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SI Appendix, Note S1: Straining of diamond cubic crystals in real and reciprocal space 
 
The straining can be best described by applying a 3 × 3 tensor transformation to the perfect 
silicon or diamond primitive cell to avoid the confounding effect of band folding in larger 
supercells which causes difficulty in identifying band structure information (1). Due to material 
anisotropy, we present all the related figure of merit results within 6D strain space instead of 3D 
space of principal strains. To avoid redundant computations, we ensured that each strain we 
applied to a crystal has a one-to-one correspondence to a distinct deformation case. The 
non-translational part of a homogeneous deformation of a crystal can be defined by a 
second-order deformation gradient tensor 𝐅𝐅, which can be viewed as the Jacobi matrix linking 
deformed and underformed lattice vectors. The relationship between the symmetric strain tensor 
𝜺𝜺 and 𝐅𝐅 is given by 𝜺𝜺 = 1

2
(𝐅𝐅 + 𝐅𝐅𝐓𝐓) − 𝐈𝐈. Since the band structure does not change upon 

rotations of the crystal, we can eliminate the rotational degrees of freedom by adopting upper 
triangular 𝐅𝐅 to map out all deformation cases, as in SI Appendix, Figure S1a. 

Under general 3D three-normal-strains deformation, the original 𝑂𝑂ℎ crystal point group of Si 
turns into a 𝐷𝐷2ℎ point group. The Brillouin zone for deformed Si in this case is shown in SI 
Appendix, Figure S1b. In general it is not anymore a regular truncated octahedron with 
equilateral hexagonal and square faces. The reciprocal space lattice vectors are adjusted by the 
inverse transpose of the deformation gradient tensor in real space, i.e. 𝐅𝐅−𝑇𝑇, as a result of the 
deformation. The center of any type of Brillouin zone is labeled as Γ and we keep this tradition. 
In undeformed Si, the centers of the square and regular hexagonal surfaces on the Brillouin zone 
boundary are completely degenerate and labeled as 𝑋𝑋 and 𝐿𝐿, respectively. For the simplicity of 
comparison, we follow the same spirit and still denote the ‘𝑋𝑋’-type points as the centers of the 
tetragon surfaces and 𝐿𝐿-type points as the centers of the regular/non-regular hexagonal surfaces. 
The lines that connect the Γ point to the ‘𝑋𝑋’-type points are labeled as ‘Δ’-type. This way, the 
six ‘𝑋𝑋 ’- and ‘𝐿𝐿 ’-type points, though non-degenerate, would keep the correct fractional 
coordinates of 〈0.5,0,0.5〉- and 〈0.5,0,0〉-type, and the k-points along the Γ-‘𝑋𝑋’ line would all 
have the 〈𝜁𝜁, 0, 𝜁𝜁〉-type coordinates. As the CBMs of our concern always appear on either the 
center of the Brillouin zone, center of the zone boundary surfaces, or the line connecting the zone 
center and surface center, our notations are sufficient. 

www.pnas.org/cgi/doi/10.1073/pnas.1818555116



SI Appendix, Note S2: 

First-principles calculations 
We used the Perdew-Burke-Ernzerhof (PBE) (2) exchange-correlation functional and the 
projector augmented wave method (PAW) (3) in our DFT simulations implemented in the 
Vienna Ab initio Simulation Package (4) with spin-orbit coupling incorporated. A plane wave 
basis set with an energy cutoff of 520 eV was adopted to expand the electronic wavefunctions. 
The Brillouin zone integration was conducted on a 13 × 13 × 13 Monkhorst-Pack 𝒌𝒌-point 
mesh (6 × 6 × 6 for GW calculations). Atomic coordinates in all the structures were relaxed 
until the maximum residual force was below 0.0005 eV Å−1. We focused on the strain range of 
{−5% ≤ 𝜀𝜀𝑗𝑗 ≤ 10%, 𝑗𝑗 = 1 …  6} for silicon and {−5% ≤ 𝜀𝜀𝑗𝑗 ≤ 5%, 𝑗𝑗 = 1 … 6} for diamond. 
The large strain values and corresponding strain energy density values are on the same order of 
magnitude compared to those achieved experimentally for bulk silicon and bulk diamond and 
these strains are all below theoretical failure strains, i.e. without phonon instability occurring.  
 
Machine learning 
Neural network (NN) 
NN fitting is implemented within the Tensorflow (5) framework. To predict the bandgap we used 
deep NNs with four hidden layers with a (64 - 128 - 256 - 256) structure in the case of 
three-normal-strains strains (𝜺𝜺𝟑𝟑𝟑𝟑) and a (512 - 256 - 256 - 256) structure for the case with shear 
strains (𝜺𝜺𝟔𝟔𝟑𝟑), as shown in main text Figure 1a and SI Appendix, Figure S2. For the more 
complicated task of band energy prediction at a single 𝐤𝐤-point, the architecture of (512 - 256 - 
256 - 256) was used. The leaky rectified linear unit was chosen as an activation function. We 
used the Adam stochastic optimization method, the orthogonal weight initialization (6) and the 
dropout technique to prevent overfitting. 
Tree-based ensemble algorithms 
The algorithms were implemented in Scikit-learn (7). For our regression task, we used two types 
of ensembling on decision trees: the random forest regression (8) and the gradient boosting 
regression (9). The architecture is shown in SI Appendix, Figure S2. Hyper-parameters tuning 
was executed by using cross-validation on a training set to enhance the fitting process. 
 
Data fusion 
Data fusion represents the concept of combining different data sources in order to improve the 
model (10). We adopted this approach to further improve the learning outcome of 𝐸𝐸g, namely 
the most technically important property for an electronic material. While the data fusion model 
prediction in Ref. (11) corresponds to a baseline value plus a correction, our data fusion 
approach is more advanced. More specifically, given 𝐸𝐸gPBE computed using an approximate 
baseline level of theory (PBE) at a particular query strain case, a related 𝐸𝐸gGW  value 
corresponding to a more accurate and more demanding target level of theory (GW) can be 
estimated as a function of both 𝐸𝐸gPBE and 𝜺𝜺. Therefore, the 𝐸𝐸gGW consistent with the query 



strain case is learned using exclusively 𝜺𝜺 and 𝐸𝐸gPBE as input, as illustrated in Figure 1a and b. 
The resulting data fusion model reduces the MAE in the prediction of bandgap by more than half 
for kernel-based ensemble methods and allow the bandgap predicted by NN be reach an 
extremely high accuracy of 8 meV, as shown in main text Figure 1b and SI Appendix, Table S1. 
 
SI Appendix, Note S3: 

Ranking of common Si crystal direction families for obtaining the same target bandgap through 
uniaxial compressive straining (from the most energy efficient strain direction to the least energy 
efficient strain direction): 

<111>, <332>, <322>, <221>, <211>, <321>, <331>, <320>, <210>, <311>, <110>, <310>, <100> 
Ranking of common Si crystal direction families for obtaining the same target bandgap through 
uniaxial tensile straining (from the most energy efficient strain direction to the least energy 
efficient strain direction): 

<111>, <332>, <221>, <322>, <331>, <211>, <311>, <321>, <110>, <320>, <210>, <310>, <100> 
 

SI Appendix, Table S1:  

Table S1: MAE and RMSE (in units of eV) for ML algorithms for bandgap prediction with or 
without the ∆-ML model. Here, the Lagrange polynomial of degree 8 is used. Relative error: 
norm of the difference between the true value and the prediction divided by the norm of the true 
value. 

    

ML algorithms GW GW+PBE (∆-ML) 
MAE RMSE MAE RMSE 

Lagrange 0.0211 0.0274 0.0186 0.0241 
GBR 0.0334 0.0521 0.0135 0.0209 
RFR 0.0434 0.0596 0.0145 0.0215 
NN 0.0099 0.0144 0.0080 0.0118 

NN relative error 1.72% 2.78% 1.38% 2.05% 
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Table S2: k-space CBM transitions. Each of 12 separating ridgelines of the iso-bandgap body 
tabulated. The constants 𝑘𝑘1 and 𝑘𝑘2 are approximately equal to 0.425 and 0.5, corresponding to 
points on Δ and L, respectively. 

Type Change of “carapace” k-coordinate of CBM 

‘Δ’-switching 
 

Δ1 ↔ Δ2 (0,𝑘𝑘1, 𝑘𝑘1) ↔ (𝑘𝑘1, 0,𝑘𝑘1) 
Δ2 ↔ Δ3 (𝑘𝑘1, 0, 𝑘𝑘1) ↔ (𝑘𝑘1, 𝑘𝑘1, 0) 
Δ3 ↔ Δ1 (𝑘𝑘1,𝑘𝑘1, 0) ↔ (0,𝑘𝑘1, 𝑘𝑘1) 

‘L’-switching 
 

L1 ↔ L2 (𝑘𝑘2, 0, 0) ↔ (0,𝑘𝑘2, 0) 
L2 ↔ L3 (0,𝑘𝑘2, 0) ↔ (0, 0,𝑘𝑘2) 
L3 ↔ L1 (0, 0,𝑘𝑘2) ↔ (𝑘𝑘2, 0, 0) 

‘L-to-Δ’ transition 
 

L1 ↔ Δ2 (𝑘𝑘2, 0, 0) ↔ (𝑘𝑘1, 0,𝑘𝑘1) 
L1 ↔ Δ3 (𝑘𝑘2, 0, 0) ↔ (𝑘𝑘1,𝑘𝑘1, 0) 
L2 ↔ Δ1 (0,𝑘𝑘2, 0) ↔ (0,𝑘𝑘1,𝑘𝑘1) 
L2 ↔ Δ3 (0,𝑘𝑘2, 0) ↔ (𝑘𝑘1,𝑘𝑘1, 0) 
L3 ↔ Δ1 (0, 0, 𝑘𝑘2) ↔ (0,𝑘𝑘1,𝑘𝑘1) 
L3 ↔ Δ2 (0, 0, 𝑘𝑘2) ↔ (𝑘𝑘1, 0,𝑘𝑘1) 

Indirect-to-direct bandgap transition 
 

L1 ↔ Γ (𝑘𝑘2, 0, 0) ↔ (0, 0, 0) 
L2 ↔ Γ (0,𝑘𝑘2, 0) ↔ (0, 0, 0) 
L3 ↔ Γ (0, 0,𝑘𝑘2) ↔ (0, 0, 0) 
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Table S3: Si bandgap prediction errors, RMSE and MAE (in units of eV), for the incremental 
fitting scenario on reduced datasets. The error in both metrics is reduced for both 𝜺𝜺𝟑𝟑𝟑𝟑 and 𝜺𝜺𝟔𝟔𝟑𝟑 
datasets after the incremental fitting.  
    

 𝜺𝜺𝟑𝟑𝟑𝟑 𝜺𝜺𝟔𝟔𝟑𝟑 
before after before after 

RMSE 0.0403 0.0069 0.0264 0.0253 
MAE 0.0167 0.0052 0.0179 0.0167 

 

 
 
 
 



SI Appendix, Figure S1:  
 

    
Figure S1: (a) ESE achieved by applying a reduced deformation gradient tensor to the 
undeformed diamond cubic lattice of Si or C in the real space. (b) Brillouin zone of diamond 
cubic crystal under three-normal-strains deformation. It is a tetradecahedron with 8 hexagonal 
and 6 quadrilateral faces. The discussions based on Figure 5 of the main text incorporate the 
same labels and k coordinates as here.  
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Figure S2: Top: Three major processing steps involved in the deep ESE of bandgap, including 
data acquisition through ab initio computations, ML and physical property exploration. Middle: 
Flowchart setting out the details of the ML process. Here, strain tensor and k coordinate are used 
as the input whereas the bandgap and energy dispersion are the target for fitting. For the ML 
algorithms, our set-up supports ANN, GBR, RFR, and other kernel-based fitting methods. 
Bottom: Detailed architecture of the algorithms adopted.  
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Figure S3: Color contour map of the elastic strain energy density (ℎ) required to reach the same 
bandgap level of 0.6 eV through uniaxial compressive straining in Si.  
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