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Sickle-cell anaemia (SCA) is an inherited blood disorder exhibiting hetero-

geneous cell morphology and abnormal rheology, especially under hypoxic

conditions. By using a multiscale red blood cell (RBC) model with parameters

derived from patient-specific data, we present a mesoscopic computational

study of the haemodynamic and rheological characteristics of blood from

SCA patients with hydroxyurea (HU) treatment (on-HU) and those without

HU treatment (off-HU). We determine the shear viscosity of blood in health

as well as in different states of disease. Our results suggest that treatment

with HU improves or worsens the rheological characteristics of blood in

SCA depending on the degree of hypoxia. However, on-HU groups always

have higher levels of haematocrit-to-viscosity ratio (HVR) than off-HU

groups, indicating that HU can indeed improve the oxygen transport potential

of blood. Our patient-specific computational simulations suggest that the HVR

level, rather than the shear viscosity of sickle RBC suspensions, may be a more

reliable indicator in assessing the response to HU treatment.
1. Introduction
Blood is a non-Newtonian fluid that delivers nutrients and oxygen to living cells

and removes their waste products. The viscosity of blood is a direct measure of

the ability of blood to flow through the vessels. It is generally believed that five

factors, namely, haematocrit (Hct), red blood cell (RBC) deformability, RBC

aggregation, plasma viscosity and temperature, primarily determine the

haemodynamic and rheological behaviour of blood [1].

SCA is an inherited blood disorder exhibiting abnormal rheology and hae-

modynamics under hypoxic conditions [2,3]. In SCA, mechanically fragile and

poorly deformable RBCs contribute to impaired blood flow and other patho-

physiological aspects of the disease. In addition, sickle RBC suspensions

exhibit different levels of viscosity for different cell morphologies, which are

dependent on the rate of deoxygenation (DeOxy) [4,5]. Gradual DeOxy is

known to result in predominantly elongated- and classic sickle-shaped RBCs,

which are intrinsically more rigid and viscous. The increase in blood viscosity

is much greater when DeOxy is rapid (resulting in less distorted but highly vis-

cous granular-shaped RBCs) than when it is gradual. When the flow of blood is

relatively slow, cellular reactions that lead to adhesions of sickle RBCs to vascu-

lar endothelium can take place, resulting in vaso-occlusion and consequent

clinical manifestations such as organ damage, pain and even death.

A change in blood rheological properties is usually linked to haematological

diseases and, therefore, the viscosity of blood has long been used as an indi-

cator for understanding the implications and treatment routes of this type of

diseases. Although many experimental studies have been devoted to the

measurement of sickle blood viscosity, considerable uncertainty exists with

respect to the effect of hydroxyurea (HU) treatment [6–8] on the viscosity of
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Table 1. Selected haematologic parameters from four SCA patients. The
symbols MCHC and MCV in the table denote mean corpuscular
haemoglobin concentration and mean corpuscular volume, respectively.
S-P-I and S-P-II represent two samples of SCA patients not treated with
HU, whereas S-P-III and S-P-IV represent the other two samples from SCA
patients treated with HU.

off-HU on-HU

S-P-I S-P-II S-P-III S-P-IV

Hct (%) 22.9 18.6 21.9 29.2

MCV (fL) 83.0 83.3 99.1 99.0

MCHC (g dl21) 36.7 36.6 35.6 34.2

HbS (%) 84.2 90.1 72.4 86.0

HbF (%) 11.9 6.0 24.1 10.0

HbA (%) 0.0 0.0 0.0 0.0

HbA2 (%) 3.9 3.9 3.5 4.0

Table 2. Values of cell density and MCHC in different cell fractions.

cell fraction I II III IV

cell density (g ml21) 1.081 1.091 1.100 1.111

MCHC (g dl21) 27.3 30.9 34.9 50.0
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sickle blood: it has been reported that the viscosity may

increase [9], decrease [10] or even remains unchanged [11]

for patients with SCA after treated with HU. For example,

in a case reported by Fattori et al. [9], they observed an

increase in blood viscosity in their patient treated with HU

for SCA. They also found a significant increase in haematocrit

in this patient. However, in another case reported by

Lemonne et al. [11], they observed that blood viscosity did

not increase but remained as before in HU-treated patients.

They also found that haematocrit did not significantly

increase in their patients. Thus, the effect of HU treatment

to blood viscosity in SCA cannot be attributed to just one

factor, it is better understood as a multi-factorial process

that involves Hct, cell volume and deformability, etc. Actu-

ally, two effects appear to counteract each other: on the one

hand, HU treatment is associated with an elevated mean cor-

puscular volume (MCV) and an increased Hct, resulting in a

higher blood viscosity [9]. On the other hand, HU treatment

is also associated with improved cell hydration [12] and cell

deformability [13,14], and consequently a lower blood vis-

cosity [10]. Interestingly, sickle RBCs after HU treatment

always exhibit higher RBC deformability and higher MCV,

which raises the question: To what extent does the HU treat-

ment enhance RBC performance in microcirculation, thereby

improving oxygen delivery in the body?

Computational modelling and simulations of blood flow

in microcapillaries have improved considerably in recent

years [15–20]. For example, a multiscale RBC (MS-RBC)

model [21,22] has been employed to quantify the adhesive

and dynamic properties of sickle RBC suspensions in tube

flows [23,24]. Available evidence indicates that adhesive

interaction between sickle RBCs and vascular endothelium

plays a key role in triggering vaso-occlusion phenomenon.

Despite these findings, many important aspects of rheologi-

cal and flow properties of sickle blood, especially of the HU

effect on the complex and abnormal rheological behaviour

of sickle RBCs and sickle blood, are still poorly understood. It

is known that the origin of SCA can be traced to a common mol-

ecular basis, but individual patients with SCA have a highly

variable clinical phenotype. For these reasons, there is a compel-

ling need to develop a unique predictive patient-specific model

of SCA to quantify the collective dynamics and rheology

of blood flow in SCA. Such a model would provide a more

reliable method and an overall modelling framework to extract

rheological properties of blood flow in SCA from a variety

of independent experimental methods. In this paper, we

present a computational simulation framework for assessing

implications of SCA from patient-based information and for

extracting quantitative prediction of rheological properties of

sickle blood through which clinical inventions could potentially

be designed and evaluated more effectively.
2. Material and methods
2.1. Selection of sickle blood samples
Blood samples from four patients with SCA were collected in

ethylenediaminetetraacetic acid and stored at 48C for in vitro test-

ing within 3 days of blood withdrawal. The four samples

included two with HU treatment (on-HU) and two without

HU treatment (off-HU). Table 1 shows selected haematologic

and haemorheologic parameters in these four samples from

SCA patients.
Each blood sample, 1 ml in volume, was washed twice with

phosphate-buffered saline (PBS) at a centrifuge frequency of

2000 r.p.m. for 5 min at 218C and fractionated into four density sub-

populations using an Optiprep-based gradient medium. The

estimated mean corpuscular haemoglobin concentration (MCHC)

values of the four density subpopulations were 27.3, 30.9, 34.9

and 50.0 g dl21 (table 2). Each fractionated density was suspen-

ded in RPMI-1640 medium containing 1% w/v bovine serum

albumin (BSA) for in vitro sickling measurement using a poly-

dimethylsiloxane (PDMS)-based microfluidic hypoxia assay,

which provided measurements of cell sickling under controlled

oxygen concentration conditions at 378C, including a fully oxygen-

ation (Oxy) state (20% O2), a short-term hypoxia (40 s) and a

long-term hypoxia (4 min). For the two hypoxic conditions, O2 con-

centration dropped from 20% to less than 5% within 15 s and

maintained at 2% for the rest period of time.

Cell sickling was identified visually by changes in cell

shape and cell texture associated with DeOxy on a Zeiss Axiovert

200 (Zeiss, Thornwood, NY, USA) inverted microscope with a

414/46 nm band-pass filter. The morphology of sickled and

unsickled cells was categorized into four major groups, includ-

ing discoid- (D), granular- (G), elongated- (E) and classic

sickle-shaped (S) RBCs.

2.2. Simulation model and method
We studied the shear viscosity of sickle blood with the help of the

MS-RBC model based on the dissipative particle dynamics

(DPD) simulation technique [25]. For completeness, the method

and the model are briefly reviewed below; more comprehensive

details are available elsewhere [21,22].

2.2.1. The dissipative particle dynamics method
The DPD method is a stochastic simulation technique that

describes a set of particles moving together in a Lagrangian

fashion (i.e. a method where the motion of particles is observed
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in a moving reference frame) subject to simplified pairwise conser-

vative, dissipative and random forces [25]. In DPD simulation,

particles represent a cluster of molecules, rather than single

atoms and their position and momentum are updated in continu-

ous phase but spaced at discrete time steps [26]. A common choice

of the soft repulsion for the DPD particles permits us to use larger

integration time steps than usually allowed by the molecular

dynamics (MD) simulation technique. As a result, DPD is a

simple but intrinsically more adaptable simulation method for

modelling the dynamic and rheological properties of simple and

complex fluids, such as blood flow.

2.2.2. Red blood cell models
In the MS-RBC model, the cell membrane is modelled by a two-

dimensional triangulated network with Nv vertices, where each

vertex is represented by a DPD particle. The vertices are connected

by Ns viscoelastic bonds so as to impose proper membrane

mechanics. Specifically, the elastic part of bond is represented by

Vs ¼
X

j[1...Ns

kBTlmð3x2
j � 2x3

j Þ
4pð1� xjÞ

þ
kp

ðn� 1Þln�1
j

" #
, ð2:1Þ

where lj is the length of the spring j, lm is the maximum spring

extension, xj ¼ lj/lm, p is the persistence length, kBT is the energy

unit, kp is the spring constant and n is a specified exponent. The

membrane viscosity is imposed by introducing a viscous force

on each spring. The bending resistance of the RBC membrane is

modelled by

Vb ¼
X

j[1...Ns

kb[1� cosðuj � u0Þ], ð2:2Þ

where kb is the bending constant, uj is the instantaneous angle

between two adjacent triangles having the common edge j and u0

is the spontaneous angle. Constraints on the area and volume con-

servation of RBC are imposed to mimic the area-preserving lipid

bilayer and the incompressible interior fluid. The corresponding

energy is given by

Vaþv ¼
X

j[1...Nt

kdðAj � A0Þ2

2A0
þ kaðA� Atot

0 Þ
2

2Atot
0

þ kvðV � Vtot
0 Þ

2

2Vtot
0

, ð2:3Þ

where Nt is the number of triangles in the membrane network, A0 is

the triangle area, and kd, ka and kv are the local area, global area and

volume constraint coefficients, respectively. The terms Atot
0 and Vtot

0

are the specified total area and volume, respectively.

The RBC membrane interacts with the fluid particles through

DPD forces, and the temperature of the system is controlled

through the DPD thermostat. The internal and external fluids are

modelled by collections of free DPD particles and their separation

is enforced by bounce-back reflections of these particles at the RBC

membrane surface. The model has been validated in a number of

studies including the simulations of healthy [27], malaria-infected

[28] and SCA RBC flow conditions [24]. The sickle RBC model is

constructed by applying surface tension on an MS-RBC mem-

brane, representing the distortion of the cell membrane due to

the polymerization of HbS molecules and alignment of fibres

inside the RBC. The distorted shape is redefined as the equilibrium

state of the sickle RBC with minimum free energy. Detailed

description of the sickle RBC model can be found in [23,29].

2.2.3. Aggregation model
The aggregation interaction between RBCs plays a major role in

rheological property of blood [27]. In this study, the intercellular

aggregation interaction is approximated using the Morse potential

UM
r ¼ De½e2bðr0�rÞ � 2ebðr0�rÞ�, ð2:4Þ
where De is the well depth of the Morse potential, and b character-

izes the interaction range. For the MS-RBC model, the Morse

potential interactions are implemented between every pair of ver-

tices of separate RBCs if they lie within a defined potential cutoff

radius [27].

2.3. Rheological prediction
Blood viscosity was computed from simulations of a suspension

of RBCs in plane Couette flow (see the electronic supplementary

material, video clip). As the sickle RBCs are more rigid and less

flexible, in many clinical case reports blood viscosity are usually

determined at lower shear rates less than, say 225 s– 1. For

this reason, the shear rates are tested only in the range of

0–160 s– 1. On average, the shear rate and particle number den-

sity in simulations were verified to be spatially uniform over

time, and the viscosities were computed as functions of the

shear rate over the above range.
3. Results and discussion
The abnormal rheological properties of sickle RBCs are corre-

lated with the significantly lowered cell deformability. In the

sickle RBCs, their equivalent shear modulus is significantly

higher than that for the healthy RBC [14,30,31]. In this

study, we modelled a healthy RBC using the MS-RBC

model with the following parameters: Nv ¼ 500; RBC area

A0 ¼ 135.2 mm2 and volume V0 ¼ 92.4 mm3; RBC membrane

bending modulus kc,0 ¼ 2.4 � 10219 J; shear modulus m0 ¼

6.3 pN mm21. Following Lei & Karniadakis [23], the effective

shear modulus of the sickle RBC was first chosen to be 2000

times larger than the value of the healthy RBC in the current

study. Recent studies suggest that RBC aggregation proper-

ties are likely to be involved in the pathophysiology of SCA

[32], and the force required to disrupt aggregates of RBCs

in case of SCA is around four times greater than that in the

healthy RBC [33]. The RBC aggregation interactions are mod-

elled by the Morse potential with the following properties

[24,27]: b ¼ 1.5, r0 ¼ 0.3 and the well depth of the Morse

potential is set at De,0 ¼ 3.0 for the healthy RBC and De ¼

12.0 for the sickle RBC.

In the model system, the domain dimensions are set to 40.0 �
40.0 � 28.0 mm. The number of RBCs depends on the Hct level

and cell volume for each blood sample. For example, there are

approximately 194 RBCs in the simulation box at Hct ¼ 40%

and MCV ¼ 92.4 mm3. The equations of motion are integrated

using a modified velocity-Verlet algorithm with l ¼ 0.50

and time step Dt ¼ 0.001t. Typical simulation takes about

5.0 � 106 time steps to compute the required statistics.

With the parameters defined as shown above, we first

consider the healthy blood. The measured shear viscosity

with respect to shear rate is plotted in figure 1a. We find

that the simulation results can be fitted by h ¼ be�a= _g0:5 þ c,

where a, b and c are fitting parameters specified in the

figure. The numerical results show that the healthy blood

behaves as a non-Newtonian fluid under normal conditions,

i.e. the shear viscosity decreases with the increasing of shear

rate, which are in agreement with the experimental results

[34]. We then examined the shear viscosity of sickle blood

at 40% Hct with three distinct types of sickle RBCs—the gran-

ular-, elongated- and classic sickle-shaped types—reported in

previous experiments [4]. Our results show that the abnor-

mal rheological properties of sickle RBCs are correlated

with the cell morphology, and the sickle RBC suspensions

http://rsfs.royalsocietypublishing.org/
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exhibit different viscosity values for different cell shapes: the

granular-shaped RBC suspension is the most viscous, while

the classic sickle-shaped RBC suspension has a lower vis-

cosity. However, the shear viscosity of sickle RBC

suspensions containing elongated RBCs shows a dramatic

decrease. The numerical results agree with available exper-

imental data [4] and numerical simulations [23]. Figure 1b
summarizes these findings. The error bars in the figure

show the statistical error of a set of calculated viscosity

values, by increasing or decreasing the default value of

shear modulus m0 by 10%.

The sickle RBCs has decreased deformability, causing

abnormal rheology in sickle blood and eventually various

complications of SCA. To verify the significant role of cell

deformability in determining the rheological property of indi-

vidual sickle RBCs, we performed numerical simulations of

sickle RBCs in shear flow at different shear modulus

values. Here, we adopted the granular-shaped RBCs as an

example. In figure 2, we show the simulation results. We

found that the viscosity of sickle RBC suspension increases

with increasing effective shear modulus. It becomes weakly

dependent on shear rate when the normalized shear modulus

(i.e. the ratio of shear modulus of the sickle RBC to that of the

healthy RBC) reaches about 1000.

We then carried out numerical simulations of patient-based
samples to predict the shear viscosity of blood in SCA by

incorporating clinical data of SCA patients. Parameters

related to these data, including biophysical characteristics,

haematologic and haemorheologic parameters in SCA

patients are summarized in table 1. In these data, the level

of HbS was found to be the highest in the off-HU/S-P-II

group (90.1%), moderate in the off-HU/S-P-I group

(84.2%) and the on-HU/S-P-IV (86.0%) group and the

lowest in the on-HU/S-P-III group (72.4%). By contrast,

the highest level of HbF was seen in the on-HU/S-P-III

group (24.1%), moderate in the on-HU/S-P-IV (10.0%)

group and the off-HU/S-P-I group (11.9%), and lowest in

the off-HU/S-P-II group (6.0%). One possible reason for

these different HbS/HbF levels is the variability in the clini-

cal symptoms of different SCA patients: some patients have
mild symptoms, while others are frequently hospitalized for

more serious complications. When the values of MCV were

compared between the off-HU and on-HU groups, it was

found that the MCV values are always higher in the on-

HU groups than those in the off-HU groups. This is consist-

ent with previous observations that sickle RBCs after

treatment with HU always exhibit higher MCV values. We

studied the rheological properties of blood in SCA using

these specific clinical data for individual patients at three

different states: (i) fully Oxy state, (ii) short-term DeOxy

state and (iii) long-term DeOxy state.

Similar to the study of Kaul et al. [35], sickle blood is separ-

ated into four major fractions (I–IV) according to the cell

density (see figure 3). Selected characteristics and morpho-

logic analysis of SCA patients are summarized in table 3.

One major subpopulation consists of sickle RBCs with a den-

sity similar to that of healthy RBCs (fraction II, SS2), the other

subpopulation is very dense (fraction IV, SS4) and contains

mainly irreversible sickle cells (ISCs). The sickle RBCs lighter

than fraction II contain a high subpopulation of reticulocytes

(fraction I, SS1) [35], while fraction III (SS3) denotes a group

http://rsfs.royalsocietypublishing.org/
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Table 3. General characteristics and morphologic analysis of sickle RBCs in four representative SCA patients. Symbols D, G, E and S indicate discoid-, granular-,
elongated- and classic sickle-shaped RBCs, respectively.

condition sample
sickling
(%) fraction

sickled cells (%) deformable cells (%)

D G E S D G E S

Oxy Off-HU S-P-I 0.0 SS1 — — — — 3.5 0.4 2.4 —

SS2 — — — — 43.4 2.6 4.3 1.8

SS3 — — — — 20.6 0.9 9.2 1.3

SS4 — — — — 1.4 0.7 6.7 0.8

S-P-II 0.0 SS1 — — — — 3.4 2.7 — —

SS2 — — — — 37.7 2.4 4.9 —

SS3 — — — — 15.0 1.1 5.2 —

SS4 — — — — 5.6 — 18.1 3.9

on-HU S-P-III 0.0 SS1 — — — — 16.0 0.9 1.9 0.6

SS2 — — — — 38.7 1.6 9.5 —

SS3 — — — — 17.3 2.2 6.1 0.7

SS4 — — — — 2.5 0.9 1.1 —

S-P-IV 0.0 SS1 — — — — 2.5 0.6 — —

SS2 — — — — 28.8 1.9 — —

SS3 — — — — 55.6 3.8 — —

SS4 — — — — 3.1 2.5 0.6 0.6

short-term DeOxy

(40 s)

Off-HU S-P-I 20.2 SS1 — — — — 2.6 0.5 3.0 —

SS2 — 4.4 — — 38.2 2.4 5.7 1.6

SS3 — 5.8 1.8 — 14.7 1.6 7.8 0.4

SS4 — 2.5 5.1 0.6 1.3 — — —

S-P-II 39.0 SS1 — — — — 2.8 1.7 1.6 —

SS2 — — — — 36.8 4.7 3.5 —

SS3 — 12.5 — 0.3 5.4 0.5 2.7 —

SS4 0.6 12.5 5.9 7.2 — — 1.3 —

On-HU S-P-III 9.4 SS1 — — — — 18.0 1.0 — 0.4

SS2 — 3.1 — — 38.4 — 7.5 0.8

SS3 — 4.4 — — 15.8 — 6.3 —

SS4 — 1.4 0.5 — 1.6 — 0.8 —

(Continued.)
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Table 3. (Continued.)

condition sample
sickling
(%) fraction

sickled cells (%) deformable cells (%)

D G E S D G E S

S-P-IV 3.1 SS1 — — — — 3.1 1.3 — 0.6

SS2 — — — — 47.5 1.9 — —

SS3 — 2.5 — — 33.8 1.9 3.1 0.6

SS4 — — 0.6 — 2.5 — 0.6 —

long-term DeOxy

(4 min)

Off-HU S-P-I 59.5 SS1 — — — — 2.6 0.9 2.6 0.8

SS2 — 21.5 — 5.0 18.6 2.1 4.3 0.7

SS3 — 18.1 — 5.9 5.3 1.3 0.9 0.4

SS4 — 3.4 4.3 1.3 — — — —

S-P-II 80.4 SS1 — — 0.7 0.9 2.2 0.9 1.2 —

SS2 — 17.4 — 15.4 9.2 1.9 1.0 0.5

SS3 — 18.5 0.3 — 1.8 0.5 0.4 —

SS4 1.3 9.6 6.9 9.4 — — — —

On-HU S-P-III 34.4 SS1 — 1.3 — 2.0 10.9 1.3 3.9 —

SS2 — 4.6 — 2.8 31.2 — 10.9 0.8

SS3 — 16.6 — 3.9 3.6 — 1.4 0.9

SS4 — 2.0 1.2 — 1.0 — — —

S-P-IV 57.6 SS1 — — — — 2.5 0.6 — —

SS2 — 7.5 — 7.5 15.6 — — —

SS3 — 31.3 — 4.4 23.7 — — —

SS4 — 5.0 1.9 — — — — —
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distinctly located between fractions II and IV. It is known that

sickle RBCs exhibit various morphological characteristics and

different cell rigidity depending on cell density and DeOxy

procedure [31,36]. Previous studies have clearly shown that

the deformability of individual sickle RBCs is decreased

even under fully Oxy state [30,31] when compared with

healthy RBCs. It deteriorates further with reductions in

oxygen concentration [36]: upon DeOxy, the equivalent

shear modulus of sickle RBCs is increased by 100–1000-fold

(i.e. the deformability decreases very significantly) concomi-

tantly with cell morphological changes [31]. Taking all these

facts into consideration, different effective shear modulus

values emerge for sickle RBCs in different cell density sub-

populations under Oxy and DeOxy. Under Oxy, based on

the experimental measured shear modulus data by Evans

et al. [30], the effective shear modulus is set to m ¼ 1.0m0,

1.2m0, 1.5m0 and 3.0m0 for RBCs in fractions I, II, III and IV,

respectively. Under DeOxy, we considered four distinct

types of sickle RBCs with different membrane properties

under shear flow based our previous simulations [23,24]:

for an SS1 deformable cell with a low MCHC value, we set

the effective shear modulus m ¼ (5–10)m0. For an SS2 cell

with a moderate MCHC value, the effective shear modulus

is one or two orders of magnitude greater than the value of

healthy RBCs, so we set m ¼ (50–100)m0. For an ISC of the

SS4 type, in which the effective shear modulus is increased

by at least two or three orders of magnitude compared with

that of healthy RBCs [31], we set m ¼ (1000–2000)m0. For a

rigid discocyte cell of SS3 type with a higher MCHC value,

we set m ¼ (250–500)m0 for the comparative study. In
addition, for the deformable RBCs in each cell fraction, we

assume that these RBCs have a similar deformability with

the ones in the same cell fraction under Oxy.

As shown in table 1, patients with SCA have Hct values that

are roughly half of the normal value (e.g. about 18.6–21.9%

compared to about 40–45% normally). It is known that haema-

tocrit is the most obvious determinant of blood viscosity [37].

A decrease in haematocrit leads to a decrease in blood viscosity.

Moreover, the whole blood viscosity also depends on RBC

deformability, which is considered the second most important

determinant of blood viscosity. Blood containing sickle RBCs

is more viscous than normal blood, because the sickle RBCs

are more rigid and their membranes are stiffer. HU treatment

improves cell deformability but also increases cell volume

(see the MCV values in table 1). The joint influence of HU

on RBC structural and mechanical properties may signifi-

cantly affect the blood flow in SCA patients. In order to

develop a quantitative assessment of the efficacy of HU treat-

ment on blood viscosity, we examined how sickle RBC

suspensions moved in shear flow. Specifically, we computed

and compared the blood viscosity at different shear rates

among normal blood, on-HU and off-HU groups exposed

to different oxygen tensions. The values of shear viscosity

of sickle blood obtained from the DPD simulations are

shown in figure 4. We analyse the simulation results at

these three different states:

(1) Under Oxy state. The average shear viscosity of sickle

blood is found to be significantly less than that of

normal blood at all three shear rates (i.e. _g ¼ 40, 80 and

http://rsfs.royalsocietypublishing.org/
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140 s– 1), and the off-HU/S-P-II group has the lowest vis-

cosity. It is known that haematocrit is a primary

determinant in blood shear viscosity under this specific

condition. The lower shear viscosity of sickle blood

samples is mainly associated with the reduced Hct

values than those of normal control.
(2) Under short-term DeOxy state. After 40 s of DeOxy, the

viscosity of sickle blood increases, and the difference

between the on-HU groups and the off-HU groups

becomes smaller. Moreover, the on-HU/S-P-III group

yields a slightly lower viscosity than the off-HU/S-P-I

group. The on-HU/S-P-IV group still yields the highest

blood viscosity among the four sickle blood samples.

http://rsfs.royalsocietypublishing.org/
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This is mainly due to its higher Hct value than the other

three sickle blood samples. The altered blood viscosity

in SCA cases is also associated with an increased number

of sickle RBCs, especially the granular-shaped RBCs.

For example, in the off-HU/S-P-I group and the off-HU/

S-P-II group, there are 12.7% and 25.0% of RBCs becoming

granular-shaped RBCs, respectively. It is known that the

granular-shaped RBC suspensions are the most viscous.

As a result, these changes bring an increase in sickle

blood viscosity. In the off-HU/S-P-II group, more RBCs

become sickled than those in the off-HU/S-P-I group.

Associated with this change is a remarkable increase in

blood viscosity of the off-HU/S-P-II group compared to

the off-HU/S-P-I group.

(3) Under long-term DeOxy state. With an increase in DeOxy

time, the shear viscosity in individual sickle blood

samples increases. The increases we observed in vis-

cosity of sickle blood are likely caused primarily by

changes in cell morphology. As shown in table 3, the

changes in cell morphology are remarkable with more

rigid granular-shaped RBCs: in the off-HU/S-P-I

group, the granular-shaped RBCs increased from 12.7

to 43.0%; in the off-HU/S-P-II group, the granular-

shaped RBCs increased from 25.0 to 45.5%. Within the

on-HU groups, the amount of granular-shaped RBCs are

changed from 8.9% and 2.5% to 24.5% and 43.8% for the

on-HU/S-P-III group and the on-HU/S-P-IV group,

respectively. As we have demonstrated earlier, the granu-

lar-shaped RBC suspensions are the most viscous, and

thus, a relatively large increase in the percentage of granu-

lar-shaped RBCs can cause marked increase in blood

viscosity. Our results thus suggest two major parameters

that can affect the blood viscosity in SCA after DeOxy:

the haematocrit and cell morphology.

As the viscosity of blood is a direct measure of the resist-

ance of blood to flow, an increase in blood viscosity would be

expected to result in retarded blood flow thereby causing

reduced oxygen delivery. However, an increase in blood vis-

cosity might not be associated with increased risk in SCA

[38]. The haematocrit-to-viscosity ratio (HVR), which reflects

the oxygen transport efficiency of blood [32], is calculated for

each subject at different shear rates.

For each case, we find that the HVR level increases with

the shear rate (figure 5). Also, for the on-HU groups, the

HVR levels are higher than those for the off-HU groups.

Under Oxy states, all sickle blood samples share a similar

blood viscosity at the same shear rate, and HU treatment

seems to have no obvious influence. However, under
DeOxy states, the HVR values of the of-HU groups decrease

significantly and they are of much lower levels than those

values of the on-HU groups. The higher HVR levels found

in the on-HU groups indicate that the haemorheological

oxygen transport potential of blood seems to be preserved

in these groups. Thus, although blood viscosity cannot

easily be compared between the different sickle blood

samples, the high HVR levels found in the on-HU groups indi-

cate a comparable high oxygen transport potential of blood.

Here we want to mention that the functional dependence of

the shear viscosity on the shear rate is associated with the

Coutte flow set-up (constant shear rate), which is not necess-

arily transferable to the in vivo scenario. In addition, the

shear viscosity is examined from four blood samples including

two on-HU groups and two off-HU groups. Thus, further

work with more patients and quantitative comparison to selec-

tive experiments is required to confirm and emphasize the

rheological aspects of SCA—this may be investigated more

systematically in future studies.
4. Summary
In summary, this study provides a unique, patient-based simu-

lation at the molecular level on the rheological behaviour of

sickle blood. Our data suggest that although systemic blood

viscosity is not a major factor involved in the pathophysiol-

ogy of this complication, decreased RBC oxygen transport

efficiency, i.e. low haematocrit/viscosity ratio, could play a

critical role. This ensemble of results thus leads to the con-

clusion that HU treatment can indeed improve the blood

flow in SCA. Understanding the shear viscosity and the

HVR level of sickle blood is, therefore, essential to explore

new treatment strategies.
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