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E N G I N E E R I N G

Analyses of internal structures and defects in materials 
using physics-informed neural networks
Enrui Zhang1, Ming Dao2*, George Em Karniadakis1,3*, Subra Suresh4*

Characterizing internal structures and defects in materials is a challenging task, often requiring solutions to 
inverse problems with unknown topology, geometry, material properties, and nonlinear deformation. Here, we 
present a general framework based on physics-informed neural networks for identifying unknown geometric and 
material parameters. By using a mesh-free method, we parameterize the geometry of the material using a differ-
entiable and trainable method that can identify multiple structural features. We validate this approach for mate-
rials with internal voids/inclusions using constitutive models that encompass the spectrum of linear elasticity, 
hyperelasticity, and plasticity. We predict the size, shape, and location of the internal void/inclusion as well as the 
elastic modulus of the inclusion. Our general framework can be applied to other inverse problems in different 
applications that involve unknown material properties and highly deformable geometries, targeting material 
characterization, quality assurance, and structural design.

INTRODUCTION
Deep learning (1) approaches play an increasingly substantial role 
in a wide range of technologies that benefit computer vision (2), 
natural language processing (3), and other data-rich areas of socie-
tal interest. Despite the evolving sophistication of data analytics and 
neural networks (NNs), much of this work to date has not been 
predicated on a large volume of scientific data, through which 
predictive models can be constructed using experimentally validated 
mechanistic inferences and laws of physics. In most scientific appli-
cations, by contrast, physical conservation laws (such as those for 
momentum and energy) are framed by highly general, mathemati-
cal formulations [e.g., those invoking partial differential equations 
(PDEs) in areas such as solid mechanics, fluid mechanics, and 
material diffusion], along with experimental authentication by 
recourse to laboratory tests.

Emerging research reveals the profound untapped potential of 
physics-based, multidisciplinary, deep learning approaches with 
unprecedented opportunities for scientific and engineering advances 
in molecular analysis (4), design of materials with improved prop-
erties and performance (5, 6) in structural and functional applica-
tions, and unique pathways for the characterization of properties of 
materials (7–11). To further realize this potential, broadly applica-
ble methodologies in the area of NNs are needed to address a variety 
of issues that underpin deep learning analyses, governed by physical 
laws and guided by mathematical formulations. To this end, a phys-
ics-informed deep learning approach has recently been proposed 
(12) for the simulation of systems governed by physical laws that are 
represented by PDEs. While traditional methods based on deep 
learning implicitly encode these formulations by feeding training data 
governed by equations, this approach explicitly encodes known 
physical or scaling laws in the form of mathematical equations into the 
standard structure of NNs, formulating the so-called physics-informed 

NNs (PINNs) (12). Such an approach integrates any existing knowl-
edge expressible in terms of PDEs during the learning process, 
thereby markedly improving predictability while reducing the amount 
of data required to achieve a desired level of accuracy. Studies have 
shown the applicability of PINNs in addressing a wide spectrum of 
forward and inverse problems spanning disciplines such as fluid 
mechanics (13–15), quantum mechanics (12), and solid mechanics 
(16–22). These applications have shown promise for enhancing 
predictability when the amount of data is limited or when the 
problem is ill posed, situations in which existing methods are not 
likely to yield accurate and reliable results. This approach has been 
further extended to offer unique pathways to address relevant 
mathematical formulations, such as stochastic PDEs (23) and frac-
tional PDEs (24).

Here, we address geometry identification problems in the field 
of continuum solid mechanics. Geometry identification problems 
are a class of inverse problems of scientific, technological, and 
societal interest in fields as diverse as the following (25–27): safety 
and failure analysis of civil, mechanical, nuclear, and aeronautical 
structures; land, sea, and air transportations; reliability analysis 
in microelectronic devices; nondestructive testing of materials; and 
processing of engineered materials. In a geometry identification 
problem, the unknown geometric features and parameters are 
determined in a solid material/structure given measured material 
response under static or dynamic loading, thereby characterizing 
unknown structures including internal defects or boundaries such 
as voids, vacancies or holes (28–32), inclusions and reinforcements 
(31, 33–36), and/or cracks (30–32, 37). Traditionally, computational 
algorithms for geometry identification are established on the basis 
of the finite element method (FEM) (38) as the forward solver. 
Beyond the forward solver, considerable effort is required for the 
design and implementation of iterative algorithms for updating the 
estimated values of geometric parameters (39) (see section S1 for a 
brief review of the algorithms), through which the discrepancy 
(loss) between the observed data and the results of the forward solver 
is minimized. However, the embedded forward FEM solver as a 
mesh-based method inherently brings about complications in 
these algorithms. The estimated geometry is updated by repeatedly 
remeshing the domain through iterations (33). Alternatively, the 
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unknown domain is embedded in a larger fixed domain while intro-
ducing an auxiliary field to track the presence of material (28, 36, 40). 
The problem becomes even more challenging when large deforma-
tions (i.e., geometric nonlinearity) and nonlinear mechanical 
properties (i.e., highly nonlinear constitutive behavior of the solid 
material) are involved. These issues are still not well resolved, and 
available methods are cumbersome and resource intensive for 
deriving automated solutions to such inverse problems involving 
unknown geometry.

Here, we present a unique, systematic approach based on PINNs 
for solving geometry identification problems in continuum solid 
mechanics. This method integrates known PDEs of importance in 
solid mechanics with NNs, composing a unified computational 
framework involving both the forward solver and the inverse algo-
rithm. Notably, we propose a method for directly parameterizing 
the geometry of the solid in a differentiable and trainable manner. 
By using the workflow of NNs, our method can automatically up-
date the geometry estimation through the deep learning process. To 
demonstrate the efficacy of our method, we study a two-dimensional 
prototypical problem on a matrix-void/inclusion system as a proof 
of concept (see Fig. 1). A square-shaped matrix material contains 
a void/inclusion with unknown geometry. To characterize the 
location, size, and shape of the void/inclusion, we apply loading P0 
on the matrix boundary and monitor the displacement response on 
the measurement points at the matrix boundary under such load-
ing. We expect the PINN to inversely characterize the geometry of 
the void/inclusion according to the displacement data. To test 
the performance of our method with various parametric assess-
ments, we build a set of detailed cases for this problem, including 
different shapes and topologies of the void and different constitu-
tive models for describing the mechanical properties of the materi-
al. For the particular case of inclusion, the PINN is also required to 
estimate the unknown material parameter of the inclusion, through 
which we demonstrate the capability of our model in solving com-
bined material and geometry identification problems. In addition to 
the major results shown in the main text, we report in the Supple-
mentary Materials more systematic studies of additional cases 

and parametric analyses, highlighting the advantages and limita-
tions of the method.

RESULTS
Setup of the prototypical inverse problem
The general setup of the prototypical inverse problem has been 
presented in the introduction and in Fig. 1. We consider a plane-
strain problem in the X1 − X2 plane about a square-shaped matrix 
specimen with a void/inclusion. The goal of the inverse problem is 
to estimate the geometric parameters geo (and material parameters 
mat in the constitutive model) of the void (inclusion) i inside the 
matrix m, by applying uniaxial/biaxial loading P0 and collecting 
displacement data on the matrix boundary. We designed six specific 
plane-strain problems as shown in Fig. 2. For each case, we specify 
the type of the inhomogeneity (void/inclusion), the unknown 
parameters [geo for void, or geo and mat for inclusion; denoted 
together as  = (mat, geo)], the material model (compressible linear 
elasticity, incompressible Neo-Hookean hyperelasticity, or com-
pressible deformation plasticity), type of the loading (uniaxial/biaxial), 
and the location of displacement measurements (uniformly on the 
outer boundary/inside the solid). All unknown parameters describe 
the geometry of the void/inclusion except i in case 5, which is a 
material parameter representing the shear modulus of the inclusion. 
The sketch and all the geometric parameters are shown in the reference 
(undeformed) configuration. The material properties of the matrix 
are known for all the cases.

The solution of the six cases will provide a proof of concept for 
our method under different practical scenarios, demonstrating the 
wide applicability of the method. The three material models (cases 
0, 1, and 3 as the baseline cases) cover a wide range of mechanical 
behavior patterns of natural and engineered materials in a vast 
array of practical applications. We place the displacement measure-
ment points only on the outer boundary of the matrix, to mimic the 
real-world situation where the internal details are not available. 
Case 2 explores the scenario of engineering application where the 
void has a large aspect ratio (such as a crack), which we approxi-
mate by a slender slit. For this case only, we allow the displacement 
measurements to be inside the solid because of the relative insensi-
tivity of the boundary displacement with respect to the slit geometry. 
Case 4 demonstrates the applicability of the method for materials 
with multiple voids (such as porous materials or those with multiple 
cracks/slits). Last, for case 5, we estimate the material and geometric 
parameters for a soft circular inclusion, to show that our method can 
handle combined material and geometry identification problems.

Summary of PINN architecture for continuum 
solid mechanics
We set up the general formulation of PINNs in continuum solid 
mechanics involving both material and geometry identification. 
Corresponding to our computational examples, we design the ar-
chitectures of the PINNs for plane-strain problems for the three 
material models, as shown in (i) Fig. 3A for (compressible) linear 
elasticity, (ii) Fig. 3B for (incompressible) hyperelasticity, and (iii) 
Fig. 3C for (compressible) deformation plasticity. The architectures 
of the PINNs are slightly different for different material models 
because of the characteristics of their mathematical expressions. 
Figure 3D includes the definitions of the mechanical quantities of 
interest in the architectures.

Fig. 1. General setup of the prototypical problem on geometry and material 
identification in this study. We consider a plane-strain problem in the X1-X2 plane 
about a square-shaped matrix specimen m with a void/inclusion i. Displacements 
are measured on the outer boundary of the matrix when loading P0 is applied. 
The goal is to characterize the unknown geometry of the internal void/inclusion 
according to the measurement data. For the case of inclusion, material properties 
of the inclusion are also characterized.
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The detailed formulations and relevant governing equations of 
PINNs are explained in Materials and Methods and in section S2. 
Here, we summarize the basic workflow of PINNs as follows. First, 
we apply an NN (with trainable parameters ) to approximate the 
primary solution fields (top left panels in Fig. 2, A to C) with respect 
to the in-plane coordinates X = (X1, X2). Second, we integrate the 
mechanical laws into the PINN architecture (top right panels in 
Fig. 2, A to C) by deriving relevant mechanical quantities of interest 
from the NN outputs, such as strain, stress, and the residual of equi-
librium PDEs. In this process, unknown material parameters mat 
are involved. Third, we formulate the loss function ℒ(, ), which 
measures the discrepancy between the predicted mechanical 
quantities of interest and their respective true values provided by 
mechanical laws and measured data (bottom right panels in 
Fig. 2, A to C). For example, for linear elasticity in Fig. 2A, the loss 
function is expressed as

	​ ℒ(,  ) = ​​ PDE​​ ​ℒ​ PDE​​(,  ) +  ​​ BC​​ ​ℒ​ BC​​(,  ) +  ​​ data​​ ​ℒ​ data​​(, )​	 (1)

where the three loss terms ℒj(, ) (j = PDE, BC, and data) weighted 
by j correspond to PDEs, boundary conditions (BCs), and data, 
respectively. Each loss term is the mean squared error evaluated on 
Nj residual points

	​​ ℒ​ j​​(,  ) = ​ 1 ─ ​N​ j​​
 ​ ​ ∑ 
i=1

​ 
​N​ j​​

 ​​ ​∣​r​ j​​(​X​j​ (i)​(​​ geo​​ ) ;  , ​​ mat​​ ) ∣​​ 
2
​​	 (2)

where rj is the residual of the condition j at the ith residual point 
​​X​j​ (i)​(​​ geo​​)​. The Nj residual points are distributed in the domain of 
condition j to correctly evaluate ℒj(, ). As an example, we show the 
residual points for each condition in case 0 before and during 
the simulation in Fig. 4. The coordinates of the residual points ​​X​j​ (i)​​ 
depend on geometric parameters geo because of the variable com-
putational domain, which will be explained in detail in the next sec-
tion. Last, we conduct parameter estimation through the training of 
the PINN (bottom left panels in Fig. 2, A to C), during which the 
estimated unknown parameters  = (mat, geo) and NN parameters 
 are updated/trained to minimize the loss function. This process 
can be expressed as

	​​   ​, ​  ​ = ​ argmin​ 
,

​  ​ ℒ(, )​	 (3)

where the hat symbol refers to the value of these trainable parame-
ters after the training process is completed. As the solution to the 
inverse problem, the estimation of the unknown parameters is ​​  ​​.

Formulation for geometry identification
Geometric parameters geo play an essentially different role in the 
inverse problem compared to material parameters mat. Material 
parameters parameterize the governing PDEs of mechanics, which 
are naturally endowed with trainability through automatic differen-
tiation of (physics-informed) NNs. As a result, material parameters 

Fig. 2. Setup of cases 0 to 5 of the prototypical problem. All the illustrations and geometric parameters are given in the reference (undeformed) configuration. The 
target of each case is to estimate the unknown parameters  given the displacement data on the measurement points. All unknown parameters describe the geometry 
of the void/inclusion except i in case 5, which is the shear modulus of the inclusion. For each case, we specify the type of the inhomogeneity (void/inclusion), unknown 
parameters, the material model (linear elasticity/hyperelasticity/deformation plasticity), type of the loading (uniaxial/biaxial), and the location of displacement measurements 
(uniformly on the outer boundary/inside the solid). Additional cases are summarized in the main text and presented in detail in the Supplementary Materials.
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can be directly estimated using the standard formulation of PINNs 
for inverse problems (12, 18, 41, 42). Geometric parameters geo, on 
the other hand, parameterize the computational domains of the 
PDEs and BCs, which do not naturally serve as trainable parameters 
in the framework of PINNs. To make the geometric parameters geo 
differentiable and hence trainable in a similar way to material 
parameters mat, we propose to parameterize the coordinates of 
residual points by geometric parameters geo. Technically, such 
parameterization can be implemented by using the definition of 
trainable variables in deep learning libraries such as TensorFlow 
(43): We first define the geometric parameters geo as trainable vari-
ables; then, we express the locations of residual points as functions 
of these trainable variables. As a result, the coordinates of residual 
points are automatically updated as the estimation of geo is updated 
throughout the iterative training process (see Fig. 4). In this way, we 
ensure that the residual points for different conditions are always located 
in their correct domains. Furthermore, this implementation allows 

Fig. 3. Architectures of PINNs for continuum solid mechanics. We established the PINNs for plane-strain problems involving geometry and material identification. 
Three material models are considered, including (A) compressible linear elasticity, (B) incompressible hyperelasticity, and (C) deformation plasticity. (A to C) We apply NNs 
with trainable parameters  to approximate primary solution fields with respect to the in-plane coordinates (X1, X2). Mechanical laws are integrated to derive relevant 
mechanical quantities of interest from the NN outputs, such as strain, stress, and the residual of equilibrium PDEs, during which unknown material parameters mat are 
involved. The loss function ℒ is formulated to represent the prediction error of each condition in the problem, such as PDEs, BCs, and data in (A), during which unknown 
geometric parameters geo are involved because of the variable computational domain. Last, parameter estimation is conducted through the minimization of loss func-
tion. In this process,  and  = (mat, geo) are iteratively updated. The final solution of the identification problem is the updated value of  after iterations. (D) Definitions 
of the notations in (A) to (C).

Fig. 4. Residual points for the initial geometry and updated geometry in case 0. 
Different residual terms (PDEs, BCs, and data) require different residual points. 
We propose the geometry-parameterized residual points, so that the locations of 
the residual points automatically change as the geometric parameters geo are 
updated.
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us to capture the gradient of the loss function ℒ with respect to the 
geometric parameters geo, which otherwise could not be realized using 
the standard formulations of PINNs (44, 45). With the geometry-
parameterized residual points, the PINN can correctly update the 
geometric parameters geo throughout the training process, thereby 
characterizing the unknown geometry. To the best of our knowl-
edge, such form of parameterization invoking PINNs to solve ge-
ometry identification problems has hitherto not been addressed.

Procedure of simulation
We adopted Abaqus (46) as the finite element solver to generate the 
computational examples. Specifically, we preset reference values of 
unknown parameters to be * and conducted forward simulations, 
which generated the displacement data provided to the PINN and 
ground-truth full-field solution for assessing the performance of the 
PINN. The PINN initialized the estimation of unknown parameters 
to be 0. The PINN first went through a pretraining procedure for 
stabilizing the forward prediction, where the estimated parameters 
were fixed to be 0 (see Materials and Methods for details). As the 
PINN initiated parameter estimation through the iterative training 
process, we expected that the estimated parameters  would migrate 
toward the correct value *. The training process terminated after 
the loss function and the estimated parameters reached a relative 
plateau, yielding the parameter estimation results ​​  ​​. The detailed 
setups of the prototypical problem, the finite element solver, and 
the hyperparameters of the PINN are included in section S3.

We present the major results for cases 0 to 5 in the main text. 
Further results for cases 0 to 5 are included in section S4 (figs. S1 
and S2). To justify our choice of hyperparameters of the PINN 
(width and depth of the NN, weights of loss components, and num-
ber of residual points), we show the results of a parametric study for 
a forward problem in sections S5 and S6 (figs. S3 to S5). In addition, 
we consider other modified setups of our inverse problem in sec-
tions S7 to S11 (figs. S6 to S9 and table S1) for illustrating the 
applicability, characteristics, and limitations of our method for the 
prototypical problems. For these additional cases, we summarize 
the objectives and major findings in the following sections and 
present the detailed results in the Supplementary Materials.

Parameter estimation results
The results of parameter estimation for cases 0 to 5 are shown in 
Table 1. For each case, we compare the estimated and reference values 
of the unknown parameters by presenting absolute errors and relative 
errors. To calculate the relative error, we normalize the coordinates, 
the lengths and the modulus, and the tilting angle by the domain size 
(side length of the matrix), respective reference values, and 180°, re-
spectively. Table 1 indicates that the PINN estimates unknown 
parameters with high accuracy, with relative error O(10−2) on most 
parameters and as small as O(10−4) for some parameters.

It is worth noting that the estimated shear modulus of the inclu-
sion i in case 5 has an error slightly more than 10%. We provide a 
discussion on this issue in a following section (“Interpreting the 
convergence histories”). To improve the accuracy of case 5, we 
suppose that five additional data points inside the solid are available 
as in case 2. We retrain the PINN with the expanded measurement 
data and append the results in Table 1 as the modified case 5. With 
the additional data, the relative error of estimated parameters de-
creases to O(10−2), similar to other cases. In summary, given 
scattered displacement measurements, the PINN can accurately 

characterize the geometry (and material properties) of the internal 
void(s)/inclusion for various problem setups, including different 
constitutive relations, shapes of voids, and numbers of voids. The 
result indicates the generality of our method for solving a broad 
spectrum of inverse problems in mechanics of materials.

In sections S7 to S10, we provide additional parametric studies 
based on simplified cases 1 and 5 for demonstrating the influence of 
various factors on the estimation accuracy of unknown parameters, 
including the locations of measurement points (S7), the size of the 
void (S8), the location of the void (S9), and the moduli ratio of matrix 
and inclusion (S10). These studies show that our method is robust 
against various choices of true values *, including different locations 
and different sizes [no smaller than O(10−1) of the matrix geometry] 
of the void, and moduli ratio of matrix and inclusion spanning within 
roughly O(101). In addition, without prior knowledge on the location 
of the void, the measurement points should be uniformly placed on 
the matrix boundary, to make sure that the displacement data effec-
tively capture the key information related to the void/inclusion.

Inference of deformed patterns
Our method not only is capable of estimating unknown parameters 
but also provides quantitative measures of the deformed patterns 
of the solid. Specifically, we apply the estimation results ​​  ​​ and ​​​  ​​ geo​​​ 
(see Eq. 3) to the NN part of the PINN (top left panels in 
Figs. 2, A to C) to infer the deformed configuration, where ​​​  ​​ geo​​​ de-
termines the reference/undeformed configuration and ​​  ​​ deter-
mines the mapping from the reference/undeformed configuration 
to the deformed configuration. In Fig. 5, we display the comparison 
of the deformed configurations between the FEM ground truth 
(blue) and the PINN inference results (red for matrix; green for 
inclusion in case 5) for the six cases. Three snapshots are shown for 
each case after different numbers of training iterations (k = 103 and 
M = 106), which from the left to the right correspond to the comple-
tion of pretraining (beginning of parameter estimation), amid the 
training, and the completion of training, respectively. For clarity of 
presentation, this figure shows the outer and inner boundaries of 
the specimen visualized from the FEM and PINN analyses. In the 
snapshots in the second column, the two outlines match each other 
to a high extent. The remaining minor discrepancy gradually di-
minishes through the remaining iterations. After the training 
process is completed, the deformed configurations from the PINN 
are almost identical to those from the FEM ground truth. For case 5, 
specially, the inner boundary of the matrix (red) and the boundary 
of the inclusion (green) predicted by the PINN also overlap well 
with each other, indicating that the continuity of the material sur-
faces in the matrix-inclusion system is preserved in the inference 
of the PINN.

For case 3 where plasticity is involved, we also examined the 
inference of the plastic zone. Figure 6 shows the comparison of the 
plastic zone between the PINN prediction and the FEM ground 
truth. Not only is the geometry of the void characterized correctly 
(white region within the matrix) as previously verified in Table 1 
and Fig. 5 but also the plastic zone of the loaded matrix is inferred 
with high accuracy.

Interpreting the convergence histories
Besides the final results obtained for parameter estimation and 
inference of deformation, we also address how the estimated values 
evolve toward the reference values during the training process. In 
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Table 1. Parameter estimation for all cases shown in Fig. 2. We compare the estimated values (​​  ​​) and reference values (*) of unknown parameters. To 
calculate the relative error, we normalize the coordinates, the lengths and the modulus, and the tilting angle by the domain size (side length of the matrix), their 
respective reference values, and 180°, respectively. To improve the accuracy of case 5, we provide the PINN with additional displacement measurement points 
inside the solid and then retrain the PINN, which is shown in the table as “Case 5 (with internal data)”. 

Case 0 ​​X​1​ (c)​​ ​​X​2​ (c)​​ A B 

Estimated value 0.0488 0.0987 0.3475 0.1582 −29.42°

Reference value 0.05 0.10 0.35 0.15 −30°

Absolute error  
(× 10−2, except ) 0.12 0.13 0.25 0.82 0.58°

Relative error (%) 0.12 0.13 0.71 5.47 0.32

Case 1 ​​X ​1​ 
(c)

​​ ​​X​2​ 
(c)

​​ A B 

Estimated value 0.0479 0.0991 0.3440 0.1602 −29.02°

Reference value 0.05 0.10 0.35 0.15 −30°

Absolute error  
(× 10−2, except ) 0.21 0.09 0.60 1.02 0.98°

Relative error (%) 0.21 0.09 1.7 6.8 0.54

Case 2 ​​X​1​ 
(1)

​​ ​​X​2​ 
(1)

​​ ​​X​1​ 
(2)

​​ ​​X​2​ 
(2)

​​

Estimated value −0.0399 0.3273 0.0396 −0.2315

Reference value −0.0392 0.3474 0.0392 −0.2474

Absolute error (× 10−2) 0.07 2.01 0.04 1.59

Relative error (%) 0.07 2.01 0.04 1.59

Case 3 ​​X​1​ 
(c)

​​ ​​X​2​ 
(c)

​​ R

Estimated value 0.0506 0.0999 0.2525

Reference value 0.05 0.10 0.25

Absolute error (× 10−2) 0.06 0.01 0.25

Relative error (%) 0.06 0.01 1.00

Case 4 ​​X​1​ 
(1)

​​ ​​X​2​ 
(1)

​​ R(1)
​​X​1​ 

(2)
​​ ​​X​2​ 

(2)
​​ R(2)

Estimated value −0.15089 0.10018 0.20007 0.25045 −0.05008 0.15019

Reference value −0.15 0.10 0.20 0.25 −0.05 0.15

Absolute error (× 10−2) 0.089 0.018 0.007 0.045 0.008 0.019

Relative error (%) 0.089 0.018 0.04 0.045 0.008 0.13

Case 5 ​​X​1​ 
(c)

​​ ​​X​2​ 
(c)

​​ R i

Estimated value 0.0496 0.0991 0.2583 0.0760

Reference value 0.05 0.10 0.25 0.0667

Absolute error (× 10−2) 0.04 0.09 0.83 0.93

Relative error (%) 0.04 0.09 3.3 13.9

Case 5 (with internal data) ​​X​1​ 
(c)

​​ ​​X​2​ 
(c)

​​ R i

Estimated value 0.0495 0.0998 0.2524 0.0687

Reference value 0.05 0.10 0.25 0.0667

Absolute error (× 10−2) 0.05 0.02 0.24 0.20

Relative error (%) 0.05 0.02 0.96 3.0
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Fig. 7, we consider case 1 (Fig. 7, A and B) and case 5 (Fig. 7, C and D) 
as representative examples and show the convergence process for 
the estimated parameters (Fig.  7,  A  and  C) and loss function 
(Fig. 7, B and D). The same figures for other cases are included in 
section S4 (fig. S1). Figure 7A shows the evolution of the estimated 
values of unknown parameters (solid lines) of case 1 during the 
training process. As the estimated values become trainable after the 
initial 20k iterations of pretraining (see Materials and Methods), 
they rapidly deviate from their respective initial guesses and 

gradually approach the reference values (dashed lines). After around 
300k iterations, the estimations already approach the reference value. 
Within the remaining 700k iterations, the estimated values further 
approach the reference values slowly, reaching a high estimation 
accuracy at the end. Figure 7B shows the evolution of the loss func-
tion during the training process. The loss decreases from O(10−1) to 
O(10−4). Such a small value of the loss function indicates that all the 
conditions involved in the loss function are approximately satisfied 
by the PINN prediction. Similar to the evolution of estimated 

Fig. 5. Inference of the deformed patterns compared with FEM ground truth for all cases shown in Fig. 2. We displayed the visual outlines of deformed configurations 
of FEM/Abaqus (blue) and PINN results (red for matrix; green for inclusion in case 5). Three snapshots are shown for each case after different numbers of training iterations, 
which (from left to right) correspond to the completion of pretraining (beginning of parameter estimation), amid the training, and the completion of training, respectively 
(k = 103 and M = 106).
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parameters, the loss decays rapidly at the early stage of training 
[from O(10−1) to O(10−3) within 200k iterations]. The rate of de-
crease turns to be substantially slower during the late stage. We find 
similar tendency for case 5 in Fig. 7 (C and D) on the evolution of 
estimated parameters and loss function.

Notably, we find that both the convergence rate and the estima-
tion accuracy differ among the unknown parameters. For cases 
1 and 5, the location of the void/inclusion described by ​(​X​1​ (c)​, ​X​2​ (c)​)​ 
almost converges with high accuracy after around 150k/300k itera-
tions, while the remaining unknown parameters exhibit worse 
behavior in terms of both convergence rate and estimation accuracy, 
including (A, B, ) in case 1 and (R, i) in case 5. We attribute these 
two phenomena to the sensitivity of ℒdata with respect to estimated 
unknown parameters, or the identifiability of unknown parameters. 
​(​X​1​ (c)​, ​X​2​ (c)​)​ remarkably influence the displacement pattern at the 
outer boundary. Hence, a small deviation of estimated ​(​X​1​ (c)​, ​X​2​ (c)​)​ 
from their reference values causes a large increase of ℒdata. By examin-
ing the displacement data, one may even roughly estimate ​(​X​1​ (c)​, ​X​2​ (c)​)​ 
by intuition. On the other hand, a significantly smaller increase of 
ℒdata is rendered for certain combinations of perturbation on (A, B, ) 
in case 1 and (R, i) in case 5.

To support our statement on the cause of different convergence 
rates and estimation accuracies, we use the FEM solver to analyze 
how a perturbation ​( ​R​​ *​,  ​​i​ *​)​ on the reference values ​(​R​​ *​, ​​i​ *​)​ influ-
ences the displacement data collected on the measurement points in 
case 5. We show the root mean squared error of the displacement 
data caused by various combinations of ​( ​R​​ *​,  ​​i​ *​)​ in Fig. 8. From 
Fig. 8A, we observe that the error is significantly smaller for certain 
combinations of ​ ​R​​ *​  ​​i​ *​ >  0​ than for ​ ​R​​ *​  ​​i​ *​ <  0​. A detailed com-
parison along the two diagonal lines of the ​(​R​​ *​, ​​i​ *​)​ domain in Fig. 8A 
is displayed in Fig. 8B. The error along line 1 is roughly O(10−1) the 
error along line 2. Such a phenomenon indicates that ℒdata is insensi-
tive to perturbations satisfying ​ ​R​​ *​  ​​i​ *​ >  0​. As the PINN estimates 
unknown parameters by minimizing the loss function, there exists 
intrinsically poor identifiability due to the coexistence of R and i as 
unknown parameters and the placement of measurement points on 
the outer boundary. Such an interaction of R and i has a twofold 
effect: First, the accurate estimation of R and i is postponed to rather 
late stages of the training process when the total loss has been rela-
tively small; second, the estimation error of R and i is notably larger 
than other unknown parameters. Such an analysis matches our 
observation in Fig. 7C, where many more iterations are needed to 
estimate R and i. The issue of poor identifiability in case 5 may be 
mitigated by providing a small number of additional internal data 

points as shown in Table 1 (see section S4 and fig. S2 for complete 
results). We conclude that the interplay between the unknown 
parameters and available data measurements renders relatively poor 
identifiability for some unknown parameters.

DISCUSSION
Inverse problems, especially those related to geometry identifica-
tion, are notoriously difficult to solve for solids with nonlinear 
constitutive relations. With the hyperelastic solid undergoing severe 
distortion, it is hard to recover the unknown reference geometry 
with limited data. By examining the deformed pattern of the void in 
case 2 (see Fig. 5), it is intuitively not a straightforward task to trace 
back to the original slit in the reference configuration. In this work, 
we have demonstrated the capability of PINNs in effectively solving 
the geometry and material identification problems for engineering 
solids that incorporate large deformation response and plasticity 
through our computational examples for the matrix-void/inclusion 
system. We have shown that the present framework is able to accu-
rately estimate the unknown geometric and material parameters 
with a relative error O(10−2) when proper displacement data are 
supplied to ensure identifiability.

The approach presented here has some unique characteristics, 
endowing this method with some distinct advantages. It provides a 
unified framework for solving forward problems and inverse prob-
lems with unknown parameters in PDEs (material identification) 
and/or domains (geometry identification), by combining the under-
lying mechanical principles and data into a deep NN. Unlike tradi-
tional methods based on FEM, there is neither the need to design 
problem-specific algorithms to update estimated unknown param-
eters beyond the forward solver nor the need to repeatedly remesh 
the computational domain throughout the iterations. In our method, 
the update of geometry is realized by the automated process built 
in the deep learning algorithms. In particular, the estimation of 
geometric parameters is automatically updated as the PINN seeks 
to minimize the loss function through the iterative training process. 
With deep learning libraries such as TensorFlow (43), the entire 
length of our PINN code for the current work is merely a few hun-
dred lines. From the perspective of both design and implementation 
of the algorithm, PINNs reduce the human effort and related costs 
in setting up algorithms for inverse problems. On the other 
hand, compared to typical data-driven deep learning approaches, 
PINNs have the advantage of using well-established mechanics 
formulations as training guidelines, thereby requiring data only 
for the current instance of the problem setup and ensuring data 
efficiency.

Throughout this work, we adopt the Adam optimizer (47) as the 
optimization algorithm to achieve best accuracy and to study the 
convergence history as a fundamental characteristic of our method. 
The PINN is trained until both loss function and the estimated 
parameters reach a relative plateau. With such a setup, the compu-
tational time for case 4, for example, is around 11 hours on a typical 
machine [with central processing unit (CPU) only] to complete the 
entire 1M iterations and achieve high accuracy. We note that 
reasonable accuracy has been achieved within the first 200k itera-
tions. One may further combine Adam and the Limited-memory 
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) optimizer (48) to achieve 
similar accuracy within much less computational time (around 30 min; 
see section S11 and table S1 for detailed results). Recently, parallel PINNs 

Fig. 6. Inference of the plastic zone compared with FEM ground truth in case 3 
shown in Fig. 2. We mark the plastic zone by yellow and the void by white.
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(49) have been proposed to accelerate the learning process of PINNs 
by using multiple CPUs and graphics processing units (GPUs)  and intro-
ducing parallel algorithms. In addition, other studies have focused 
on analyzing convergence rate of PINNs and proposing practical 
techniques for accelerating convergence (50–52). With the ongoing 
efforts to improve the original formulation of PINNs, the computa-
tional efficiency is expected to be substantially enhanced over time.

We have focused on the prototypical problem as a simple proof 
of concept, seeking to characterize the internal structures with static 
loading on outer boundaries. According to Saint-Venant’s principle, 
under static loading, the inhomogeneous stress and deformation 
states caused by the internal void/inclusion decay as the distance 
from the void/inclusion increases. Subsequently, the measurements 
on outer boundaries essentially provide the PINN with limited 

Fig. 8. Perturbation analysis of unknown parameters in case 5. Using the finite element solver, we calculate the root mean squared error of the displacement data on 
the measurement points caused by the perturbation ​(R * ,  ​​i​ *​)​ on the reference values of the shear modulus ​(​​i​ *​)​ and the radius of the inclusion (R*). (A) Absolute error of 
displacement data for various perturbations on ​(R * , ​​i​ *​)​. The red star at the center corresponds to the unperturbed state ​(R * =  ​​i​ *​ =  0)​. (B) Absolute error of measure-
ments along the diagonal lines of the ​(R * , ​​i​ *​)​ domain in (A). Perturbation states on line 1 satisfy ​R *  ​​i​ *​ >  0​. Perturbation states on line 1 satisfy ​R *  ​​i​ *​ <  0​.

Fig. 7. Evolution of estimated unknown parameters and loss function in case 1 and case 5 during the training process. Case 1 (A and B) involves geometry identification, 
while case 5 (C and D) involves both material and geometry identification. See Fig. 2 for the definitions of the cases. (A and C) The dashed lines and solid lines represent 
the reference value and estimated value of unknown parameters. Unknown parameters are not updated in the pretraining process during the first 20k (for case 1) 
and 50k (for case 5) iterations, respectively. (B and D) The value of the loss function during the training process. The results for cases 0, 2, 3, and 4 are shown in section S4 
(fig. S1).
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amount of information regarding the internal void/inclusion. Modern 
experimental techniques have adopted dynamic external loading 
such as ultrasound (53) to acquire time-dependent measurements, 
through which we anticipate that the performance of our method 
will benefit from more information provided by measurements.

Our method can be applied to a wide range of engineering problems. 
Defect detection represents a broad class of practical engineering 
needs in various fields, where identification and characterization of 
internal structures and defects in materials are essential. Experimental 
techniques have so far been developed for different materials based 
on ultrasound (54), active thermography (55), eddy current (56, 57), 
optical coherent tomography (58), and microwave (59). By inte-
grating the respective physical principles in these problems, our 
approach can potentially be combined with these techniques for 
dealing with unknown and moving geometries, which extends our 
method beyond continuum solid mechanics. Notably, one may need 
to carefully consider the applicability of governing PDEs for practi-
cal problems. For instance, continuum solid mechanics does not 
take into consideration the length scale of microstructures of mate-
rials, so that continuum mechanics is accurate only when the key 
dimensions in the problem (e.g., void size) are much larger than 
these intrinsic length scales of materials. Our method can also be 
used for structure design/optimization problems, where typically a 
mechanical structure is designed with optimized stiffness within 
volume constraints. For these problems, PINNs can incorporate the 
design target as a loss term, aspects of which have been preliminarily 
explored in (60).

MATERIALS AND METHODS
PINNs for continuum solid mechanics
We introduce the detailed formulation of PINNs for inverse prob-
lems in continuum solid mechanics. Here, we focus on the PINN for 
hyperelasticity (specifically, incompressible Neo-Hookean material) 
as most of our computational examples adopt this material model 
(see section S2 for the mechanics of hyperelastic materials). To better 
clarify the quantitative formulation, here, we denote all the material 
and geometric parameters of interest as mat and geo, respectively. 
For incompressible Neo-Hookean materials, the only material 
parameter is the shear modulus  so that mat = . The unknown 
part of  = (mat, geo) in the inverse problem is denoted as unk.

As summarized in Results, the workflow of PINNs comprises 
four steps. First, we apply a NN to approximate the primary solu-
tion fields (top left panel in Fig. 2B) in domain (geo), including 
the displacement field ​​ ~ u​(X; )​ and the pressure field ​​ ~ p ​(X; )​, where 
 represents trainable parameters of the NN, X = (X1, X2) is the 
in-plane coordinates in the reference/undeformed configuration, 
and the quantities with tilde represent the approximation from the 
NN. For incompressible materials, we need the hydrostatic pressure 
field p as a Lagrange multiplier accompanying the displacement 
field u to uniquely determine the stress field.

Second, we integrate mechanical laws into the PINN architecture 
(top right panel in Fig. 2B) by deriving relevant mechanical quanti-
ties of interest from the NN outputs. During this calculation pro-
cess, partial derivatives are handled by automatic differentiation. 
The deformation gradient ​​ ~ F​(X; )​ and the first Piola-Kirchhoff 
stress ​​ ~ P​(X; , )​ are calculated by

	​​  ~ F​(X;  ) = I + ​ ∂​ ~ u​ ─ ∂ X ​(X; )​	 (4)

	​​  ~ P​(X; ,  ) = − ​ ~ p ​(X;  ) ​​ ~ F​​​ −T​(X;  ) +  ​ ~ F​(X; )​	 (5)

where I is the identity tensor, Eq. 4 is kinematics, and Eq. 5 is the 
constitutive relation for incompressible Neo-Hookean materials. 
The residuals of the equilibrium PDE and the incompressibility 
condition at X are expressed by

	​​​    r​​ PDE​​(X; ,  ) = Div ​   P​(X; ,  ),  X ∈  (​​ geo​​)​	 (6)

	​​​​    r ​​ inc​​(X;  ) = det(​   F​(X;  ) ) − 1,​  X ∈  (​​ geo​​)​​	 (7)

The residuals of Dirichlet/displacement and Neumann/traction 
BCs at X are

	​​​​    r​​ D​​(X;  ) = ​   u​(X;  ) − ​
_

 u​(X ) ,​  X  ∈  ∂ ​​ D​​(​​ geo​​)​​	 (8)

	​​​​    r​​ N​​(X; ,  ) = ​   P​(X; ,  ) N(X ) − ​
_

 T​(X ) ,​  X ∈  ∂ ​​ N​​(​​ geo​​)​​	 (9)

where N is the outward unit normal vector on the boundary, and ​​_ u​​ 
and ​​

_
 T​​ are the specified displacement and traction on the boundary, 

respectively. ∂D(geo) and ∂N(geo) refer to the domains for 
Dirichlet/displacement and Neumann/traction BCs, respectively. 
For inverse problems, we have displacement data ​​{​u​​ *(i)​}​i=1​ 

​N​ u​​
 ​​ at ​​{​X​u​ (i)​}​i=1​ 

​N​ 
u
​​
 ​​. 

The residual of the ith displacement observation is

	​​​    r​​u​ (i)​( ) = ​   u​(​X​u​ (i)​;  ) − ​u​​ *(i)​​	 (10)

Third, we formulate the loss function according to the foregoing 
residuals from mechanics and data (bottom right panel in Fig. 2B). 
To define the loss terms corresponding to the problem definition, 
we place N, ND, and NN residual points in , on ∂D and ∂N, 
denoted as ​​X​​ (i)​​ (i ∈ {1,2, …, N}), ​​X​D​ (i)​​ (i ∈ {1,2, …, ND}), and ​​X​N​ (i)​​ 
(i ∈ {1,2, …, NN}), respectively. Because we parameterize the coor-
dinates of residual points by geo, these residual points are all pa-
rameterized by geo. We evaluate the mean squared residuals of the 
PDEs, the incompressibility condition, Dirichlet and Neumann BCs, 
and data, respectively. Each loss term is defined by

	​​ ℒ​ PDE​​(,  ) = ​  1 ─ ​N​ ​​ ​ ​ ∑ 
i=1

​ 
​N​ ​​

 ​​ ​∣ ​​    r​​ PDE​​(​X​​ (i)​(​​ geo​​ ) ;  ,  ) ∣​​ 
2
​​	 (11)

	​​ ℒ​ inc​​(,  ) = ​  1 ─ ​N​ ​​ ​ ​ ∑ 
i=1

​ 
​N​ ​​

 ​​ ​∣ ​​    r ​​ inc​​(​X​​ (i)​(​​ geo​​ ) ;   ) ∣​​ 
2
​​	 (12)

	​​ ℒ​ D​​(,  ) = ​  1 ─ ​N​ D​​ ​ ​ ∑ 
i=1

​ 
​N​ D​​

 ​​ ​∣ ​​    r​​ D​​(​X​D​ (i)​(​​ geo​​ ) ;   ) ∣​​ 
2
​​	 (13)

	​​ ℒ​ N​​(,  ) = ​  1 ─ ​N​ N​​ ​ ​ ∑ 
i=1

​ 
​N​ N​​

 ​​ ​∣ ​​    r​​ N​​(​X​N​ (i)​(​​ geo​​ ) ;  ,  ) ∣​​ 
2
​​	 (14)

	​​ ℒ​ u​​(,  ) = ​ 1 ─ ​N​ u​​ ​ ​ ∑ 
i=1

​ 
​N​ u​​

 ​​ ​∣ ​​    r​​u​ (i)​( ) ∣​​ 
2
​​	 (15)

and the loss function is

​​ℒ(,  ) = ​​ PDE​​ ​ℒ​ PDE​​(,  ) + ​​ inc​​ ​ℒ​ inc​​(,  ) + ​​ D​​ ​ℒ​ D​​(, )​     ​    
​
​ 

 + ​​ N​​ ​ℒ​ N​​(,  ) + ​​ u​​ ​ℒ​ u​​(, )
​​	 (16)

where PDE, inc, D, N, and u are the weights of the loss terms. 
Note that the two loss terms ℒD and ℒN for the two types of BCs are 
simplified into ℒBC in Eq. 1 in Results.

Last, we conduct parameter estimation through training/loss 
minimization (bottom left panel in Fig. 2B). The trainable parameters 
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of the PINN include the trainable parameters of the NN, , and the 
unknown parameters of the inverse problem, unk (⊆ ). Using the 
notations in this section, this process can be expressed as

	​​   ​, ​​  ​​ unk​​ = ​ argmin​ 
,​​ unk​​⊆

​ ​ ℒ(, )​	 (17)

With the PINN adjusting  to minimize the loss function, we antic-
ipate that all the mechanical laws will be approximately satisfied, 
making the NN serve as an approximation to the primary solution 
fields. Furthermore, the residual of displacement observations in 
the loss function guides the estimated unknown parameters to 
evolve toward their respective target values. In this way, the PINN is 
able to solve inverse problems.

In section S2, we provide additional information regarding the 
formulation of PINNs. This includes the formulation for forward 
problems, for linear elasticity and deformation plasticity, and for 
multiple materials, which is related to case 5 in our main text.

Pretraining procedure
We find it necessary to pretrain the model before using the model to 
characterize unknown geometry. If we directly apply the model 
without pretraining, then the estimated geometric parameters 
rapidly depart from physically admissible values (e.g., void located 
outside the matrix) after a few iterations. Inspired by the transfer 
learning technique, we propose to maintain all the estimated un-
known parameters fixed (not trainable) and only update the train-
able parameters of the NN  for the first few iterations. During this 
pretraining process, the PINN essentially solves a forward problem, 
seeking to roughly capture the qualitative pattern of the displace-
ment field and the stress field. After this pretraining process, we 
initiate the parameter estimation process by making both  and  
trainable. Such a pretraining procedure induces  to converge to the 
desired local minimum, hence serving as a good initialization for the 
geometry identification problem. For our prototypical problem, 
technically, the PINN needs to be pretrained until there emerges a 
qualitative pattern indicating the existence of a stress concentra-
tion around the void or the soft inclusion.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abk0644

REFERENCES AND NOTES
	 1.	 Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436–444 (2015).
	 2.	 A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet classification with deep convolutional 

neural networks. Adv. Neural Inf. Proces. Syst. 25, 1097–1105 (2012).
	 3.	 G. Hinton, L. Deng, D. Yu, G. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, 

P. Nguyen, B. Kingsbury, Deep neural networks for acoustic modeling in speech 
recognition. IEEE Signal Process. Mag. 29, 82–97 (2012).

	 4.	 K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, A. Walsh, Machine learning 
for molecular and materials science. Nature 559, 547–555 (2018).

	 5.	 Z. Shi, E. Tsymbalov, M. Dao, S. Suresh, A. Shapeev, J. Li, Deep elastic strain engineering 
of bandgap through machine learning. Proc. Natl. Acad. Sci. U.S.A. 116, 4117–4122 (2019).

	 6.	 Z. Shi, M. Dao, E. Tsymbalov, A. Shapeev, J. Li, S. Suresh, Metallization of diamond. Proc. 
Natl. Acad. Sci. U.S.A. 117, 24634–24639 (2020).

	 7.	 L. Lu, M. Dao, P. Kumar, U. Ramamurty, G. E. Karniadakis, S. Suresh, Extraction 
of mechanical properties of materials through deep learning from instrumented 
indentation. Proc. Natl. Acad. Sci. U.S.A. 117, 7052–7062 (2020).

	 8.	 Y.-J. Cha, W. Choi, O. Büyüköztürk, Deep learning-based crack damage detection using 
convolutional neural networks. Comput. Aided Civ. Inf. Eng. 32, 361–378 (2017).

	 9.	 H. Adeli, Neural networks in civil engineering: 1989–2000. Comput. Aided Civ. Inf. Eng. 16, 
126–142 (2001).

	 10.	 M. Yin, E. Ban, B. V. Rego, E. Zhang, C. Cavinato, J. D. Humphrey, G. E. Karniadakis, 
Simulating progressive intramural damage leading to aortic dissection using an 
operator-regression neural network. arXiv:2108.11985 [cs.CE] (25 August 2021).

	 11.	 H. Jin, Big-data-driven multi-scale experimental study of nanostructured block 
copolymer’s dynamic toughness, Ph.D. thesis, Brown University, Providence, RI (2021).

	 12.	 M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: A deep 
learning framework for solving forward and inverse problems involving nonlinear partial 
differential equations. J. Comput. Phys. 378, 686–707 (2019).

	 13.	 M. Raissi, A. Yazdani, G. E. Karniadakis, Hidden fluid mechanics: Learning velocity 
and pressure fields from flow visualizations. Science 367, 1026–1030 (2020).

	 14.	 S. Cai, H. Li, F. Zheng, F. Kong, M. Dao, G. E. Karniadakis, S. Suresh, Artificial intelligence 
velocimetry and microaneurysm-on-a-chip for three-dimensional analysis of blood flow 
in physiology and disease. Proc. Natl. Acad. Sci. U.S.A. 118, e2100697118 (2021).

	 15.	 S. Cai, Z. Mao, Z. Wang, M. Yin, G. E. Karniadakis, Physics-informed neural networks 
(pinns) for fluid mechanics: A review. arXiv:2105.09506 [physics.flu-dyn] (20 May 2021).

	 16.	 E. Samaniego, C. Anitescu, S. Goswami, V. M. Nguyen-Thanh, H. Guo, K. Hamdia, 
X. Zhuang, T. Rabczuk, An energy approach to the solution of partial differential 
equations in computational mechanics via machine learning: Concepts, implementation 
and applications. Comput. Methods Appl. Mech. Eng. 362, 112790 (2020).

	 17.	 C. Rao, H. Sun, Y. Liu, Physics-informed deep learning for computational elastodynamics 
without labeled data. J. Eng. Mech. 147, 04021043 (2021).

	 18.	 E. Zhang, M. Yin, G. E. Karniadakis, Physics-informed neural networks for 
nonhomogeneous material identification in elasticity imaging. arXiv:2009.04525 [cs.LG] 
(2 September 2020).

	 19.	 J. N. Fuhg, N. Bouklas, The mixed deep energy method for resolving concentration 
features in finite strain hyperelasticity. arXiv:2104.09623 [cs.CE] (15 April 2021).

	 20.	 K. Shukla, P. C. Di Leoni, J. Blackshire, D. Sparkman, G. E. Karniadakis, Physics-informed 
neural network for ultrasound nondestructive quantification of surface breaking cracks. 
J. Nondestruct. Eval. 39, 61 (2020).

	 21.	 M. Yin, X. Zheng, J. D. Humphrey, G. E. Karniadakis, Non-invasive inference of thrombus 
material properties with physics-informed neural networks. Comput. Methods Appl. Mech. 
Eng. 375, 113603 (2021).

	 22.	 S. Goswami, M. Yin, Y. Yu, G. Karniadakis, A physics-informed variational deeponet for 
predicting the crack path in brittle materials. arXiv:2108.06905 [cs.LG] (16 August 2021).

	 23.	 L. Yang, D. Zhang, G. E. Karniadakis, Physics-informed generative adversarial networks 
for stochastic differential equations. SIAM J. Sci. Comput. 42, A292–A317 (2020).

	 24.	 G. Pang, L. Lu, G. E. Karniadakis, fPINNs: Fractional physics-informed neural networks. 
SIAM J. Sci. Comput. 41, A2603–A2626 (2019).

	 25.	 T. L. Anderson, Fracture Mechanics: Fundamentals and Applications (CRC Press, 2017).
	 26.	 S. Suresh, Fatigue of Materials (Cambridge Univ. Press, 2012).
	 27.	 L. B. Freund, S. Suresh, Thin Film Materials: Stress, Defect Formation and Surface Evolution 

(Cambridge Univ. Press, 2010).
	 28.	 H. B. Ameur, M. Burger, B. Hackl, Level set methods for geometric inverse problems 

in linear elasticity. Inverse Probl. 20, 673–696 (2004).
	 29.	 H. Sun, H. Waisman, R. Betti, Nondestructive identification of multiple flaws using xfem 

and a topologically adapting artificial bee colony algorithm. Int. J. Numer. Methods Eng. 
95, 871–900 (2013).

	 30.	 R. Gallego, G. Rus, Identification of cracks and cavities using the topological sensitivity 
boundary integral equation. Comput. Mech. 33, 154–163 (2004).

	 31.	 J. Jung, E. Taciroglu, Modeling and identification of an arbitrarily shaped scatterer using 
dynamic xfem with cubic splines. Comput. Methods Appl. Mech. Eng. 278, 101–118 (2014).

	 32.	 H. Waisman, E. Chatzi, A. W. Smyth, Detection and quantification of flaws in structures by 
the extended finite element method and genetic algorithms. Int. J. Numer. Methods Eng. 
82, 303–328 (2010).

	 33.	 D. Schnur, N. Zabaras, An inverse method for determining elastic material properties 
and a material interface. Int. J. Numer. Methods Eng. 33, 2039–2057 (1992).

	 34.	 Z. Michalewicz, M. Schoenauer, Evolutionary algorithms for constrained parameter 
optimization problems. Evol. Comput. 4, 1–32 (1996).

	 35.	 S. Chaabane, M. Masmoudi, H. Meftahi, Topological and shape gradient strategy 
for solving geometrical inverse problems. J. Math. Anal. Appl. 400, 724–742 (2013).

	 36.	 Y. Mei, R. Fulmer, V. Raja, S. Wang, S. Goenezen, Estimating the non-homogeneous elastic 
modulus distribution from surface deformations. Int. J. Solids Struct. 83, 73–80 (2016).

	 37.	 S. Amstutz, I. Horchani, M. Masmoudi, Crack detection by the topological gradient 
method. Control. Cybern. 34, 81–101 (2005).

	 38.	 T. J. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis 
(Courier Corporation, 2012).

	 39.	 C. R. Vogel, Computational Methods for Inverse Problems (SIAM, 2002).
	 40.	 A. Düster, J. Parvizian, Z. Yang, E. Rank, The finite cell method for three-dimensional 

problems of solid mechanics. Comput. Methods Appl. Mech. Eng. 197, 3768–3782 (2008).
	 41.	 A. D. Jagtap, E. Kharazmi, G. E. Karniadakis, Conservative physics-informed neural 

networks on discrete domains for conservation laws: Applications to forward and inverse 
problems. Comput. Methods Appl. Mech. Eng. 365, 113028 (2020).

D
ow

nloaded from
 https://w

w
w

.science.org on February 16, 2022

https://science.org/doi/10.1126/sciadv.abk0644
https://science.org/doi/10.1126/sciadv.abk0644
https://arxiv.org/abs/2108.11985
https://arxiv.org/abs/2105.09506
https://arxiv.org/abs/2009.04525
https://arxiv.org/abs/2104.09623
https://arxiv.org/abs/2108.06905


Zhang et al., Sci. Adv. 8, eabk0644 (2022)     16 February 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

12 of 12

	 42.	 Y. Chen, L. Lu, G. E. Karniadakis, L. Dal Negro, Physics-informed neural networks 
for inverse problems in nano-optics and metamaterials. Opt. Express 28, 11618–11633 
(2020).

	 43.	 M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, 
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, 
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, 
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, 
V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, 
TensorFlow: Large-scale machine learning on heterogeneous distributed systems (2016).

	 44.	 S. Wang, P. Perdikaris, Deep learning of free boundary and Stefan problems. J. Comput. Phys. 
428, 109914 (2021).

	 45.	 O. Hennigh, S. Narasimhan, M. A. Nabian, A. Subramaniam, K. Tangsali, M. Rietmann, 
J. d. A. Ferrandis, W. Byeon, Z. Fang, S. Choudhry, NVIDIA SimNet: An AI-accelerated 
multi-physics simulation framework. arXiv:2012.07938 [physics.flu-dyn] (14 December 2020).

	 46.	 Abaqus, Abaqus 2020 Documentation (Dassault Systèmes, 2020).
	 47.	 D. P. Kingma, J. Ba, Adam: A method for stochastic optimization. arXiv:1412.6980 [cs.LG] 

(22 December 2014).
	 48.	 D. C. Liu, J. Nocedal, On the limited memory BFGS method for large scale optimization. 

Math. Program. 45, 503–528 (1989).
	 49.	 K. Shukla, A. D. Jagtap, G. E. Karniadakis, Parallel physics-informed neural networks via 

domain decomposition. arXiv:2104.10013 [cs.DC] (20 April 2021).
	 50.	 Y. Shin, J. Darbon, G. E. Karniadakis, On the convergence of physics informed neural 

networks for linear second-order elliptic and parabolic type pdes. arXiv:2004.01806 
[math.NA] (2 April 2020).

	 51.	 S. Wang, X. Yu, P. Perdikaris, When and why PINNS fail to train: A neural tangent kernel 
perspective. J. Comput. Phys. 449, 110768 (2020).

	 52.	 S. Wang, H. Wang, P. Perdikaris, On the eigenvector bias of Fourier feature networks: 
From regression to solving multi-scale PDES with physics-informed neural networks. 
Comput. Methods Appl. Mech. Eng. 384, 113938 (2021).

	 53.	 M. M. Doyley, Model-based elastography: A survey of approaches to the inverse elasticity 
problem. Phys. Med. Biol. 57, R35–R73 (2012).

	 54.	 T. D’orazio, M. Leo, A. Distante, C. Guaragnella, V. Pianese, G. Cavaccini, Automatic 
ultrasonic inspection for internal defect detection in composite materials. NDT E Int. 41, 
145–154 (2008).

	 55.	 B. Lahiri, S. Bagavathiappan, P. Reshmi, J. Philip, T. Jayakumar, B. Raj, Quantification 
of defects in composites and rubber materials using active thermography. Infrared Phys. 
Technol. 55, 191–199 (2012).

	 56.	 D.-G. Park, C. S. Angani, B. Rao, G. Vértesy, D.-H. Lee, K.-H. Kim, Detection of the subsurface 
cracks in a stainless steel plate using pulsed eddy current. J. Nondestruct. Eval. 32, 
350–353 (2013).

	 57.	 L. Cheng, G. Y. Tian, Surface crack detection for carbon fiber reinforced plastic (cfrp) 
materials using pulsed eddy current thermography. IEEE Sensors J. 11, 3261–3268 (2011).

	 58.	 M. Bashkansky, M. Duncan, M. Kahn, D. Lewis, J. Reintjes, Subsurface defect detection 
in ceramics by high-speed high-resolution optical coherent tomography. Opt. Lett. 22, 
61–63 (1997).

	 59.	 M. Klemm, J. Leendertz, D. Gibbins, I. Craddock, A. Preece, R. Benjamin, Microwave 
radar-based breast cancer detection: Imaging in inhomogeneous breast phantoms. 
IEEE Antennas Wirel. Propag. Lett. 8, 1349–1352 (2009).

	 60.	 L. Lu, R. Pestourie, W. Yao, Z. Wang, F. Verdugo, S. G. Johnson, Physics-informed neural 
networks with hard constraints for inverse design. arXiv:2102.04626 [physics.comp-ph] 
(9 February 2021).

	 61.	 J. Céa, S. Garreau, P. Guillaume, M. Masmoudi, The shape and topological optimizations 
connection. Comput. Methods Appl. Mech. Eng. 188, 713–726 (2000).

	 62.	 S. Goenezen, P. Barbone, A. A. Oberai, Solution of the nonlinear elasticity imaging inverse 
problem: The incompressible case. Comput. Methods Appl. Mech. Eng. 200, 1406–1420 
(2011).

	 63.	 A. D. Jagtap, K. Kawaguchi, G. E. Karniadakis, Adaptive activation functions accelerate 
convergence in deep and physics-informed neural networks. J. Comput. Phys. 404, 
109136 (2020).

	 64.	 X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural 
networks, in Proceedings of the Thirteenth International Conference on Artificial Intelligence 
and Statistics (PMLR, 2010), pp. 249–256.

Acknowledgments 
Funding: The work was supported by the Department of Energy PhILMs project DE-SC001954 
and OSD/AFOSR MURI grant FA9550-20-1-0358. M.D. was supported by the National Science 
Foundation (NSF) award 2004556. S.S. was supported by Nanyang Technological University, 
Singapore, through the Distinguished University Professorship (S.S.). Author contributions: 
E.Z. developed the method, implemented the computer code, and performed computations. 
E.Z., M.D., G.E.K., and S.S. analyzed data. E.Z., M.D., G.E.K., and S.S. wrote the paper. M.D. and 
G.E.K. conceived the project. G.E.K., M.D., and S.S. supervised the project. Competing 
interests: All authors are coinventors on a provisional patent related to this work to be filed at 
the U.S. Patent and Trademark Office. The authors declare that they have no other competing 
interests. Data and materials availability: All data needed to evaluate the conclusions in the 
paper are present in the paper and/or the Supplementary Materials.

Submitted 26 June 2021
Accepted 22 December 2021
Published 16 February 2022
10.1126/sciadv.abk0644

D
ow

nloaded from
 https://w

w
w

.science.org on February 16, 2022

https://arxiv.org/abs/2012.07938
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2104.10013
https://arxiv.org/abs/2004.01806
https://arxiv.org/abs/2102.04626


Use of think article is subject to the Terms of service

Science Advances (ISSN ) is published by the American Association for the Advancement of Science. 1200 New York Avenue NW,
Washington, DC 20005. The title Science Advances is a registered trademark of AAAS.
Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim
to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).

Analyses of internal structures and defects in materials using physics-informed
neural networks
Enrui ZhangMing DaoGeorge Em KarniadakisSubra Suresh

Sci. Adv., 8 (7), eabk0644. • DOI: 10.1126/sciadv.abk0644

View the article online
https://www.science.org/doi/10.1126/sciadv.abk0644
Permissions
https://www.science.org/help/reprints-and-permissions

D
ow

nloaded from
 https://w

w
w

.science.org on February 16, 2022

https://www.science.org/about/terms-service

