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ABSTRACT Fibrinogen is regarded as the main glycoprotein in the aggregation of red blood cells (RBCs), a normally occurring
phenomenon that has a major impact on blood rheology and hemodynamics, especially under pathological conditions, including
type 2 diabetes mellitus (T2DM). In this study, we investigate the fibrinogen-dependent aggregation dynamics of T2DM RBCs
through patient-specific predictive computational simulations that invoke key parameters derived from microfluidic experiments.
We first calibrate our model parameters at the doublet (a rouleau consisting of two aggregated RBCs) level for healthy blood
samples by matching the detaching force required to fully separate RBC doublets with measurements using atomic force micro-
scopy and optical tweezers. Using results from companion microfluidic experiments that also provide in vitro quantitative infor-
mation on cell-cell adhesive dynamics, we then quantify the rouleau dissociation dynamics at the doublet andmultiplet (a rouleau
consisting of three or more aggregated RBCs) levels for obese patients with or without T2DM. Specifically, we examine the
rouleau breakup rate when it passes through microgates at doublet level and investigate the effect of rouleau alignment in
altering its breakup pattern at multiplet level. This study seamlessly integrates in vitro experiments and simulations and conse-
quently enhances our understanding of the complex cell-cell interaction, highlighting the importance of the aggregation and
disaggregation dynamics of RBCs in patients at increased risk of microvascular complications.
SIGNIFICANCE Type 2 diabetes mellitus has long been a prevalent disease with complications such as diabetic
retinopathy, kidney failure, and cardiovascular disease that reduce the life expectancy of patients. Here, we investigate the
rouleau dissociation characteristics of diabetic red blood cells (D-RBCs) through patient-specific predictive simulations that
are informed by companion microfluidic experiments. We identify the different rouleau breakup behaviors of D-RBCs and
normal RBCs in a microfluidic device and quantify the fibrinogen-dependent aggregation strength of D-RBCs and normal
RBCs. This study provides insights into the aggregation and disaggregation dynamics of rouleaux in patients with type 2
diabetes mellitus.
INTRODUCTION

Type 2 diabetes mellitus (T2DM) is characterized by rela-
tive insulin deficiency caused by pancreatic cell dysfunction
and insulin resistance in target organs (1). Patients with
T2DM usually suffer from elevated blood glucose and gly-
cated hemoglobin (hemoglobin A1c, HbA1c) levels, which
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are important predictors of the risk of development for
several microvascular complications, e.g., diabetic retinop-
athy (2,3) and diabetic peripheral nephropathy (4–6).
Currently, it is understood that the impaired blood circula-
tion of T2DM patients is a multifactorial event mainly due
to endothelial dysfunction (7), platelet hyperreactivity (8–
10), and red blood cell (RBC) hyperaggregatability
(11,12). Under physiological condition, the linear stacking
of RBCs forming a chain-like structure, called a rouleau,
is a reversible process that occurs in low-speed blood flow
(13). For metabolically healthy but obese patients, obesity
is believed to be correlated with increased RBC aggregation
(14–16). Under pathological condition like T2DM, RBC
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Quantifying RBC Aggregation in T2DM
hyperaggregatability leads to enhanced rouleau formation
(17) in patient’s blood, causing blood hyperviscosity in cap-
illaries (18,19) and low oxygen levels in tissues (20).

The impaired blood circulation due to the enduring
rouleau structures and altered RBC membrane property is
undoubtedly a risk for the functionality of organs. Hence,
understanding the blood cell dysfunction and quantifying
fibrinogen-dependent RBC aggregation dynamics under
normal or disturbed metabolism is of fundamental impor-
tance in diabetic research (21). It is recognized that both
the concentration level of plasma fibrinogen and that of
dextran are dominant factors in the formation of rouleaux.
The fibrinogen molecule is considered to be the major
plasma protein promoting RBC rouleau formation (22),
and the synthetic polymer dextran can also promote the for-
mation of RBC aggregates (23–26). Several studies have
been conducted to explore the RBC-RBC aggregation
strength using different in vitro flow experiments (27,28).
For example, Chien et al. performed experiments in a flow
channel to find that a 50% separation of a 2-cell rouleau
(doublet) suspended in dextran solution occurs at a critical
shear stress of 0.25 5 0.01 dyn/cm2 (23). Samocha-Bonet
et al. visualized the aggregation process of RBCs suspended
in autologous plasma or dextran-500 kPa for obese and non-
obese patients, respectively, under controllable shear stress
in a flow chamber (29). They showed that plasma of obese
patients is a powerful stimulator for RBC aggregation, pro-
ducing large clusters of aggregates that were resistant to
dispersion by flow, and concluded that among the plasma
components, fibrinogen is a well-characterized RBC aggre-
gation inducer that bridges between RBCs. Several groups
have also utilized optical tweezers (OT) to study the RBC
aggregation and disaggregation dynamics in plasma and
protein solutions (30–32). They found that the critical
detachment force required to fully separate the RBC dou-
blets ranges from 10 to 20 pN (31). In addition, Avsievich
et al. (33) employed OT to investigate the dynamics of
rouleau formation in dextran and fibrinogen solutions.
They found that these two polymers present distinct aggre-
gation mechanisms in the RBC aggregation dynamics (33).
Atomic force microscopy (AFM) has also been used to
investigate the aggregation properties of RBCs. For
example, Steffen et al. applied AFM to determine the effect
of dextran concentration on the interaction energy of RBC
doublets (34). They measured the interaction forces varied
from 14 to 23 pN for dextran 70 and from 43 to 169 pN
for dextran 150. Guedes et al. (35,36) conducted AFM-
based experiments on RBC doublets for patients with essen-
tial arterial hypertension in plasma solution. They found that
the critical force required to fully break up the RBC dou-
blets from an essential arterial hypertension patient’s blood
is �180 pN, which is about twice as much as those of the
healthy RBC doublets (35,36).

Along with the experimental studies, recent advances in
computational modeling and simulations have also contrib-
uted to the understanding of the aggregation dynamics of
RBCs under physiological and pathological conditions
(13,25,37–42). For example, Xiao et al. employed dissipa-
tive particle dynamics (DPD) to simulate the deformation
and aggregation of healthy RBC doublets (37) and their ef-
fects on the blood flow dynamics in stenosed microvessels
(38). They found that the blood flow resistance decreases
with the increased intercellular interactions when the RBC
doublets passed through the stenosis. Flormann et al. (25)
carried out numerical simulations and developed theoretical
models to characterize the interaction energy of RBC dou-
blets. They found that the RBC doublet deformation in-
creases nonlinearly with the interaction energy (25). Some
researchers also investigated the dynamics of rouleau for-
mation under diseased states. For example, Ye et al. showed
that malaria-infected RBC doublets become harder to sepa-
rate with the increase of capillary number (39). They also
showed that both the cell deformation and cell-cell aggrega-
tion interaction can affect the trajectory of RBC doublets in
microvascular bifurcations (40). Fedosov et al. employed a
multiscale RBC (MS-RBC) model to investigate the effect
of cell-cell aggregation interaction on blood viscosity at
different shear rate (13). They identified that the types and
sizes of RBC rouleau structures can yield a significant in-
crease of blood viscosity at low shear rates. They also sys-
tematically studied the shapes of RBC doublets under
different adhesion strength and shear elasticity (43). They
found that the adhesion strength and membrane properties
play key roles in determining the doublet phases.

Despite these aforementioned findings, many important
aspects of aggregation dynamics of diseased RBCs are still
poorly understood. It is known that the RBC deformability
and aggregation properties are altered in T2DM blood, but
individual patients with T2DM have a highly variable clin-
ical phenotype. For this reason, there is a compelling need to
develop a predictive patient-specific RBC model to quantify
the aggregation and disaggregation dynamics of RBCs in
T2DM. Such a model would provide a more reliable method
and an overall modeling framework to extract aggregation
properties of T2DM RBCs from a variety of independent
experimental methods. In this work, we aim to first establish
patient-specific RBC models that invoke key parameters
derived from microfluidic experiments and subsequently
to investigate the fibrinogen-dependent aggregation
dynamics of T2DM RBCs through patient-specific compu-
tational simulations. To build such multiscale patient-spe-
cific models, we develop a workflow that incorporates
useful experimental data and utilizes simulations as a surro-
gate tool for quantitative investigations of cell mechanical
and rheological properties, although some critical parame-
ters cannot be provided directly by microfluidics, AFM, or
OT experiments (i.e., these physical parameters can only
be inferred through a simulation model closely following
the experimental setup). The motivation for this work is to
demonstrate that by incorporating the data from
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experiments and simulations, our predictive computational
model could be employed to quantify patient-specific and
fibrinogen-dependent RBC aggregation dynamics. Specif-
ically, we quantify the fibrinogen-dependent aggregation
of RBCs from six patients with disparate severity of meta-
bolic syndromes and T2DM (i.e., three patients with
T2DM and the other three patients without T2DM, marked
by distinct plasma fibrinogen concentrations; see Table 1)
through patient-specific predictive computational simula-
tions that invoke key parameters derived from in vitro mi-
crofluidic experiments. We note that these six patients are
obese, indicated by their body mass indices and metabolic
parameters in Table S1. In the microfluidic experiments,
we employed a microfluidic device consisting of an ordered
array of microgates that mimic the structure and character-
istics of microvascular capillaries (44–46). In the numerical
simulations, we combined previously validated MS-RBC
model for RBCs in T2DM patients (47,48) and in obese pa-
tients with cell-cell aggregation model to capture the func-
tional dependence of doublet breakup force on fibrinogen
concentration in (31,35).

Motivated by the phenomenon that patients exhibit het-
erogeneous distribution of rouleau length (rouleau length
denotes the number of RBCs in the rouleau; see Fig. 1),
we hypothesize that every patient’s blood sample may
have different levels of RBC aggregation strength, whose
distribution can be inferred from the rouleau length distribu-
tion observed under controlled flow condition. Based on this
hypothesis, we first quantify the cell-cell adhesion strength
through matching the experimental measured detachment
forces required to separate RBC doublets under different
fibrinogen concentration (31,35). Then, informed by our
companion in vitro microfluidic experiments, we perform
numerical simulations to study the traversal of patient-spe-
cific RBC doublets through microgates. We compare the
simulated RBC doublet dissociation rate (the number of
RBC doublets broken apart over the total number of RBC
doublets observed in the region of interest (ROI)) with those
obtained in microfluidic experiments. Next, using the cali-
TABLE 1 Complete Blood Count Analysis and the Enzyme-Linked

Patient ID I II III

Information Obese Obese Obese, HBP, HLD

HbA1c, % 5.8 5.3 5.5

Fibrinogen, mg/mL 4.656 2.641 3.114

Hb, g/dL 15.2 17.8 14.1

HCT, % 44.6 50.3 39.8

RBC, �106 count/mL 4.97 5.52 4.38

WBC, �103 count/mL 8.8 5.4 4.9

MCV, fL 90 91 91

MCH, pg 30.6 32.3 20.8

MCHC, g/dL 34.1 35.4 35.4

RDW, % 13.5 13.0 13.4

Abbreviations: HBP, hypertension; HLD, hyperlipidemia; HbA1c, glycated hemo

WBC, white blood cell count; MCV, mean corpuscular volume; MCH, mean corp

RDW, red cell distribution width.
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brated parameters, we present some additional simulations
to probe the cell-cell detachment dynamics of the RBC
rouleaux with chain-like structures under different inclina-
tion angles to the overall flow direction.
METHODS

Experimental data

Subject recruitment, blood sample preparation, and
biochemical measurements

All studies involving human blood were approved by the institutional re-

view board of the Beth Israel Deaconess Medical Center and the Massachu-

setts Institute of Technology. Blood samples from six obese patients were

collected for this study at Beth Israel Deaconess Medical Center. Patients

were selected with different chronic glucose conditions, i.e., three without

T2DM and HbA1c < 6% (subject I–III) and three diagnosed with T2DM

and HbA1c R6% (subjects IV–VI). Plasma fibrinogen concentration level

for each patient was measured with an enzyme-linked immunosorbent

assay (Abcam, Burlingame, CA). In general, patients with T2DM have

high levels of plasma fibrinogen compared with those without T2DM,

which is consistent with the observations in (49). A detailed lab report is

shown in Table 1, and see Table S1 for patients’ metabolism measurements,

including medications.

All blood samples were collected into separate 4 mL K2-EDTA spray-

coated anticoagulant vacutainers (7.2 mg/4 mL). Deidentified samples

were transferred to the Massachusetts Institute of Technology within 3 h

of blood draw and were processed immediately. After whole blood density

gradient centrifugation at 820 relative centrifugal force (or � g, where g

stands for gravitational force) for 5 min, the blood plasma was removed

and kept in a separate tube; also, the buffy coat was removed and discarded.

To remove the anticoagulant, packed RBCs were washed twice for 5 min

under centrifugation. The RBCs were then resuspended in autologous

plasma, giving a hematocrit at 2–3%. Low-retention pipette tips were

used throughout blood processing.

Microfluidic experiments

To study the rouleau dynamics under flow, we conducted experiments

within microfluidic devices; see Fig. 2 A. In brief, the devices comprise a

free-standing gas-permeable polydimethylsiloxane (PDMS) membrane

(HPDMS ¼ 150 mm) within a dual-layer microchannel construction. The

dual-layer device consists of a ‘‘flow microchannel’’ in which there is

flow of RBC suspension and a ‘‘gas microchannel’’ in a cross configuration.

In this work, we only utilized the flow microchannel, which is 3 mm in
Immunosorbent Assay Test Results

IV V VI

Obese, T2DM Obese, T2DM, HBP Obese, T2DM, HBP, HLD

6.2 8.6 6.9

3.373 5.122 3.985

11.9 14.5 12.7

39.3 43.5 39.1

5.72 4.96 4.51

6.7 6.1 4.7

69 88 87

29.2 29.2 28.2

30.3 33.3 32.5

17.0 13.5 14.2

globin; Hb, total hemoglobin; HCT, hematocrit; RBC, red blood cell count;

uscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration;
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FIGURE 1 Rouleau structures inside the micro-

fluidic device for (A) patient II (no T2DM) and (B)

patient V (poorly controlled T2DM). Zoomed-in

rouleau structures of different lengths are shown

(C) for patient II, which are a singlet (upper left),

a doublet (upper right and lower left), and a triplet

(lower right), and (D) for patient V, which are a

singlet (upper left), a doublet with a singlet (upper

right), and several multiplets (lower left and lower

right). See Video S1 for patient II and Video S2 for

patient Vand see Table 1 for patients’ information.
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length and 1.326 mm in width and is connected to in-line pressure and flow

sensors. The flow microchannel consists of periodic obstacles with 15-mm-

long, 4-mm-wide, and 5-mm-high microgates (marked in Fig. 2 A),

mimicking the mechanical challenges RBCs encounter when passing

through the smallest capillaries or spleen slits in the human body (44,46).

Before being filled with the RBC-plasma suspension, the microfluidic de-

vice was degassed for a minimum of 10 min to prevent trapping of air

bubbles.

Microfluidic device imaging was performed using Zeiss Axiovert 200

(Zeiss, Oberkochen, Germany) and Olympus IX71 inverted microscopes

(Olympus, Tokyo, Japan). A Hitachi KP-D20A (Hitachi, Tokyo, Japan)

charge-coupled device and Olympus DP72 cameras (Olympus, Tokyo, Japan)

were used for image acquisition. All testing was performed at 37�C using the

ibidi heating system (ibidi USA, Fitchburg, WI) as a heating incubator.
Simulation models and methods

RBC models

To investigate the mechanical, rheological, and dynamic properties of

RBCs at different length scales, we have developed a unified multiscale

modeling framework based on DPD (50–52). Specifically, the membrane

of RBC was modeled by a two-dimensional triangulated network with Nv

vertices connected by Ns edges and Nt triangles. With the help of the

MS-RBC models, we have conducted a variety of simulations to probe a

broad range of mechanical and rheological problems associated with

RBCs under normal and pathological conditions, including T2DM

(13,45,53–56). Following our prior simulations on T2DM RBCs (47,48),

we performed simulations with two types of MS-RBC models: one charac-

terized the morphological and mechanical properties of normal RBCs (N-

RBCs), and the other mimicked those of T2DM RBCs (D-RBCs) (Fig. 2

B). Both the N-RBC and the D-RBC maintained similar cell surface area

AN
0 ¼ AD

0 ¼ 132.9 mm2 but had different morphological characteristics;

the N-RBC in a static condition was characterized by a biconcave shape

with cell volume VN
0 ¼ 92.5 mm3, whereas the D-RBC was characterized

by a more oblate shape with cell volume VD
0 ¼ 127.4 mm3. Specifically,

the N-RBC was modeled with shear modulus mN
0 ¼ 4.73 mN/m and bending

rigidity kN0 ¼ 2.4 � 10�19 J and the D-RBC with shear modulus mD
0 ¼ 2mN

0 ,

considering the decreased RBC deformability in diabetics (11,57) and

bending rigidity kD0 ¼ kN0 . Detailed formulas for pairwise interaction poten-

tials to maintain the morphology and mechanical property of RBCs can be

found in the Supporting Materials and Methods. In this study, we extended

these two MS-RBC models and investigated the (dis)aggregation dynamics

of T2DM RBCs. In most simulations, we have used Nv ¼ 500, a coarse-
grained RBC model that has been employed to conduct efficient simula-

tions of RBCs in microcirculation. For comparison, we also considered a

much finer MS-RBC model with Nv ¼ 2000. An example of simulation

snapshot in this study is shown in Fig. 2 C.

Cell-cell interaction models

The aggregation interaction between RBCs plays a major role in deter-

mining the size and shape of the RBC aggregates. As suggested by Fedosov

et al. (13), we employed the Morse potential to model fibrinogen-dependent

intercellular aggregation interactions. The Morse potential reads

UMðrÞ ¼ D0

�
e2bðr0�rÞ � 2ebðr0�rÞ�; (1)

where D0 denotes the depth of the potential well, e is the base of the natural

logarithm, r denotes the distance between two vertices, r0 represents zero

force distance, and b represents a distance scaling constant. Specifically,

the Morse potential is imposed on a specific type of vertices, called ‘‘inter-

active vertices,’’ represented by the blue vertices in Fig. 2 D. In addition, we

imposed the repulsive term of the Lennard-Jones potential on the membrane

vertices to prevent the RBC membranes from overlapping. The correspond-

ing potential is given by

ULJðrÞ ¼ 4e

��s
r

�12

�
�s
r

�6
�
; ðr% rLJÞ; (2)

where rLJ is the cutoff distance and e and s are scaling constants for energy

and distance, respectively. Detailed model parameters can be found in the

Supporting Materials and Methods.

Fibrinogen-concentration-dependent RBC models

To construct RBC models that reflect the different levels of cell-cell adhe-

sion strength, we adopted the hypothesis that rouleau formation is mainly

due to the ‘‘cross-bridging’’ effect created by the binding of each end of

a fibrinogen molecule to two different RBCs (58). In the ‘‘cross-bridging’’

hypothesis, the pairwise connection (the bridges) strength between ‘‘inter-

active vertices’’ is considered to be a fixed value, and hence, more estab-

lished bridges between two different cells will lead to stronger adhesion

between cells. The adhesion strength of each bridge is mainly correlated

with the parameter D0 in Eq. 1. in our cell-cell interaction model. In addi-

tion, Lominadze and Dean (71) showed the existence of fibrinogen-specific

binding to the RBC membrane surface, and their results implied that the

number of total bindings is positively correlated with the concentrations
Biophysical Journal 119, 900–912, September 1, 2020 903
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FIGURE 2 Overview of the simulation setup. (A) A schematic representation of the microfluidic device with periodic obstructions. Schematics are not

drawn to scale, and the dimensions are in microns. (B) Schematics of a normal (healthy) RBC (N-RBC) and a T2DM RBC (D-RBC) models. An N-

RBC in equilibrium maintains a biconcave shape with surface to volume ratio, S/V ¼ 1.44, whereas a D-RBC maintains a more oblate shape with S/V ¼
1.04. (C) A simulation snapshot of T2DM rouleau breakup when passing through microgates under flow. (D) The cell-cell interaction model, which simulates

the fibrinogen-concentration-dependent cell-cell interaction strength. Blue vertices denote ‘‘interactive vertices’’ (IVs) responsible for attractive interactions

with vertices of the same type on other RBCs, whereas red vertices do not exhibit attractive interactions. Numbers below each cell represent the ratio (in

percentage scale) of the number of IVs/the total number of vertices on the membrane. Based on the ratio, models are divided into three groups, i.e., low,

medium, and strong groups, simulating cell-cell adhesive interactions with low, medium, and strong aggregation strength, respectively, and implicitly address

low, medium, and high fibrinogen concentration level, respectively. To see this figure in color, go online.
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of human plasma fibrinogen within a certain range of fibrinogen concentra-

tion level. Herein, we varied the percentage of the ‘‘interactive vertices’’

corresponding to equivalent different fibrinogen concentration levels to

describe the different levels of rouleau adhesion strength, i.e., low, medium,

and high level (see Fig. 2 D). These RBC models were later modified to

characterize patient-specific RBCs in simulations. We note that the geom-

etry and arrangement of the microgates in the simulations followed those in

companion experiments, as shown in Fig. 2 A. The dimensions of the simu-

lation domain are 180 mm in length, 60 mm in width, and 12 mm in length.

Periodic boundary conditions were applied in the x and y directions, and the

flow was bounded by solid walls in the z direction. In all simulations, the

solid walls were modeled by freezing layers of particles with bounce-

back reflection to satisfy the no-slip boundary condition (59). An external

body force was exerted on all fluid particles and RBCs along the x direction

to generate a flow in the microchannel.
RESULTS AND DISCUSSION

In this study, we aim to establish patient-specific RBC
models and simulate the dynamics of patient-specific
rouleaux at the doublet and multiplet levels. Specifically,
we seamlessly integrate experimental data from both exist-
ing literature and our own microfluidic experiments
following the flow chart shown in Fig. 3. At the ‘‘Input’’
stage, we first quantify the parameters in our cell-cell adhe-
sive interaction model—most importantly, the coefficient
D0 in the Morse potential—through benchmark simulations
mimicking AFM and OT experiments by other researchers.
Second, we construct the flow field in our simulations such
that the single RBC velocity in simulations matches that in
our experiments; consequently, we obtain the relationship
between driving pressure gradient and cell velocity. Third,
we analyze the dynamics of rouleaux in our microfluidic ex-
periments from different patients’ blood samples and build
patient-specific RBC models accordingly. At the ‘‘Infer-
ence’’ stage, we incorporate the ‘‘Model’’ parameters for
904 Biophysical Journal 119, 900–912, September 1, 2020
simulations of rouleau dynamics inside the microfluidic de-
vice. First, we validate the patient-specific cell-cell interac-
tion models at doublet level by comparing the doublet
dissociation rate obtained from experiments and simula-
tions. Second, at the multiplet level, we compare the
breakup patterns of two 10-cell rouleaux, in which these
two rouleaux travel through microgates with two different
angles between the rouleau centerline and the flow
direction.
Quantification of fibrinogen-dependent cell-cell
adhesion strength at doublet level

In analogy with the experimental setups (31,35), we perform
simulations in which initially one RBC is placed on top of
another RBC to form a doublet, as shown in Fig. 4, and
then the top RBC is pulled away from the bottom RBC.
The RBC-wall adhesion is simulated by keeping stationary
the lower half vertices on the bottom RBC membrane. In the
simulation, cell-cell adhesion between the two stacked
RBCs occurs spontaneously after they approach each other
(here, ‘‘spontaneously’’ refers to the condition that no extra
force is exerted on the top RBC to induce cell-cell adhesion,
i.e., the top RBC is not pressed to the bottom RBC to form
contact but is carefully laid on the bottom one). After suffi-
cient contact time and the cell-cell interaction reaching an
equilibrium, we impose a stepwise increasing pulling force
on the top RBC until the doublet breaks up, i.e., these two
RBCs are fully detached from each other. The number of
pulling vertices is eNv, where e is the vertex fraction. In
the AFM experiment, the AFM tip is positioned above the
RBC center, which generates a breakup pulling force on
the vertical direction normal to the RBC discoid surface,
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FIGURE 3 Flow chart of simulation setup for hypothesis validation. (A) Existing AFM and OT experiments were used to calibrate the parameters of the

cell-cell interaction models. Based on the detaching forces, Morse potential coefficient D0 were obtained. (B) Single-cell simulations of N-RBCs and D-

RBCs were performed, passing through microgates under varying pressure-gradient values. The dependence of the single-cell velocity, V, on the pressure

gradient, dP/dl, of N-RBCs and D-RBCs, respectively, was obtained. (C) In-house microfluidic experiments were performed under comparable flow condi-

tions. Higher levels of fibrinogen concentration from patient samples possessed long rouleau chains more frequently. We measured the distribution of sin-

glets, doublets, and multiplets by taking snapshots of the rouleau within the ROI. These distributions guided the simulation scheme of the interactive vertices

ratio (IVR, g). (D) Probing the rouleau breakup dynamics under different fibrinogen concentration levels by comparing patient-specific doublet dissociation

rates observed in experiments with that obtained from simulation. (E) Angle-dependent 10-cell rouleau dissociation simulations to highlight the predictive

capability of our model for complex flow behaviors involving aggregatable cells. To see this figure in color, go online.
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leading to a uniform cell-cell separation or a peeling
breakup. In the OT experiment, the optical trap is positioned
on the side of the RBC, which generates a breakup force
along the horizontal direction parallel to the RBC discoid
surface; hence, the two aggregated RBCs are pulled apart
by sliding. Taking all these facts into consideration, we
used a higher e-value for matching simulation with the
AFM test compared with that for the matching simulation
with the OT test; i.e., we chose e z 0.36 for AFM (see
Video S3) and e z 0.2 for the OT test (see Video S4).

In addition to the simulations on the cell-cell detachment of
healthy doublets under different fibrinogen concentration
levels, we also carry out the simulations on the breakup of
T2DMdoublets (seeFig.5) and record anestimationof thecrit-
ical forces, i.e., theminimal force that allows the full separation
of these two cells in doublets. Generally, the cell-cell detaching
force increases as the interactive vertices ratio (fibrinogen con-
centration level) increases in both AFM and OT experiments
and simulations. Also, larger D0 introduces the condition that
a higher force is required to breakup thedoublets, i.e., the cases
with D0 ¼ 4.24 � 10�25 J require higher detaching forces
compared with those with D0 ¼ 8.48 � 10�26 J.

For the simulationsmimickingOT (seeFig. 5A), the critical
force F of healthy doublets (black dashed line) saturates to a
mean value around 10 pN, whereas the critical force of
T2DM doublets does not saturate smoothly to a plateau value
but has a further increase at high interactive vertices ratio g. A
typical simulation video clip on the cell-cell detachment of
T2DMdoubletwithOT test is provided inVideoS5.As shown
in the video, when the top RBC of a T2DM doublet is pulled
horizontally, the oblate shape of D-RBC induces a rotational
motion of the top RBC around the bottom one, promotes the
formation of additional binding sites during the detachment
process, and hence reinforces adhesion between these two
aggregated RBCs. As a result, the critical force F in T2DM
doublets is higher than that in the healthy ones. Under the
AFM test in Fig. 5 B, we found that the critical force F in-
creases with the interactive vertex ratio g (which is positively
correlated with the fibrinogen concentration level) at low g,
whereas it smoothly approaches saturation at highg.However,
there appears to be a gap in the critical force obtained from
computation and experiment. The discrepancy could arise
from the the process and analysis of experimental data in
(35). In their experiment, the maximal detachment force is
�70 pN even in the absence of fibrinogen, which is probably
due to the presence of residual fibrinogen molecules coming
fromtheplasma. Ifwe treat it as the baselinevalue andperform
a correction on the experimental data, we found that our
Biophysical Journal 119, 900–912, September 1, 2020 905



FIGURE 4 Schematic depiction of the simulation in which stepwise increasing force is exerted on the top RBC of a healthy doublet with AFM (top row)

and OT test (bottom row). RBCs with full coverage of IVs are used, and the value on top of the doublets represents the force magnitude at each instant. In the

last columns (last snapshots), the doublets break up; hence, only one RBC is shown. Video clips can be found in Video S3 for AFM test and Video S4 for OT

test. To see this figure in color, go online.
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predicted data fall into the range of the experimentally
measured data. In addition, at the same D0, we found that
the critical forces necessary to detach two aggregated N-
RBCs are higher than those for two aggregated D-RBCs. It
probably arises from the oblate shape ofD-RBC,which causes
fewer interactive vertices, leading to fewer possible bindings
on the contact surface between two RBCs. A video clip for a
typical simulation on the breakup of T2DM doublet with
AFM test is provided in Video S6. For comparison, we also
simulated the RBC suspension and studied the cell-cell
detachment at a much finer MS-RBC model with Nv ¼
2000; see Fig. 5 B. In analogy to a previous computational
study by Hoore et al. (43), the adhesion strength G is directly
proportional to the vertex density Nv/A

D
0 , i.e., G �D0Nv/A

D
0 ;
A B

FIGURE 5 Quantitative validation of doublet breakup forces F with simulati

izontal axes denote fibrinogen concentration level in experiments, and the botto

short for experiment and sim. for simulation. (A) The result of the simulation mi

(31); hence, the corresponding Morse potential coefficient D0 ¼ 8.48� 10�26 J i

when IVR exceeds 0.5, T2DM doublets require a larger detaching force than hea

simulation mimicking the AFM test with an N-RBC, which is quantitatively co

imental data subtract the first experimental point at zero fibrinogen concentra

MS-RBC model with Nv ¼ 500, except for one simulation case at g ¼ 0.5 (gr

2000. Note that data points with * in the legend denote unclear fibrinogen conc
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hence, the value of D0 has dropped four times for the DPD
case with Nv ¼ 2000. We found that the critical force F-value
decreases somewhat with finer DPD resolution. For example,
for g¼ 0.5, the value of critical force drops slightly from 47.6
pNwithNv¼ 500 down to 44.9 pNwithNv¼ 2000. However,
because the deviation is sufficiently small, the coarse-graining
level on the cell-cell aggregation does not affect our results.
Mesoscopic simulation of patient-specific single
RBC dynamics

We employ a specially designed microfluidic device as
shown in Fig. 2 A to study patient-specific cell-cell detach-
ment dynamics of rouleaux. In the following, we present the
ons mimicking OT and AFM on healthy and T2DM doublets. The top hor-

m horizontal axes denote the IVR of the RBC models in simulation; exp. is

micking the OT test with N-RBC doublets fits well with data from Lee et al.

s applied in later simulations mimicking microfluidic experiments. Note that

lthy doublet because of the oblate shape of the D-RBC. (B) The result of the

mparable with the experimental data with a baseline correction (all exper-

tion) from Guedes et al. (35). The simulations were conducted using the

een solid circle), in which we consider a finer MS-RBC model with Nv ¼
entration level. To see this figure in color, go online.
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results of the blood samples from patients II, IV, and V listed
in Table 1 because they represent three different common
clinical conditions of increasing severity, i.e., obesity
without T2DM and obesity with good and obesity with
poor control of T2DM, respectively, indicated by the
HbA1c level. Here, we focus on reproducing the dynamics
of a rouleau in an ROI, i.e., a zoomed-in domain in which
rouleau breakup occurs and from which we can infer the
local fluid dynamics.

From the video clips of our microfluidic experiments, we
record the time-dependent locations of single RBCs that
are close to the rouleau of interest. On the other hand, we
simulate the dynamics of single N-RBCs and D-RBCs pass-
ing through microgates in a range of pressure gradients (see
Fig. 6). The simulation results show that under a fixed pres-
sure gradient, the trajectory of both the single N-RBC and
the D-RBC maintains a periodic pattern because of the peri-
odicity of obstacles. We fit the trajectories of the RBCs to es-
timate their velocities under different pressure-gradient
values for N-RBC in Fig. 6 B and for D-RBC in Fig. 6 C;
see also Fig. 6 D for the fitted single RBC velocities under
different pressure-gradient values. We find that the cell veloc-
ity is generally proportional to the pressure gradient within
the simulated pressure-gradient range. In addition, we find
that there is a minimal pressure gradient to start the motion
of RBCs inside the microchannel to overcome the resistance
due to the obstacles. We also compare the simulation results
against available experimental data from Bow et al. (60), in
which they studied the dynamics of malaria-infected RBCs
inside a microfluidic device similar to ours. The shear
modulus of malaria-infected RBCs is much greater than N-
RBCs (61,62), which prohibits a malaria-infected RBC
from traveling as fast as an N-RBC under the same pressure
gradient. Although not as stiff, D-RBCs also travel more
slowly compared with N-RBCs (11,63,64).
FIGURE 6 Simulation of single RBC dynamics driven by pressure gradient in

microgates. Time-dependent trajectories (distance traveled l) of a single (B) N-R

dients. (D) Functional dependence of a single N-RBC (red dashed line) and a D-

parison to similar experimental results by Bow et al. (60) on malaria-infected RB

ours. d denotes the size of the gap between neighboring microgates, which RBC

for the onset of squeezing through microgates. However, to maintain a similar t

RBCs, given the horizontal gap between the curves mainly due to the larger she

ference in the slope of the curves. To see this figure in color, go online.
Next, we monitor the trajectories of three single RBCs in
the blood sample of each patient and use linear fitting to
obtain the corresponding mean velocities (see Fig. 7, B–
D). As shown in the figures, the velocities of three RBCs
do not vary dramatically for a certain patient. Hence, we
can calculate the mean velocity from these three sampled
velocities and take it as equal to the mean flow velocity in
this small ROI. To quantify the pressure gradient required
for patient-specific simulations, we use interpolation to
obtain the pressure gradient required from Fig. 6, B and C
and validate the single-RBC dynamics under the assumed
pressure gradient; see Fig. 7 B for validation with an N-
RBC and Fig. 7 D for validation with a D-RBC.
Patient-specific cell-cell detachment in
microfluidic device at the doublet and multiplet
levels

To perform experiment-informed patient-specific simula-
tions, we construct patient-specific cell-cell interaction
models by learning the intrinsic relationship between the
interaction model parameters and in vitro rouleau length dis-
tribution. In the following, our targeted patients are patient
II, IV, and V, as in the previous section. From the experi-
ment, we observe the microfluidic experiment videos for
each patient and gather two types of statistics. First, we
randomly choose 10 frames of time-independent snapshots
from each patient and count the number of singlets (a single
RBC; we include singlet as a rouleau because it is meaning-
ful as the most basic cell-cell adhesion element), doublets,
and multiplets within the ROI. Then, we calculate the per-
centage of each type of rouleau for each patient (see
Fig. 8 B). Note that the sum of these three percentages is
100% because here, a rouleau is defined as a singlet or a
doublet or a multiplet. It is clear that each patient holds a
the microfluidic device. (A) An example of a single D-RBC passing through

BC and (C) D-RBC along the flow direction under different pressure gra-

RBC (black solid line) velocity with respect to pressure gradient with com-

C, which is typically stiffer than N-RBC, in a microfluidic device similar to

s can travel through. Both types of RBC require a nonzero pressure gradient

raveling speed, D-RBCs typically require a large pressure gradient than N-

ar modulus and oblate shape of D-RBCs, which is also implied by the dif-
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FIGURE 7 Overview for monitoring single RBC motion in the microfluidic device. (A) A typical snapshot, which is a zoomed-in figure of the ROI,

selected from in vitro experiments with single RBCs (in the white dashed circles) near a doublet (in the blue dashed circle). Trajectories of three neighboring

single RBCs in the microfluidic experiments are shown for (B) patient II (obese without T2DM) with validation of pressure gradient at dP/dl ¼ 0.15 Pa/mm,

(C) patient IV (well-controlled T2DM), and (D) patient V (poorly controlled T2DM) with validation of pressure gradient dP/dl¼ 0.3 Pa/mm and correspond-

ing single-cell trajectory (magenta triangles) in simulation. Magenta triangles in (B) and (D) represent the simulated cell trajectories under given pressure

gradient. Red, green, and blue circles represent cell trajectories at each instant measured in microfluidic experiments, and black dashed lines represent a linear

fitting of corresponding trajectories, see figure legends for the fitted velocity; the minus signs in the velocities imply that RBC travels along the �x direction.

To see this figure in color, go online.
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share of three types of rouleau, i.e., every patient has sin-
glets, doublets, and multiplets, despite their lab test showing
distinct fibrinogen concentration levels. In addition, from
the three selected patient samples, we also note that the per-
centage of rouleaux of different lengths varies from patient
to patient and is positively correlated with their fibrinogen
concentration levels. Informed by these observations, we
construct patient-specific RBC models from the three
groups shown in Fig. 2D, i.e., the weak, medium, and strong
groups, and assume that for each patient, the percentage of
weak, medium, and strong adhesive dynamics is determined
by their own rouleau length distributions. Although hetero-
geneous distribution of RBC-RBC adhesion is expected, to
the best of our knowledge, there are currently no direct
experimental data available about the distribution of cell-
cell adhesion for RBC. Hence, our model setup here is based
on the direct observations from our microfluidic experi-
ments that the rouleau length distribution is seemingly
correlated to the adhesion strength among rouleaux. To
demonstrate the overall cell-cell adhesive interaction for
each patient, we plot the averaged ‘‘interactive vertices ra-
tio’’ of patient-specific RBCmodels implemented in simula-
tions; see Fig. 8 B.
908 Biophysical Journal 119, 900–912, September 1, 2020
To validate the experiment-informed RBC model, we
compare patient-specific rouleau dissociation rates at
doublet level. In the experiment, we keep track of 20 dou-
blets and record the number of doublets that are fully sepa-
rated before they exit the ROI (see the unshaded bars in
Fig. 8 C). On the other hand, for each patient we simulate
25 patient-specific doublets passing through microgates
and calculate the percentage of fully separated doublets
over the total amount of doublets observed (see the shaded
bars in Fig. 8 C). The simulation and experimental results
agree well with each other, confirming that the distribution
of rouleau length is an important indicator in doublet
breakup dynamics. Additionally, our simulation results
show that under the same pressure gradient, T2DM doublets
with weak cell-cell adhesion strength easily break up,
becoming singlets (see Video S7), whereas doublets with
medium cell-cell adhesion strength mostly maintain the
rouleau length (see Video S8), and doublets with strong
cell-cell adhesion strength are robust enough to maintain
the adhered state and hence have higher probabilities to
become a longer rouleau later (see Video S9). These obser-
vations, consistent with experimental records, validate our
patient-specific RBC model construction. Additionally,
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FIGURE 8 Statistical quantification of the aggregation strength through in vitro experiments and simulations for selective patients. (A) An example of a

T2DM doublet (in the white dashed circles) with strong cell-cell aggregation passing through microgates in experiment (left column) and simulation (right

column) without the occurrence of doublet breakup event before it exits the ROI. (B) Patient-specific experimental results on the percentage of rouleaux with

different lengths, i.e., the count of singlets, doublets, and multiplets divided by the total count of rouleaux, respectively. On top of each patient’s rouleau

length distribution, we draw a representative RBC to reflect the averaged interactive vertices coverage of those simulated RBCs for that patient. (C) Com-

parison between experimental and simulated patient-specific doublet dissociation rate; exp. is short for experiment and sim. for simulation. To see this figure

in color, go online.
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this demonstrates that with increasing disease severity, indi-
cated by higher HbA1c and higher fibrinogen levels, our pa-
tient-specific RBC models predict the increased formation
of multiplets and decreased dissociation rates of doublets.

From our microfluidic experiments, we notice that the
alignment of a long rouleau with respect to the flow direc-
tion plays a key role in its breakup pattern afterwards. To
probe this phenomenon qualitatively, we carry out simula-
tions on two 10-cell rouleaux (representing a long rouleau)
passing through the microgates (see Fig. 9 A and Video S10
for a rouleau entering the microchannel along the flow di-
rection; see also Fig. 9 B and Video S11 for another rouleau
entering microchannel with a 21� angle to the flow direc-
tion). Note that this type of extremely long rouleau is
frequently seen in the sample of T2DM patients like patient
V; therefore, we adopt the D-RBC model with 100% inter-
active vertices ratio in Fig. 2 D. Additionally, to provide
A B
enough statistics, we run each simulation set for five times
and obtain the rouleau length distribution at the outlet of
the microchannel (see the last row in Fig. 9). The snapshots
show that these two rouleaux experience distinct collisions
with the microgates and hence exhibit different breakup pat-
terns. The rouleau with an inclined centerline breaks up into
several triplets and one quadruplet, whereas the rouleau hav-
ing its centerline parallel to flow direction splits into two
doublets and two triplets. This suggests that the inclination
angle between rouleau centerline and flow direction can
significantly affect the corresponding rouleau breakup pat-
terns. Other studies in the literature also showed similar ob-
servations. For example, Ji et al. (65) applied microfilters to
separate white blood cells (WBCs) from RBCs within
plasma and suggested that RBC aggregation will lead to fil-
ter clogging. They also compared the RBC separation and
WBC trapping efficiency of microfluidic devices with a
FIGURE 9 Different breakup patterns of two

10-cell rouleaux when passing through microgates

under the same pressure gradient at DP/Dl ¼ 0.4

Pa/mm, where the centerline of RBCs in one

rouleau is (A) parallel to and another has (B) a

21� inclination angle to the direction of flow

(t0 ¼ 0 s, t1 z 3 s, t2 z 4.5 s). With successive

collisions with the microgates, these 10-cell

rouleaux eventually break up into rouleaux of

shorter lengths. The corresponding outlet rouleau

length distribution is shown in the last row. In

(A), the 10-cell rouleau tends to break up into

rouleaux of evenly distributed lengths, suggested

by the concentrated counts around three-cell and

four-cell rouleaux, whereas in (B), the 10-cell

rouleau breaks up to rouleaux of very different

lengths. For each case, five different simulation

tests are performed to record the lengths of shorter

rouleaux produced by the rupture of 10-cell

rouleau. Video clip for (A) is provided in Video

S10 and for (B) in Video S11. To see this figure

in color, go online.
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weir filter, a pillar filter, and crossflow filters with slits
slanted 60� and 90�, respectively. They concluded that the
crossflow design could be the filter of choice because of
its convenience in fabrication and high efficiency in cell
sorting (65). We note that the slanted slits of the microfilter
in their work is equivalent to the inclination angle between
the centerline of rouleau and flow direction in our simula-
tions. Therefore, our simulation of rouleau breakups at
multiplet level could guide the design of microfluidic device
and improve the efficiency of separating aggregatable cells.
CONCLUSION

RBCs in patients with T2DM are associated with reduced
cell deformability and elevated cell aggregation, both of
which make whole blood more viscous compared with
healthy individuals, leading to impaired microcirculation.
From the clinical point of view, it is recognized that
Hb1Ac level is positively associated with microvascular
complications in T2DM (66–68). Some studies have also
shown that fibrinogen level is also positively correlated
with microvascular complications (69,70). In this work, to
enhance our understanding of fibrinogen-dependent RBC
aggregation, which contributes to the abnormal microvas-
cular complications in T2DM, we conducted microfluidic
experiments with blood samples from six obese patients
with and without T2DM and extracted informative statistics
to develop patient-specific RBC models. We performed
experiment-informed simulations on the patient-specific
cell-cell detachment process of rouleaux at the doublet
and multiplet levels and validated the patient-specific
RBC models by comparing the simulation results with
data from experiments. We note here that although we simu-
late the RBC dynamics of two T2DM patients (patient IV
and patient V) who are on different medications and repre-
sent well-controlled and poorly controlled patients, respec-
tively, our results for these two patients do not imply in
one way or the other the effectiveness of the medications
(see Table S1 for details of medications).

To construct fibrinogen-dependent RBC adhesion
models, we determined the model parameters through quan-
titatively matching the rouleau breakup forces obtained
from simulations mimicking AFM and OT tests to the cor-
responding experimental data. Further validation of the
fibrinogen-dependent RBC models was conducted by
comparing the patient-specific simulation results with our
in vitro microfluidic experiments on three selected patients
(II, IV, and V, representing obesity without T2D and obesity
with good and with bad control of T2DM, respectively).
With increasing disease severity, indicated by higher
HbA1c and higher fibrinogen levels in patients’ blood, our
patient-specific RBC model predicts the increased forma-
tion of multiplets and decreased dissociation rates of dou-
blets. The simulations of the microfluidic experiments
match the observed patient-specific doublet breakup rates,
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as well as the long rouleau breakup patterns. The simulation
results show that given the same pressure gradient, the
T2DM doublets with weak cell-cell adhesive interaction
tend to break up easily, the T2DM doublets with medium
cell-cell adhesive interaction strength mostly maintain the
rouleau structure, and those with strong cell-cell adhesive
interaction strength are extremely robust.

In addition, for poorly controlled T2DM patients, we
notice the frequent existence of extremely long rouleaux
in their blood samples, which is rarely seen in an obese pa-
tient without T2DM, whose plasma fibrinogen concentra-
tion level is relatively lower than that from patients with
T2DM. By observing the dynamics of these extremely
long rouleaux in the microfluidic device, we found that
the alignment of rouleaux with respect to flow direction
can affect their breakup patterns after repetitive collisions
with the walls of microgates. We confirmed the observed
characteristics through simulations of angle-dependent
rouleau breakup dynamics at the multiplet level. The
angle-dependent rouleau breakup patterns captured by our
simulations may help improve the design of microfluidic de-
vices that are used to perform cell sorting or cell separation,
especially those involving cell-cell adhesion. More impor-
tantly, it justifies further research in patients with T2DM,
who, because of plaque formation and thus capillary lumen
irregularities, may demonstrate higher exposure to angled
rouleau-wall collisions. Hence, our microfluidic experi-
ments, patient-specific cell-cell interaction RBC models,
and experiment-informed simulations seamlessly incorpo-
rate information from patient blood samples, fluid dynamics
inside the microchannel, and associated hemodynamics,
providing a, to our knowledge, novel way to quantify the
heterogeneous patient-specific rouleau dynamics in a capil-
lary-like microenvironment.
SUPPORTING MATERIAL

Supporting Material can be found online at https://doi.org/10.1016/j.bpj.

2020.07.026.
AUTHOR CONTRIBUTIONS

Y.D., D.P.P., X.L., N.P., C.S.M., M.D., and G.E.K. designed research. Y.D.

carried out all the simulations. D.P.P. performed the microfluidic experi-

ments. N.P. and C.S.M. collected the clinical information and samples, pro-

vided the blood samples for the study, and performed biochemical

measurements. X.L., M.D., C.S.M., and G.E.K. contributed new reagents

and analysis tools. Y.D., D.P.P., X.L., M.D., and G.E.K. analyzed data.

All authors contributed to writing the manuscript.
ACKNOWLEDGMENTS

We acknowledge the support from U01HL142518. C.S.M. acknowledges

the support from National Institutes of Health K24DK081913 for the clin-

ical part and biochemical measurements. N.P. was funded by the Deutsche

Forschungsgemeinschaft (German Research Foundation)-389891681 (PE

https://doi.org/10.1016/j.bpj.2020.07.026
https://doi.org/10.1016/j.bpj.2020.07.026


Quantifying RBC Aggregation in T2DM
2431/2-1). Computations were supported by the National Science Founda-

tion XSEDE resources award No. TG-DMS140007 and No.

TCMBC190045.
REFERENCES

1. Chatterjee, S., K. Khunti, and M. J. Davies. 2017. Type 2 diabetes. Lan-
cet. 389:2239–2251.

2. Cho, H. C. 2011. The relationship among homocysteine, bilirubin, and
diabetic retinopathy. Diabetes Metab. J. 35:595–601.

3. Brazionis, L., K. Rowley, Sr., ., K. O’Dea. 2008. Homocysteine and
diabetic retinopathy. Diabetes Care. 31:50–56.

4. Young, M. J., A. J. Boulton, ., P. H. Sonksen. 1993. A multicentre
study of the prevalence of diabetic peripheral neuropathy in the United
Kingdom hospital clinic population. Diabetologia. 36:150–154.

5. Davies, M., S. Brophy, ., A. Taylor. 2006. The prevalence, severity,
and impact of painful diabetic peripheral neuropathy in type 2 diabetes.
Diabetes Care. 29:1518–1522.

6. Jeganathan, V. S. E., J. J. Wang, and T. Y. Wong. 2008. Ocular associ-
ations of diabetes other than diabetic retinopathy. Diabetes Care.
31:1905–1912.

7. Mather, K. J., S. Verma, and T. J. Anderson. 2001. Improved endothe-
lial function with metformin in type 2 diabetes mellitus. J. Am. Coll.
Cardiol. 37:1344–1350.

8. Vinik, A. I., T. Erbas, ., G. L. Pittenger. 2001. Platelet dysfunction in
type 2 diabetes. Diabetes Care. 24:1476–1485.
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Summary of patient metabolism indices and medication history

To substantiate our claims in this work, we measure and summarize the metabolism indices and medication history
of patients in Tab. S1. In particular, we confirm that patients are all obese, indicated from their BMIs (BMI≥25).
More importantly, the selected patient II, IV and V for simulations are representatives from healthy, well-controlled
T2DM and poorly-controlled T2DM patients, respectively, indicated by their Hb1Ac levels in Tab. 1 in the main
text.

TABLE S1: Measurement of Patients’ Metabolistic Characteristics.1

Patient ID I II III IV V VI
Age (y) 57 65 64 46 60 61
Weight (kg) 127.1 99.8 103.3 137.8 116.9 105.4
Height (cm) 170.7 170.5 176.2 166.3 192.9 179.1
BMI (kg/m2) 43.62 34.33 33.27 49.83 31.42 32.86
Medications No No Aspirin,

Statin,
HCT

Metformin Metformin,
ACE-
inhibitor

Aspirin,
Am-
lodipin,
ACE-
inhibitor,
Statin

Glucose (mg/dl) 105 82 105 94 141 109
BUN (mg/dl) 9 10 18 13 11 9
Creatinine, Serum (mg/dl) 0.64 1.03 0.75 0.7 0.91 0.92
Sodium, Serum (mmol/l) 137 142 142 139 142 136
Potassium, Serum (mmol/l) 4.1 5.8 4.2 4.4 4.6 3.9
Chloride, Serum (mmol/l) 96 105 103 100 102 101
Carbon Dioxide, Total (mmol/L) 26 22 23 25 25 23

RBC models

We construct the following potential to represent the elastic energy of the RBC models,

Vs =
∑

j∈1,...,Ns

[
kBT lm(3x2j − 2x3j )

4p(1− xj)
+

kp

(n− 1)ln−1j

]
, (1)

1HCT, Hydrochlorothiazide; BUN, blood urea nitrogen.
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where p denotes the persistence length, li denotes the length of ith spring, l0 denotes equilibrium spring length, lm
denotes maximal spring extension and kBT is the energy unit. The bending resistance of the RBC membrane is
achieved using the following potential,

Vb =
∑

α,β pair

kb[1− cos(θαβ − θ0)], (2)

where kb is constant denoting the bending modulus, θαβ is the instantaneous angle between two adjacent triangles
sharing a common edge and θ0 is the spontaneous angle. Additionally, to impose area and volume conservation of
RBC models due to the area conservation of the lipid bilayer and the incompressibility of the cytoplasm, we apply
the following combined potentials,

Va+v =
∑

j∈1,...,Nt

kd(Aj −A0)2

2A0
+
ka(A−Atot

0 )2

2Atot
0

+
kv(V − V tot

0 )2

2V tot
0

, (3)

where ka and kv are area and volume constraint constants, and A is the instantaneous area of RBC during simu-
lations.

Simulation model parameters

In all simulations presented in the main text, the parameters were calibrated based on experimental results then
kept consistent unless otherwise noted in the main text.

Cell-cell interaction potentials

Detailed parameter values of the Morse potential and the Lennard-Jones potential are listed in Tab. S2.

TABLE S2: Model parameters for Morse potential and LJ potential.
Parameter Simulation Physical

r0 1.0 1 µm
β 1.5 1.5 (scaling factor for distance, dimensionless)
σ 0.3 0.3 µm
ε 0.4 3.392×10−25J
rLJ 0.25 0.25 µm

Cell-fluid and fluid-fluid interaction

Under the DPD framework, the force F between a pair of atoms, for example, atom i and atom j, at a distance
r = |rij | within cutoff distance rc, is given as a sum of three terms as follows,

F = (FC + FD + FR)rij

FC = Aw(r)

FD = −γw2(r)(rij · vij)
FR = σw(r)α(∆t)−1/2

w(r) = (1− r/rc)m

where FC is a conservative force, FD is a dissipative force, and FR is a random force. rij is a unit vector in the
direction ri − rj , vij is the vector difference in velocities of atom i and atom j, α is a Gaussian random number
with zero mean and unit variance, dt is the timestep size; m is an exponential factor and by setting it to 1 our DPD
framework reduces to the standard DPD framework. We applied the same set of DPD parameters for cell-fluid and
fluid-fluid interactions, as listed in Tab. S3.
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TABLE S3: Model parameters for cell-cell and cell-fluid interactions.
Parameter Simulation

A 2.5
γ 10
σ 1.414
m 0.25

Supporting movies

S1. Blood sample of patient II in microfluidic device.

S2. Blood sample of patient V in microfluidic device.

S3. Healthy doublet breaks up in simulation mimicking AFM.

S4. Healthy doublet breaks up in simulation mimicking OT.

S5. T2DM doublet breaks up in simulation mimicking OT.

S6. T2DM doublet breaks up in simulation mimicking AFM.

S7. T2DM doublet with weak cell-cell adhesive interaction passing through microgates.

S8. T2DM doublet with medium cell-cell adhesive interaction passing through microgates.

S9. T2DM doublet with strong cell-cell adhesive interaction passing through microgates.

S10. 10-cell rouleau entering microchannel along the flow direction.

S11. 10-cell rouleau entering microchannel with a 21° angle to flow direction.
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