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Appendix A. Calculation of plastic strain amplitude and accumulated plastic 

strain 

When cyclic deformation of GNG/CG Cu specimens is performed under the 

constant total strain amplitude (Δεt/2) control, the sum of elastic strain amplitude 

(Δεe/2) and plastic strain amplitude (Δεpl/2) is maintained constant along the depth 

from GNG surface to CG core during cyclic loading: 

Δεt/2 = Δεe/2+Δεpl/2                                             (1) 

In general, Δεe/2 is defined as   

Δεe/2 = σa/E                                                    (2) 

Where σa is the stress amplitude, i.e. Δσ/2; while E is the Young’s modulus (120 

GPa for Cu).  

In this study, although GNG/CG Cu specimens were cyclically deformed under 

the iso-total strain amplitude, the gradient plastic strain distribution in cyclically 

deformed GNG/CG Cu arises due to progressive yielding from the coarse-grained 

core to nanometer surface. These two regions exhibit large differences in yield 

strength and hardness, as shown in Fig. 6a. 

For the nano or ultrafine grains in the GNG layer (with limited strain hardening 

capacity) during cyclic deformation, their yield strength and tensile strength (σTS) 

(both are equal) are estimated to be approximately one third of the hardness value. 

Thus, the σa value in the GNG layer at different cycles (namely N= 1, 4%, 20%Nf) can 

be estimated, using the measured hardness at the corresponding depth: 

σa ≈ Hv/3                                                      (3) 
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For the CG core and deformed CG layer with high work hardening capacity and 

the GNG layer at 40% and 100% Nf cycles with large coarsened grain size, σTS is 

much higher than σy. Thus, σa in these layers is not accurately estimated using the Hv 

data which should be proportional to σTS. Instead, σa in CG core at different cycles can 

be taken to be same with that of homogeneous CG at the same Δεt/2, as shown in Fig. 

2b. Similarly, at any cycle, σa in the deformed CG layer and/or the GNG layer at 40% 

and 100% Nf cycles is approximately proportional to σa in CG core. Take σa in the 

deformed CG layer as an example: 

(σa)Deformed CG/(σa)CG core ≈ (Hv)Deformed CG/( Hv)CG core                     (4) 

Based on the above Equations (1) to (4), in combination of Hv data in GNG 

layers and stress amplitude data of homogeneous CG, the variation of the Δεpl/2 as a 

function of depth for cyclically deformed GNG/CG Cu at different cycles are 

estimated and plotted in Fig. 6b. 

In general, the degree of damage accumulation under cyclic loading is evaluated 

using the cumulative plastic strain, which is generally estimated as [1]. 

 

 

Here Δεpl,i/2 is the plastic strain amplitude in the ith cycle and N is the total 

number of cycles. For GNG/CG Cu sample in this study, Δεpl/2 in different depth from 

GNG surface to CG core varied with cycles, as shown in Fig. 6b. Approximately, for 

different layers of GNG/CG, Δεpl/2 in a certain period, such as from 4% Nf to 20% Nf, 

is supposed to equal with a half of Δεpl/2 at 4% Nf and that at 20% Nf. 
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For example, the accumulated plastic strain at 20% Nf is calculated as: 

(5) 

Similarly, the cumulative plastic strain in different layers of GNG/CG at different 

cycles can be estimated by adding the cumulative plastic strains in different time 

periods (0-4% Nf; 4% Nf - 20 Nf; 20% Nf - 40 Nf; 40% Nf - Nf).. 

It is obvious that both Δεpl/2 in GNG layer and in CG core at Nf, estimated either 

from hardness or from stress amplitude data of homogeneous CG, are comparable, as 

shown in Fig. 6b. Furthermore, the estimated value of Σ4Δεpl/2 in different layers 

(especially in CG core) of GNG/CG Cu (Fig. 7) is also comparable to that calculated 

from its hysteresis loop as well. These results suggest that the estimates of Δεpl/2 and 

Σ4Δεpl/2 in this study are reasonable and reliable. Recent studies of GNG/CG metals 

by recourse to finite element model employing crystal plasticity add further insights 

into strain and stress distribution in the GNG/CG material during tensile deformation 

[57, 58]. 
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Appendix B. Transition life 

It is well accepted that in the high-cycle fatigue (HCF) regime under stress 

control (elastic deformation), the fatigue lives of a metal at different stress amplitudes 

are dominated by its strength, based on the Basquin equation[1]. Fatigue limit 

(generally the maximum stress amplitude at which the specimen exhibits a fatigue life 

of 107 cycles) is traditionally used to assess its high cycle fatigue response. By 

contrast, in the low-cycle fatigue (LCF) regime under strain control (with significant 

plastic deformation), the fatigue lives (2Nf) at different plastic strain amplitudes 

(Δεpl/2) are governed by ductility, according to the Coffin-Manson equation, i.e. 

                                              (6) 

where   is the fatigue ductility coefficient, which approximately correlates with 

the extent of elongation to failure in a tensile test; c is the fatigue ductility exponent 

which ranges from –0.5 to –0.7 for most metals. Typically, the larger ductility, the 

longer is the low-cycle fatigue life. 

Variations of the elastic, plastic and total strain amplitudes as functions of 2Nf are 

plotted in Supplementary Fig. 1, based on the above equations[1]. In order to isolate 

the LCF and HCF regimes in Supplementary Fig. 1, the transition life is defined as the 

number of reversals to failure (2Nf)t, at which the elastic and plastic strain 

components are equal. From equations (1) and (2), transition life is obtained as:  

                                              (7) 

where ′
fσ is the fatigue strength coefficient (which approximately equals the true 

fracture strength) and b is the fatigue strength exponent which ranges from –0.05 to –
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0.12 for most metals. The LCF regime corresponds to (2Nf) < (2Nf)t while the HCF 

corresponds to (2Nf) > (2Nf)t. 

The exponent in Eq. (7), 1/(b-c), typically ranges from 1.54 to 2.63. From 

Equation (7), it can be found that the transition life (2Nf)t is also positively correlated 

with the fatigue ductility coefficient. Thus, the transition life (2Nf)t can also be used to 

assess the resistance to LCF under strain control, similar to the role of fatigue limit 

played in high-cycle fatigue.  

Since the transition life is defined as the number of reversals to failure (2Nf)t, at a 

“critical” Δεt/2 where elastic and plastic strain components are equal, we have 

performed strain-controlled fatigue tests of GNG metals for different Δεt/2 to explore 

their “critical”Δεt/2 and (2Nf)t experimentally, instead of employing the parameters of 

Basquin and Coffin-Manson equations. The “critical” total strain amplitudes of 

GNG/CG, GUFG/CG and homogeneous CG Cu are 0.29%, 0.28% and 0.2%, 

respectively. Note that when comparing low-cycle fatigue properties of GNG/CG and 

homogeneous CG Cu using transition life, the low-cycle fatigue property of GNG/CG 

Cu is somewhat underestimated, because its (2Nf)t is acquired at higher Δεpl/2, due to 

its high strength and higher elastic strain component, as seen in Fig. 2b. 
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Supplementary Fig. 1. The variation of the elastic, plastic and total strain amplitude 

as functions of the number of load reversals to failure (2Nf) (from Reference [1]).  
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