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Two-component RBC Model and Validation

Two-component RBC model. In the coarse-grained molecular
dynamics (CGMD) RBC model, the major two components
of the RBC membrane, namely the cytoskeleton and the lipid
bilayer, are represented explicitly by coarse grained (CG) par-
ticles. As shown in Fig. 1, the cytoskeleton of the membrane
consists of spectrin filaments connected at the actin junctional
complexes, forming a hexagonal network. The actin junctional
complexes, represented by blue particles, are connected to the
lipid bilayer via glycophorin proteins (yellow particles). Spec-
trin is a protein tetramer formed by two identical heterodimers.
Each heterodimer is comprised of an α-chain with 22 triple-
helical segments and a β-chain with 17 triple-helical segments.
Thus, each spectrin filament is simulated by 39 spectrin parti-
cles (green particles). These spectrin particles are connected
with unbreakable springs uspectrin = kspectrin(d−deq)2, where
kspectrin is the spring constant, d and deq are distance and equi-
librium distance between two spectrin CG particles. The lipid
bilayer and transmembrane proteins of the RBC membrane are
represented by three types of CG particles (Fig. 1). The red
CG particles denote aggregates of lipid molecules. The yellow
particles signify glycophorin proteins which are connected to
the blue particles by unbreakable springs. The black particles
represent band-3 proteins that tether spectrin filaments to the
lipid bilayer. These three types of CG particles interact via
a pairwise potential similar to the Lennard-Jones potential.
However, the employed interacting potential depends not only
on the translational degrees of freedom of two interacting CG
particles di and dj , but also on their rotational degrees of
freedom ni and nj . The potential is given by

uij(ni,nj ,xij) = uR(d) +A(α, a(ni,nj , x̂ij))uA(d), [1]

uR(d) = 1.4ε( dc − d
dc − deq

)
8
, [2]

uA(d) = −2.8ε( dc − d
dc − deq

)
4
, [3]

A(α, a(ni,nj , x̂ij)) = 1 + α(a(ni,nj , x̂ij)− 1), [4]

a(ni,nj , x̂ij) = (ni × x̂ij) · (nj × x̂ij)
= ni · nj − (ni · x̂ij)(nj · x̂ij), [5]

where xij = dj−di, d = |xij | and x̂ij = xij/d. α is a parame-
ter that tunes the bending stiffness of the RBC membrane. dc

is the cutoff distance of the potential and it is selected to be
2.6σ, where σ is the length unit of the system. ε is the energy
unit. Actin and spectrin filaments interact with lipid bilayer
and transmembrane proteins via a Lennard-Jones potential,

ULJ = 4ε
[
(σ
d

)12 − (σ
d

)6
]

d < deq. [6]

Detailed information about this RBC model can be found in
the authors’ former work in Li et al. (1) and Tang et al. (2).

This RBC model can simulate an entire RBC by using ∼4
million CG particles using a single shared memory commodity
workstation, but it is computationally expensive when simu-
lating a long-time dynamic process such as a RBC passage
through IES. In order to achieve higher computational effi-
ciency, we apply a coarse model by using a fewer number of
actin junctions in the RBC model. While the RBC membrane
structure is preserved, we model 500 actin junctions in a single
RBC (see Fig. 1), instead of a physiological value of ∼23867.
Following the method applied in (3), the parameters in the
coarse RBC model are recalibrated against experimental data
to ensure the mechanical properties of the RBC are preserved.
The coarse RBC model consists of 198965 CG particles and
the length unit of the model is σ = 35 nm. The energy unit is
ε = kBT/0.22, where kB is the Boltzmann constant and the
temperature of the system T is 300 K. The parameter that
determines the bending stiffness of the RBC membrane, α, is
selected to be 2.1. The translational motions of CG particles
are governed by the Langevin equation

mi
dvi

dt
= −ζvi + Fi + ξi, [7]

where mi and vi are the mass and velocity of the CG particle
i. Fi is deterministic force exerted on particle i and it results
from the interacting potentials. ζ is the friction coefficient and
it is selected to be 0.01m/τ , where τ is the time scale of the
simulation and m = 669 kDa is the mass unit of the system.
Selection of ζ will be further discussed in the following section.
ξi is the random force, which has zero mean and variance
of 2kBTζ/4t. For numerical integration of the equations of
motion, we use the velocity Verlet algorithm with a finite time
step of 4t = 0.01τ .

In this study, we simulate the healthy and diseased RBCs
passage through IES using CGMD method where the timescale
of the system cannot be calculated following the same strategy
of molecular dynamics because CG particles represent a lump
of atoms or molecules and thus are not real atoms. The
correspondence between the simulation time and the physical
time can be established via comparison with a referenced
physical process. In our simulation, when driven by a pressure
gradient of 5 Pa µm−1, it takes approximately 190000τ for
a RBC with surface area of 140 µm2 and volume of 90 µm3

to traverse IES. If we correspond this simulation time to the
median transition time of 0.23 s for RBC passage through IES
measured from in vivo studies of rate model (4, 5), τ can be
calculated to be 1.21× 10−6 s.

The mechanical properties of mature RBCs mainly result
from their cell membrane as they lack of nucleus and most
organelles. The lipid bilayer of the RBC membrane behaves
like 2D-fluid and thus the elasticity of RBCs arises primarily
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from cytoskeleton. In the following sections, we will illustrate
that the elastic properties and bending stiffness of the coarse
RBC model are consistent with the previously reported exper-
imental results by performing optical tweezer simulations and
by measuring the thermal fluctuations of the RBC membrane.

Elastic properties of the RBC model. Optical tweezers have
been successfully implemented to study the elasticity and de-
formability of RBCs (6, 7). A number of numerical simulations
have mimicked this experimental setup by applying stretching
forces on the opposite sides of RBCs to validate the RBC
models and to probe the biomechanical behavior of diseased
RBCs (8, 9). Following previous studies, we put the RBC
model under stretch, analogous to the optical tweezer experi-
ments, to examine the elasticity of the healthy and diseased
RBCs. The total stretching force, Fs, is applied at the two ends
of the RBCs in diametrically opposite directions, as shown in
Fig. S1A. The stretching force is varied from 0 pN to 200 pN
in increments of 20 pN. The stretch response of the RBC is
measured by recording the axial (DA) and transverse (DT )
diameters of the stretched RBC. Our simulations show that
as the Fs increases, DA of the RBC model increases whereas
DT decreases. Fig. S1B shows a RBC under a stretching
force of 200 pN. As plotted in Fig. S2, the overall stretching
response measured from the RBC model (blue curve) under
various values of Fs is consistent with previous optical tweezer
measurements of healthy RBCs (red curve) (7), which assumes
a shear modulus of 5.3 pN/µm for the RBC model.

Bending stiffness of the RBC model. In this section, we vali-
date the bending stiffness of the RBCmodel based on Brownian
flicker analysis of membrane thermal fluctuations (10). We
perform simulations following the protocol of a prior diffraction
phase microscopy experiment (10), where the instantaneous
heights of the cell membrane along the upper rim of a RBC
were monitored to calculate the fluctuations of a RBC. In our
simulation, the bottom of the RBC model is fixed, mimick-
ing adhesion of the RBC to a solid substrate. The thermal
fluctuation of the membrane is measured on the upper side of
the RBC, through which the root-mean-square displacement
(rmsd) of membrane fluctuations is calculated. Fig. S3 illus-
trates that the membrane fluctuation distribution of the RBC
model overlaps with the measurements from the healthy RBCs
in (10). The rmsd of the membrane fluctuations is computed
to be about 90 nm. Based on the analytical expression derived
in (11), the bending stiffness of the RBC, kc, can be estimated
by kc = AkBT/(8π3rmsd2), where A is the surface area of
a RBC. Following this expression, kc of the RBC model is
calculated to be 2.89× 10−19 J, which falls within the range
of 2× 10−19 J to 7× 10−19 J reported in prior experimental
studies (12).

Cause of increased critical pressure gradient. The discrep-
ancy between the critical pressure gradient of ∼5 Pa µm−1

obtained in current work and the value of ∼1 Pa µm−1 re-
ported in previous studies is mainly attributed to the fact that
the implemented CGMD RBC model is an implicit-solvent
model. Implicit representation of solvent particles could un-
derestimate the effect of the driven pressure. In addition, we
cannot explicitly consider the effects of friction and hydro-
dynamic lubrication between the RBCs and the wall of IES
with this implicit-solvent model. To examine the effects of

Fig. S1. Modeling the healthy and HS RBCs under stretch. (A) A stretching force, Fs,
is applied at the two ends of a RBC in diametrically opposite directions. The axial
(DA) and transverse (DT ) diameters of the stretched RBC are recorded at a variety
of Fs. (B) A healthy RBC under a stretching force of 200 pN. (C) A spectrin-deficient
RBC with spectrin density of 40% under a stretching force of 200 pN. (D) A band-
3-deficient RBC with vertical connectivity of 0% under a stretching force of 200 pN.
In the above figures, the lipid particles (red particles) are plotted in a smaller size in
order to more clearly visualize cytoskeleton (green particles).

Fig. S2. The stretching response of a healthy RBC model under stretching forces
ranging from 0 pN to 200 pN measured from our simulation and from optical tweezer
experiments performed by Suresh et al. (7).
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equivalent to application of a pressure gradient of 1 Pa µm−1

in the DPD-based RBC model.

Analytical framework. Pivkin et.al (13, 14) developed a simpli-
fied axisymmetric model to elucidate the effects of geometric
constraints on RBC–IES interactions. In their work, the slit
cross-section in the y-z plane is assumed to be circular (Fig. S4)
instead of rectangular, but with the same cross-sectional area
such that

Ds = 2
√
HsWs/π. [8]

Thus, the IES is approximated by the surface of a torus. As
shown in Fig. S4, the traversing RBC at the critical condition
is comprised of a central torus connected with two spheres.
The surface area and volume of the RBC, therefore, can be
computed by

A = 4
(
2πR2 − πRh

)
+ 2πLsθ

(
Ds

2 + Ls

2 −
Ls sin θ

2θ

)
[9]

and

V =2
[4

3πR
3 − 1

3πh
2 (3R− h)

]
+ πLs

2

(
R+ Ls

2

)
cos θ(R sin 2θ − Lsθ)

+ π

4

(
L3

s sin θ − L3
s sin3 θ

3

) [10]

respectively, where h is the height of spherical cap cut by the
y-z plane at intersecting point p (Fig. S4) and

h = R−R

√√√√1−
(

Ds
2 + Ls

2

)2(
R+ Ls

2

)2 [11]

and
θ = arccos

[(
Ds

2 + Ls

2

)
/
(
R+ Ls

2

)]
[12]

is an angle of the torus part as shown in Fig. S4. After
rewriting the Eq. (10) as V = f(R) and defining its inverse
function as R = f−1(V ), Eq. (11) and Eq. (12) can be
expressed as h = h(R) = h(f−1(V )) = g1(V ) and θ = θ(R) =
θ(f−1(V )) = g2(V ). Based on the axisymmetric theory, the
minimum surface area (A), below which the RBCs with fixed
volume (V ) are retained by the slit, is given by

A = 4
{

2π
[
f−1(V )

]2 − πf−1(V )g1(V )
}

+ 2πLsg2(V )
{
Ds

2 + Ls

2 −
Ls sin [g2(V )]

2g2(V )

}
. [13]

where Ds is the radius of the slit opening and Ls is the
thickness of the sinus wall.

Deformability index of healthy and diseased RBCs. To quan-
tify the deformability of the healthy RBC and HS RBCs
after passage through IES, we subject these RBCs under
stretch to compute their deformability index based on the
deformations of RBCs. The deformability index is defined as
DI = (DA−DT )/(DA +DT ), where DA and DT are the axial
and transverse diameters of the stretched RBCs, as shown in
Fig. S1A. The stretch force Fs is selected to be 200 pN such
that DI of the healthy RBC model is calculated to be 0.596,

Fig. S3. Membrane fluctuation distributions measured at the upper rim of a healthy 
RBC measured from simulation (circles) and from experiment performed by Park et 
al. (10) (solid lines).

these simplifications, we perform DPD-based s imulations, as 
reported in (13), and apply the pressure gradients on different 
components of blood: (a) RBC membrane only (an analogous 
simulation setup to our current study), and (b) both RBC 
membrane and solvent particles (the same simulation setup as 
in (13)). Indeed, we find that when driving the RBC through 
IES, the equivalent pressure gradient applied in case (a) is at 
least twice as much as that in case (b). Our implicit-solvent 
model did not consider the lubrication effect induced by the 
fluid flow around the RBC, which facilitates the RBC traver-
sal process. Moreover, the interaction between the RBC and 
wall of IES is described by a hard core repulsive potential 
(Lennard-Jones potential) in our present model, whereas a 
soft-core repulsive potential was implemented in the DPD 
model. Implementation of a hard core repulsive potential also 
contributes to the increased critical pressure in the current 
model.

We also examine how the friction coefficient ζ in Eq.(7) 
affects the critical pressure that is able to drive RBCs through 
IES. First, we reduce the magnitude of ζ from 0.01 (used 
in current simulations) to 0.001 and we find that when ζ  is 
reduced down to 0.004, the critical pressure gradient decreases 
from 5 to 3 Pa µm−1. However, the temperature of the system 
is 5% lower than the target temperature, meaning that the 
thermostat cannot maintain the temperature of the system 
due to this small value of ζ. Next, we further reduce the 
value of ζ to 0.0001. We find t hat t he s ystem temperature 
can deviate from the target temperature by ∼10% whereas 
the critical pressure gradient remains at 3 Pa µm−1. This 
result implies that reduction of ζ cannot decrease the critical 
pressure gradient while maintaining the temperature of the 
system when ζ ≤ 0.01. On the other hand, we also increase 
ζ from 0.01 to 0.1. Our simulation results show that when 
ζ is increased to 0.06 and 0.1, the critical pressure gradient 
is increased to 8 and 15 Pa µm−1, respectively. These results 
show that the critical pressure gradient becomes sensitive to ζ 
when ζ ≥ 0.06.

It is noted that in spite of the discrepancy in the critical 
pressure gradient, we show that the critical ratio of S/V mea-
sured from our simulation, which determines the passage of 
RBCs through IES, is in agreement with the critical ratio 
of S/V obtained from the analytical model and DPD-based 
simulations in (13, 14). This finding suggests that application 
of a pressure gradient of 5 Pa µm−1 in the present model is
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Fig. S4. Schematic of the slit geometry considered in the analytical model. The
traversing RBC is signified by the red line. The surface of the RBC is tangential to the
surfaces of the endothelial cells at point p. The black line circle on the right represents
the cross-section A-A. The rectangular slit is approximated by the circular slit with the
same cross-sectional area. Adapted from figure 2 in (13).

consistent with the DI of ∼0.61 measured by ektacytometry
for healthy RBCs at a fixed osmolality of 300 mOsmol/kg (15).
The average values of surface area loss reported in Fig. 4A are
used to reconstruct the HS RBCs with various vertical connec-
tivities and spectrin densities for DI measurements. Figs. S1C
and D illustrate the deformations of a spectrin-deficient RBC
with spectrin density of 40%, and a band-3-deficient RBC with
zero vertical connectivity under stretching forces of 200 pN.
Due to the decreased S/V ratio, the deformations of these two
RBCs are suppressed, compared to the healthy RBC plotted
in Fig. S1B. The DI of RBCs at different levels of intensity of
molecular defects in HS is summarized in Fig. 4B.

Vesiculation process of band-3 deficient and spectrin-defi-
cient HS RBCs. In case of band-3 deficient RBCs, although
the vertical cohesion between lipid bilayer and cytoskeleton is
impaired, the cytoskeleton is intact and the spectrin content
is normal. Once a bud is initiated due to the localized dissoci-
ation between lipid bilayer and cytoskeleton (Fig. S5A), the
lipids from neighboring membrane compartments flow to the
localized dissociation area, which is evidenced by a growing
tubular bud on the traversing band-3-deficient RBC (Fig. S5B
and C). These observations are consistent with the mechanism
proposed by Gov et.al (16). Subsequently, the necks of the
buds become narrower and the vesicles are pinched off from the
membrane (Fig. S5D–F). In case of spectrin-deficient RBCs,
the number of actin junction complexes is reduced and the
spectrin content is depleted. As illustrated in Fig. S6, multiple
buds are formed from the spectrin-depleted area and subse-
quently separate from the RBC. These observations imply
that the lipids in the spectrin-depleted area can bud off and
form vesicles without pronounced lipid flow from neighboring
compartments, consistent with the hypothesis raised by Elber
et.al (17). Therefore, the mechanisms of RBC vesiculation are
likely to depend on the type of protein deficiencies in HS.

SI Movies. Movie S1 A healthy RBC passing through IES
under a pressure gradient of 20 Pa µm−1. Only one half of the
RBC is plotted for clarity.

Fig. S5. Six sequential snapshots of the vesiculation process of an HS RBC with
a vertical connectivity of 60% passage through IES under a pressure gradient of
10 Pa µm−1.

Fig. S6. Six sequential snapshots of the vesiculation process of an HS RBC with 60%
spectrin content of normal RBCs passage through IES under a pressure gradient of
10 Pa µm−1.

Movie S2 An HS RBC (top view) with a vertical connec-
tivity of 60% passing through IES under a pressure gradient
of 10 Pa µm−1. The lipid CG particles (red particles) are plot-
ted at a smaller size to visualize the underneath cytoskeleton
(green particles).

Movie S3 An HE RBC (top view) with a horizontal con-
nectivity of 50% passing through IES under a pressure gradient
of 10 Pa µm−1.

Movie S4 An HE RBC (top view) with a horizontal con-
nectivity of 20% passing through IES under a pressure gradient
of 10 Pa µm−1.
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