
relations can be found in McHugh er al. [14]. This
constitutive theory has been implemented into finite
element codes, using a rate tangent method
introduced by Pierce et al. [18].

3. RESULTS

The geometry of the sandwich structure is specified
in Fig. 2. To avoid the edge effects, the total
length/width ratio (Lo/(H + 2h)) was chosen to be 5,
while only the center part with length L(L < 0.25L)
was considered when performing residual stress
analysis. Two sets of FGM interlayer thickness, i.e.
H/(H + 2h) = 40 and 70 vol%, were used.

To make this complicated boundary value problem
manageable computationally, a relatively coarse
mesh (i.e. four triangular elements per grain) is used
in this study and simple square grains are employed.
Doing so, as Taylor [22, 24] and many others [25-27]
did successfully in modeling polycrystalline materials,
effectively treats the deformation within each
individual grain as uniform. The finite element model,
however, takes the interactions between all constitu-
ent grains into consideration, which is not achievable
using Taylor or Sachs type models. In studying the
interactions at the grain size level, this model design
is at least a first-order approximation. Also, in
keeping all the microstructural “building blocks” (i.e.
ceramic and metal grains in the discrete model)
exactly the same, the relative importance of material
gradient and FGM volume percentage can be
identified.

The specific FGM system is the Al,Oy~Ni system.
In this study, the major focus is on the relative
importance of the discrete and random microstruc-
ture vs FGM volume fraction and gradient functional
form. With that in mind, and noting that all the case
studies shown later were performed under a relatively
small (300°C) temperature variation, for simplicity
the elastic properties were taken to be constants. The
material properties used for the computations are
listed in Tables 1 and 2. A two-dimensional plane
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Fig. 4. Different gradient functions used in the residual
stress analysis.

strain deformation condition was imposed. The
thermal loading was induced by cooling the structure
by 300°C. The temperature was assumed to be
uniform within the three-layer structure, and the
sandwich structure was set to be stress free at the
beginning temperature. For the metal grains, linear
interpolation was used to obtain the temperature-de-
pendent critical resolved shear stresses go(6) in
equation (7) between the several temperatures shown
in Table 2. The shear strain hardening / in equation
(6) was taken to be 77.4 MPa, which was converted
from the data in Ref. [28] using a Taylor factor of
3.06 for f.c.c. polycrystals with the linear hardening
assumption. A low material rate sensitivity parameter
is given as n = 0.005 in equation (5).

We write Vrgm as the volume fraction of Ni within
the FGM layer, and x as the relative distance from
the ALLO-FGM interface (i.e. x = 0 stands for the
ALOs~FGM interface and x =1 stands for the
FGM-Ni interface). As shown in Fig. 4, three
functional forms were used in the computations:

Linear: Vegu(x) = x, (8a)
FGM/1: Vigu(x)=1—(1 —x)y", m=2,4, (8b)
FGM/2: TViem(x) =x", m=24. (8c)

When m = 1, both FGM/1 and FGM/2 reduce to the
linear case of equation (8a), and when m>=2
functions in the FGM/1 class have zero slope at the
FGM-Ni interface (x = 1), whereas the functions in
the class FGM/2 have zero slope at the Al,O;-FGM
interface (x = 0).

Table 2. Plastic properties of Ni grains used in the computations

T (°C) 20 127 227
o/ (MPa) 148 153 140
terss’ (MPa) 48.4 50.0 45.8

327 427 527 627 727 827
138 115 100 69 59 45
45.1 37.6 32.7 225 19.3 14,7

“Data from Suresh er al. [28].
*Calculated from o, with a Taylor factor of 3.06.
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3.1. The continuous model—macroscopic stresses vs
material gradients and FGM volume percentages

For this problem, the only non-zero stress
component is the in-plane normal stress along the X;
direction. Figures 5(a) and (b) show the results of the
in-plane normal stress distribution along the X\
direction for the 40 and 70 vol% FGM, respectively.
Due to the presence of the FGM layer, the stresses
are continuous, and have continuous derivatives
wherever the material property variation function in
equations (8) is. It is noteworthy that although the
existence of the FGM layer in general decreases the
stress at one or both of the interfaces, for power index
m < 2 in equations (8), there is an extremum in the
FGM layer, and this extremum in some cases has a
magnitude close to that of the normal stress at the
interface in the base-line case, ie. a sharp
ceramic—metal interface without the FGM layer [29].
Comparing Fig. 5(b) with Fig. 5(a), it is found that,
in general, increasing the relative FGM volume
percentage decreases the stress at one or both of the
interfaces. These results are similar to those found in
Giannakopoulos ef al. [5].

Next, we will explore how the local stress
concentrations interact with material gradient as well
as the FGM volume percentage. The averaged
physical meaning of the continuous solution will be
clearer when we present the discrete solution below
and compare the two solutions.

3.2. The discrete model—local stress concentrations
and macroscopic stresses

In this section, the discrete micromechanics model
is used and only elastic deformation is considered.
Plasticity effects will be studied in the next section.

Figure 6 shows contour plots of (a) ¢, and (b)
averaged in-plane principal stress (p = (611 + 02)/2)
developed in the 40 vol% FGM with linear gradient.
It is clearly seen that the local stress concentration is
quite high and the stress field is very inhomogeneous,
i.e. the stress variations among many of the adjacent
grains are significant. The o, was also found to be

RESIDUAL STRESSES IN GRADED MATERIALS

inhomogeneous. Due to the thermal mismatch
between ceramic grains and metal grains, most metal
grains experience large tensile stresses; and this is
especially true for metal grains near the ceramic—
FGM interface and those in the middle region of the
FGM layer.

Additional computations were performed using
different gradient functions. Figure 7 shows contour
plots of averaged in-lane principal stress
(p = (o1 + 022)/2) developed in the 40 vol% FGM
with (a) gradient function Vigu=1-—(1 —x)
(FGM/1 m = 2), and (b) gradient function Vegy = x°
(FGM/2 m = 2). The distribution of stresses is quite
different with different gradient functions, as can be
seen clearly from Figs 6(b), 7(a) and 7(b). Detailed
examination of Figs 6 and 7 tells us that, in almost
every local region (say take 5 x 5 grains as the region
size) where the ceramic grains are more than 40 vol%,
there are always some metal grains experiencing
significant tensile stresses for all three cases. The
results for the 70 vol% FGM were similar to those for
the 40 vol% FGM.

For such discrete and random microstructures,
more physical insights can be gained via the statistical
analyses of the stress distribution. Figure 8(a) shows
the distribution profiles of p = (o1 + 022)/2 devel-
oped in the FGM layer (40 vol% FGM) with three
different gradient functions; Fig. 8(b) shows the
distribution profiles of p developed in the FGM layer
(linear gradient) of a 40 and a 70 vol% FGM,
respectively. The three distribution profiles in Fig.
8(a) are distinctively different: (i) the distribution
peak between 50 and 200 MPa (mostly in metal
grains) drops as the total metal composition in the
FGM layer decreases; and (ii) the distribution peak
between —50 and —250 MPa (mostly developed in
ceramic grains) increases as the total ceramic
composition in the FGM layer increases. The FGM
volume percentage also has large influences on the
distribution profile of p, see Fig. 8(b): the distribution
peak for tensile stresses shifted from around 110 MPa
(40 vol% FGM) to about 50 MPa (70 vol% FGM);
and the distribution peak for compressive stresses
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Fig. 5. In-plane normal stress distributions along the X\ direction using the continuous model with (a)
40 and (b) 70 vol% FGM, respectively.
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Fig. 6. Contour plots of (a) 622, and (b) averaged in-plane principal stress (p = (0.1 + ¢22)/2) developed
within the linear gradient, 40 vol% FGM. Only elastic deformation is considered here.

shifted from around —150 MPa (40 vol% FGM) to
about —50MPa (70 vol% FGM). However, the
distribution profile for high stresses, ie. for
p <500 MPa or p= — 500 MPa, are found to be
insensitive to material gradient and FGM volume
percentage.

Finally, for the purpose of comparison, we
averaged the stresses over each column of elements to
get the mean stress along the vertical direction.
Figure 9 shows the macroscopically averaged
in-plane normal stress developed within the discrete
microstructures (shown by separated symbols) as
compared to the curves obtained using the continu-
ous model (shown by continuous lines). It is
interesting to see that, although there are a lot of local
stress concentrations, the two types of modeling

approach given practically the same averaged (or
macroscopic) stresses. In an averaged sense, only
small variations can be found in Fig. 9 for the discrete
microstructure model due to the local randomness
and discreteness. This shows that the macroscopic
stresses are those based on a scale much larger than
the grain size and obtained without considering
certain details, such as local stress concentrations, at
a smaller scale.

3.3. The discrete model—influence of plastic defor-
mation

In this section, we explore the effects of plastic
deformation within the metal grains in the discrete
microstructure, Besides the concentrated stresses,
large, locally concentrated plastic strain accum
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lation during repeated thermal cycling may also
initiate failure.

Figure 10 shows the contour plots of (a) averaged
in-plane principal stress (p = (61, + 02)/2), and (b)
accumulated sum of slips (7,) developed in the linear
gradient, 40 vol% FGM. The temperature drop was
from 700 to 400°C, and the plasticity parameters were
taken to be as listed in Table 2. Similar to the
thermoelastic case, the stress distribution is again
inhomogeneous, with many metal grains experiencing
high tensile stresses and many ceramic grains
experiencing high compressive stresses. If we compare
Fig. 10(a) with Fig. 6(b) (elasticity only), the stress
concentration in the ceramic grains is significantly
reduced in the region where metal content is greater
than 70 vol%, due to plastic relaxation. With only a

{b)
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300°C temperature drop, Fig. 10(b) shows that: (i)
there are plastic strain accumulations in many of the
metal grains, and (ii) certain sites have relatively high
strain accumulations, about 1.5%. The high strain
accumulation sites seem to appear in the regions
where metal content is between 50 and 75 vol%.
Figure 11 shows the distribution profiles of p
(=(on + 02)/2) developed within the FGM layer
(linear gradient, 40 vol% FGM), for both the elastic
and the elastoplastic case. The plastic relaxation
effect is very clear here in this case, where stresses are
in general shifting to lower magnitudes with
plasticity. The distribution profile for high tensile
stresses with p > 700 MPa, however, has reduced
only slightly with plastic relaxation. Similar to the
thermoelastic case, the stress distribution profile for

p (MPa)
794.657

641.013
487.37
333.726
180.083
26.439
-127.205
-280.848
-434.492
-588.135

-741.779

p (MPa)
697.896

548.14
398.383
248.627
98.8704
-50.886
-200.642
-350.399
-500.155
-649.912

-799.668

Fig. 7. Contour plots of averaged in-plane principal stress (p = (61 + 022)/2) developed in the 40 vol%
FGM with (a) gradient function Vrom=1— (1 —x)* (FGM/l m =2), and (b) gradient function
View = x* (FGM/2 m = 2). Only elastic deformation is considered here.
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Fig. 8. (a) Averaged in-plane principal stress (p = (11 + 622)/2) distribution profiles developed within the
FGM layer (40 vol% FGM) with three different gradient functions; and (b) distribution profiles of p
developed in the FGM layer (linear gradient) of a 40 and a 70 vol% FGM, respectively.

high tensile stress regions is insensitive to material
gradient and FGM volume percentage. On the other
hand, the distribution profile for high compressive
stresses with p < — 250 MPa (mostly in ceramic
grains) drops significantly. This suggest that, when
ceramic grains are subject to tensile stresses if
temperature increases, the plastic relaxation effects
may reduce their tensile stress concentrations.

We average the stresses over each column of
elements for the plastic solution to obtain the averaged
in-plane normal stress. Figure 12 plots the macro-
scopically averaged stress for both the elastic and the
elastoplastic case. Comparing Fig. 12 with Fig. 10(b),
it is found that the metal rich section and part of the
pure metal region are under general macroscopic
yielding, which sets the maximum magnitude of the
macroscopic stresses for the plastic case.

3.4. The statistical analysis of residual stress concen-
trations—averaged peak stress

Since the stress distribution profiles of p for the
high stress area shown in Figs 8 and 11 are small, to

500 ™ T T
o Continuous Gradient
400 40vol% FGM v
+ Discrete Microstructure

In-Plane Normal Stress (MPa)

0.0 02 0.4 0.6 08 1.0
Relative Distance

Fig. 9. Macroscopically averaged in-plane normal stress
developed within the discrete microstructures (shown by
separated symbols) as compared to the curves obtained
using the continuous model (shown by continuous lines).

get more reliable statistical results we employ 6 vol%
APSP to treat the data in these figures. The 6 vol%
APSP (averaged peak stress of p) is the stress p
averaged over the 6 vol% microstructure of the FGM
layer which has the highest tensile stresses (p).
Similarly, we can obtain 3 vol% APSP, 9 vol% APSP
etc. Figure 13 shows the 6 vol% APSP (averaged
peak stress of p) for different material gradients and
different FGM volume percentages, and for both the
elastic solution (marked with El) and the elastoplastic
solution (marked with Pl). From Fig. 13, the
distribution profile for high tensile stresses is again
found to be insensitive to material gradient and FGM
volume percentage, and the plastic relaxation effect is
relatively small for the high stress regime. Similar
conclusions can be drawn from the 3 vol% APSP
(averaged peak stress of p).

The above statistical results are interpreted by the
following observations. As mentioned before, high
tensile stresses always occur in those metal grains
surrounded by many ceramic grains. Comparing
those stresses in Figs 5 and 9, the stress concen-
trations in these metal grains are found to be an order
of magnitude higher than the macroscopic stresses in
the FGM layer. Considering the large number of stiff
ceramics around each of those metal grains, the high
local stresses are believed to be insensitive to the
macroscopic physical parameters. The effect of
material gradient and FGM percentage on the
macroscopic stresses is mainly due to the change of
the distribution profiles in the middle parts of Figs 8
and 11, which have lower magnitude of stresses.

For the small plastic relaxation for local stress
concentrations shown in Fig. 13, this can also be
related to the fact that peak tensile stresses always
occur in metal grains where a lot of ceramic grains are
surrounded. The general stress state induced in such
metal grains is mostly all around tension, i.e. 61 = 7>
where o, and o, are the two in-plane principal
stresses. With o0, = 0,, the maximum shear stress
Tmax = (01 — 0,)/2 is therefore small. No matter how
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Fig. 10. Contour plots of (a) averaged in-plane principal stress (p = (o1 + o2)/2), and (b) accumulated
sum of slips (y.) developed in the linear gradient, 40 vol% FGM. Plastic deformation is considered here.

low the yield strength is in the metal grains, small
shear stresses can hardly produce any plastic
deformation, and therefore are not helpful in relaxing
this kind of stress state.

4. DISCUSSION

A physically based micromechanical model is
developed to study residual stress distributions and
concentrations in the FGM sandwiched between two
dissimilar materials during thermal loadings. The
results obtained reveal detailed information of
microstructural behavior at the grain size level, and
thus provide some insights for optimizing FGMs and
the control of their failures.

It is stressed that the scale level we are concerned
with in this study is at the grain size level and

upwards. Using the relatively coarse mesh and
square “‘building blocks” is a first-order approxi-
mation to the reality, and not intended for subgrain
level microscopic features. For example, a very
refined mesh will show very high stress concen-
trations (in fact singularities) at the inter-phase
corners. Due to the relative small E..o,/Ex ratio
(1.77), the singularity is a fairly weak one, which
means high stress regions will only occupy a very
small volume fraction. It is shown that in the case
of two elastic bonded quarter planes, the order of
the singularity is about 0.05 (1/r*, & = 0.05) for such
an elastic difference, see Bogy [30]. This kind
of singularity is thus expected to have little (i.e.
second order) effect on the averaged grain level
stress. However, if 5-6 vol% of the FGM grains
have some averaged tensile stresses higher than
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Fig. 11. Averaged in-plane principal stress (p = (ou1 + 02)/

2), distribution profiles developed within the FGM layer

(40 vol% FGM, linear gradient) for both the elastic and the
elastoplastic case.

700-800 MPa, only higher local stresses can be
expected near those subgrain level microscopic
features.

The grain level microscopic stress concentrations
are found to be quite high, of the order of 800 MPa,
with only a 300°C temperature drop; whereas the
macroscopic stresses are much lower than the
microscopic stresses. This suggests that, if high tensile
stress concentration at the grain size level is the
failure initiation mode at this size scale, there are
always micro-fractures at the grain size scale during
thermal loading. Since the stress distribution profile
for the high stress region is quite insensitive to
material gradient and FGM volume percentage as
shown in Section 3, the above conclusion is
independent of those two macroscopic parameters.
On the other hand, the high stress region in the
stress distribution profile is relatively small (about
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Fig. 12. Macroscopically averaged in-plane normal stress

developed within the discrete microstructure (40 vol%

FGM, linear gradient), for both the elastic and the
elastoplastic case.

5-6 vol% with stress p above 700 MPa). Whether the
small-scale micro-fractures at the grain size level will
develop into large-scale fractures to cause the fatal
damage of the whole structure depends on other
factors whose effects require further investigation,
such as stress redistribution after small-scale failure
initiation, loading history and the grain boundary
adhesion between the adjacent grains. The present
computational micromechanics model can be ex-
tended to account for these influences.

For optimizing the microstructure, since the dense
structure results in high local stress concentrations,
our results suggest that for achieving higher
toughness the porous microstructure should be
considered; and this is consistent with the experimen-
tal observation by Sohda et al. [11] on the Si-C
FGM. Their experiments showed that the porous
microstructure has a much better resistance against
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Fig. 13. The 6 vol% averaged peak stress of p (APSP) developed in FGM microstructures with different
material gradients and different FGM volume percentages for both the elastic solution (marked with “El”
on top) and the elastoplastic solution (marked with “PI” on top).
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cracking than the dense microstructure. Also, in a
recent review paper, Koizumi and Niino [31] listed
micropore as one of the most important material
constituencies in FGM microstructures. Regarding
the grain size, the extent of micro-fracturing exhibits
large sensitivity to the grain size in ceramic
polycrystals subject to thermal loading, being more
severe in coarse grained ceramics [32, 33]; therefore,
a fine grain sized microstructure is suggested to
improve the FGM’s resistance against cracking and
delamination.

Other microstructural factors, such as grain shape,
grain size and third-phase particle, are beyond the
scope of the present work, and are the considerations
of later studies. The results shown here have clearly
demonstrated the need to consider microstructural
details in modeling FGMs for determining their
mechanical behavior: due to the microstructural
discreteness, local residual stress concentrations play
a very important role in failure initiation.
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