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Indentation creep tests and finite element simulations were performed on a model material to show that the constitutive equation for
conventional uniaxial creep can be derived using the instrumented indentation testing technique. When the indentation pressure and the
indentation creep rate are maintained at constant values of ps and _¾inðsÞ, respectively, the contours of the equivalent stress and the equivalent
plastic strain rate in the region beneath the conical indenter expand according to the increase in the displacement of the indenter while
maintaining geometrical self-similarity. These findings indicate that a pseudo-steady deformation state takes place around the indenter tip. The
representative point exhibiting the creep behavior within the limited region, which actually determines the indenter velocity, is defined as the
location where the equivalent stress �· r equals ps=3. The equivalent plastic strain rate _�¾r at this point is found to be _¾inðsÞ=3:6 in the case when the
stress exponent for creep is 3. The stress exponent and the activation energy for creep extracted from the results of Al­5.3mol%Mg solid-
solution alloy indentation tests are in close agreement with those of tensile creep tests reported in the literature. In addition, the values for �· r and
_�¾r agree well with the values for the applied stress and the corresponding creep rate in tensile creep tests at the same temperature. The above
results show that the creep characteristics of advanced materials, which are often available in minute quantities or as small-volume specimens,
can be obtained from carefully designed indentation creep tests, and furthermore the constitutive equation for tensile creep can be predicted with
sufficient accuracy through indentation creep test results. [doi:10.2320/matertrans.M2013370]
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1. Introduction

The indentation hardness test is a mechanical testing
method that has been used for more than a hundred years to
evaluate material strength by the size of an impression
formed when a rigid indenter is pressed at a constant load
into a sample surface.1,2) Following recent progress in nano-
and micro-scale mechanical properties research and associ-
ated technologies, there is interest in the instrumented
indentation testing technique, which was developed from
conventional hardness testing methods.3­5) In this testing
technique, changes in load and indenter displacement over
time are measured when an indenter tip is pressed into a
sample in various loading modes, and elastic characteristics
such as Young’s modulus and creep characteristics such as
the stress exponent are evaluated. This method is classified as
either nanoindentation (NanoIn) testing4) or microindentation
(MicroIn) testing5) depending on the degree of indentation
depth. The former is usually used to examine room-
temperature mechanical characteristics of thin film materials,
nanostructures, and so forth, while the latter is often used
for studying high-temperature mechanical characteristics of
small-volume specimens and functionally graded materials.

For high-temperature structural materials, it is important
to determine the constitutive equation for creep with regard
to creep rate, stress, temperature, and material structure. A
certain sample size is required to obtain this equation because
tensile creep tests must be performed under a minimum

of three stress conditions per temperature. However, for
structural members that are in use or heat-resistant materials
under development, oftentimes only a tiny sample can be
obtained for testing and ordinary tensile creep tests cannot
be conducted enough times if not impossible. Thus, it is
extremely advantageous if the constitutive equation for creep
can be obtained by MicroIn testing under these circumstances.

We will first look at trends in research on MicroIn creep
testing and assess the relationship between the present work
and the existing literatures in the followings.

1.1 Extraction of creep characteristics
Mulhearn and Tabor6) determined indentation creep rate

from the change in impression size with respect to loading
time (� _d=d, where d is the impression diameter of the
spherical indenter, and _d is the time rate of change of the
impression diameter). They determined the creep character-
istic values of low-melting-point metals under the assumption
that a power law relation holds true between indentation
creep rate and hardness. Chu and Li7) used an indentation
tester that could continuously measure indentation depth of
a cylindrical indenter under constant load to determine the
creep characteristic values of ¢-tin single crystals under the
assumption that a power law relation holds true between
the indenter velocity and the indentation pressure. In these
papers, a power law relation for tensile creep, known to hold
true under steady-state deformation, was taken as a presumed
condition for creep analysis without taking into consideration
the strain gradient under the indenter. To resolve this issue,
Sargent and Ashby8) studied the case in which the strain
contour line pattern under the indenter maintains geometrical
self-similarity. They derived a constitutive equation for
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indentation creep under the assumption that the indentation
creep rate (� _u=

ffiffiffiffi
A

p
, where _u is the indenter velocity, and

A is the horizontal projected area of Vickers impression)
is proportional to the equivalent plastic strain rate _�¾ under
the indenter, and the hardness value is proportional to the
equivalent stress �· under the indenter. However, it was
ambiguous what values under the indenter are indicated by _�¾

and �·. An indentation creep tester that can be used at up to
about 1000K was developed at the authors’ laboratory,9) and
constant-load indentation tests and load-jump tests were
conducted using a conical indenter on pure metals, eutectic
alloys, solid-solution alloys, and precipitation-strengthened
alloys.10­13) In addition, they simulated the process of
pressing a conical indenter into a power-law material using
the finite element (FE) method, and confirmed that when the
indentation pressure p and indentation creep rate _¾in became
constant, the contour line pattern of _�¾ under the indenter
expanded while maintaining self-similarity.14)

1.2 Indentation loading method
Lucas and Oliver15) demonstrated that when the load is

increased exponentially, indentation pressure asymptotically
approaches a constant value as time elapses. Further, Cheng
and Cheng16) carried out a dimensional analysis in which a
sharp indenter was pressed into a power-law material and
obtained results similar to those of Lucas et al.

1.3 Methods of predicting the constitutive equation for
tensile creep from MicroIn tests

Hyde et al.17) performed FE simulation of pressing a
cylindrical indenter under constant load into a power-law
material and numerically evaluated the proportionality
constants, C1 and C2, in �· ¼ C1p and _�¾ ¼ C2_¾in (where C1

and C2 conform to the symbolic convention of the present
paper) under the hypothesis that they are not dependent on
the stress exponent for creep. Bower et al.18) performed
theoretical analysis and FE simulations of the same problem
and determined the values of C1 and C2 under the hypothesis
that the equivalent plastic strain rate is expressed by _�¾ ¼ _u=a
(where a is the true contact radius of the indenter). They
showed that the obtained values were all dependent on the
stress exponent. Thus, the results of the two research groups
were distinctively different, and a method for deriving these
proportionality constants has not yet been established.
We have not yet reached the point where the constitutive
equation for tensile creep (including all the creep parameter)
can be accurately predicted by an indentation creep test.

The objective of this study is to demonstrate that the
constitutive equation for conventional tensile creep or
uniaxial creep can be predicted with sufficient accuracy from
constant-pressure indentation creep test results. To achieve
this objective, we theoretically derived the constitutive
equation of indentation creep for the pseudo-steady defor-
mation state and performed MicroIn testing and FE
simulation. We then performed the following six research
tasks.
(1) Using FE simulation, we clarified that a pseudo-steady

deformation state occurs exactly under the indenter
when a conical indenter is pressed at a constant
pressure.

(2) We estimated a region in which the indenter velocity
had been substantially determined (control volume,
CV), and studied the factors that influenced the
magnitude thereof.

(3) We defined a point within the CV that represented
deformation behavior, determined the equivalent stress
and equivalent plastic strain rate at this CV representa-
tive point, and examined the relationship between
indentation pressure and indentation creep rate.

(4) We derived the constitutive equation for the indentation
creep of a power-law material and examined methods
for extracting creep characteristics for a region of
material near the CV representative point through
MicroIn testing.

(5) We selected an Al­Mg solid-solution alloy as a model
material, and performed MicroIn testing on it. We com-
pared the obtained creep characteristic values with the
tensile creep test results reported by other researchers.

(6) From the results of MicroIn testing and FE simulation,
we derived the constitutive equation for conventional
tensile creep or uniaxial creep. We compared this
constitutive equation with those for tensile creep
derived by other researchers.

2. Computational and Experimental Methods

2.1 Elasto-plastic finite element simulation
FE simulations of indentation creep were performed using

the general-purpose non-linear FE program ABAQUS
Standard (SIMULIA) into which our own subroutines were
incorporated. A cylindrical model of a perfectly elastic plastic
body was created using four-noded bilinear axisymmetric
quadrilateral elements, and a rigid indenter (apex angle: 136°)
was vertically pressed into the center of the top surface
thereof. The cylindrical model was 3mm in diameter and
3mm high, and the maximum indenter displacement was
0.15mm. We assumed no friction between the indenter and
the sample surface and that elastic deformation and power-
law creep (_�¾ ¼ B �·n, where _�¾ is the equivalent plastic strain
rate, B is the creep constant, �· is the equivalent stress, and
n is the stress exponent for creep) occurring in the finite
elements. The elastic characteristics used were Young’s
modulus E ¼ 37:8GPa19) and Poisson’s ratio ¯ ¼ 0:345,20)

and the creep characteristic values B ¼ 1:0� 10�6

MPa¹3 s¹1, and n ¼ 3:012) were used. The details of the FE
model have been reported elsewhere.12)

2.2 Indentation creep test
An ingot of Al­5.3mol%Mg alloy was homogenized in an

argon atmosphere for 86.4 ks at 773K (0.85 Tm, where Tm is
the absolute melting point). The ingot was then cut into
5mm © 10mm © 5mm cuboids, which were adjusted by
emery polishing to ensure that the 5mm © 10mm test
surface and the bottom surface were parallel. Then, they
were annealed for 3.6 ks at 773K. Immediately before
indentation creep test, approximately 40 µm of the sample
surface layer was removed by electropolishing. Details of
sample preparation have been reported elsewhere.13)

Indentation creep tests were performed in an argon
atmosphere using a microindenter (ULVAC-RIKO, Inc.,
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Japan). The apex angle of the diamond conical indenter used
was 136°. The test temperature was 636­773K (0.70­0.85
Tm), and the temperature fluctuation during the indentation
creep tests was «1K or less. The indentation load was
applied by an electromagnetic force, and indenter displace-
ment was measured by a linear variable-differential trans-
former. Here, the measurement precision of load and
displacement were 10¹2N and 10¹7m, respectively. The
measurement data were recorded by a personal computer at a
sampling rate of 10 s¹1.

3. Constitutive Equation for Indentation Creep

3.1 Constraint factor
When a conical indenter is pressed vertically into a sample

surface with load F, if piling-up and sinking-in of the surface
and the effect of friction are ignored, the indentation pressure
p can be expressed as:

p ¼ F

³u2 tan2 ª
: ð1Þ

Here, u is indenter displacement, which expresses the
indentation depth from the original surface, and ª is the
half-apex angle. When F is kept constant under static or
quasi-static conditions, the indenter is at the location where
the indentation load and deformation resistance force are in
equilibrium.

Hill et al.21) analyzed using the slip-line field method the
case in which a triangular indenter was pressed into a two-
dimensional semi-infinite block of a perfectly rigid plastic
body. They demonstrated that the yield stress Y is proportional
to p, and when ª = 68°, C1 ¼ 1=2:4. Cheng and Cheng22)

performed dimensional analysis assuming that C1 is depend-
ent on Young’s modulus, yield stress, and work-hardening
rate, and they demonstrated that in a perfectly rigid plastic
body, C1 ¼� 1=2:8. Kudo23) showed that when the static
friction coefficient between the indenter and sample is 0.1 to
0.2, C1 ¥ 1/2.9 to 1/2.8. Tabor et al.2) discovered that the
relationship Y ¼� H=3 holds true between Vickers hardness H
and flow stress Y corresponding to tensile strain ¾ ¼ ¾0 þ 0:08
(where ¾0 is the initial strain). Nakamura et al.24) demon-
strated that the relationship Y ¼� H=2:8 holds true for flow
stress corresponding to compression strain ¾ ¼ 0:08, and
asserted that this Yvalue corresponds to the average combined
stress that occurs under the indenter. As described above, the
theoretical and experimental results for indentation deforma-
tion show that the hardness value (indentation pressure) is
proportional to the flow stress. In the present paper as well,
the relationship �· r ¼ C1p holds true between the indentation
pressure p and the representative equivalent stress �·r under
the indenter. Hereinafter, we shall refer to C1 as the constraint
factor, which will be assumed to be 1/3.

3.2 Control volume
The control volume (CV) means the region in which the

indenter velocity has been substantially determined. Here,
the location that represents the creep behavior of that region
will be called the CV representative point, at which the
equivalent stress is equal to p=3, and this stress value shall be
referred to as the representative stress, �· r:

�· r ¼ p=3: ð2Þ
The equivalent plastic strain rate at this point shall be referred
to as the representative strain rate _�¾r.

Let us consider the case in which the contour lines of the
equivalent plastic strain rate expand exactly under the
indenter while maintaining self-similarity. This means that
when indenter displacement is doubled, the magnitude of
the expansion of these contour lines doubles as well, while
contour line shapes remain unchanged. According to this
scaling rule, the indentation creep rate that provides a
measure of the rate of CV expansion is defined as:22,25)

_¾in ¼ _u=u: ð3Þ
Here, u is the indenter displacement, and _u is the indenter
velocity. For compatibility, the following relationship should
hold true between _¾in and the representative strain rate _�¾r:

_�¾r ¼ C2_¾in; ð4Þ
where C2 is the conversion coefficient for determining _�¾r.

3.3 Pseudo-steady deformation state and creep charac-
teristic values

In steady-state deformation of crystalline materials, it is
known that the following power law (Norton’s law) holds
true between the equivalent stress �· and the equivalent plastic
strain rate (creep rate) _�¾:

_�¾ ¼ A1

�·

E

� �n

: ð5Þ

Here, A1 ¼ A0 expð�Q=RT Þ, A0 is the creep constant, Q is
the activation energy for creep, R is the gas constant, T is the
test temperature, E is Young’s modulus at each temperature,
and n is the stress exponent for creep. Therefore, the
constitutive equation for indentation creep is written as:

_¾in ¼ A2

p

E

� �n
¼ A3

F

Eu2

� �n

: ð6Þ

Here, A2 ¼ A1C
n
1=C2, and A3 ¼ A2=ð³ tan2 ªÞn.

When the strain hardening rate and recovery rate are in
equilibrium in the CV during indentation creep, deformation
proceeds under the conditions where p and _¾in are constant.
In this case, F / u2, and _¾in ¼ d ln u=dt ¼ ¡ (constant). In
order for both to hold true, the indentation load F must be
given by:

F ¼ F0 expð2¡tÞ: ð7Þ
Here, F0 is the initial load, ¡ is the load increment parameter,
and t is the loading time. From eqs. (6) and (7), the change
over time of the indenter displacement u® that is, the
indentation creep curve® is expressed by the following:

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F0

E

A3

¡
fexpð2¡ntÞ � 1g

� �1=ns
: ð8Þ

The above equation shows that indenter displacement
increases as temperature increases via A3. The indentation
creep rate _¾in is expressed by:

_¾in ¼
¡

1� expð�2¡ntÞ : ð9Þ
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The above equation shows that indentation creep rate is not
temperature-dependent. Furthermore, the indentation pres-
sure p is expressed by the following:

p ¼ E
¡

A2f1� expð�2¡ntÞg

� �1=n
: ð10Þ

The above equation shows that indentation pressure
decreases as temperature increases via A2. From eqs. (9)
and (10), it is seen that _¾in and p asymptotically approach
constant values as time elapses, and the larger the value of n,
the shorter the time to reach a constant value. When the
individual constants are expressed as _¾inðsÞ and ps, they may
be written as:

_¾inðsÞ ¼� ¡; ð11Þ
ps=E ¼� ð¡=A2Þ1=n: ð12Þ

_¾inðsÞ is not temperature-dependent; however, ps/E decreases
as temperature increases.

When the indenter is pressed with an indentation pressure
of ps and indentation creep rate of _¾inðsÞ, the pseudo-steady
deformation state is realized, as will be described later. From
eqs. (2) and (4), the representative stress �·r and representa-
tive strain rate _�¾r at this time are given by �· r ¼ C1ps and
_�¾r ¼ C2_¾inðsÞ. From eq. (5), the stress exponent for creep, n,
of a material small block near the CV representative point is:

n ¼ @ ln _¾inðsÞ
@ lnðps=EÞ

				
T

: ð13Þ

The activation energy for creep Q is given by:

Q ¼ �R
@ ln _¾inðsÞðE=psÞn

@ð1=T Þ : ð14Þ

4. Results and Discussion

4.1 FE Simulation of indentation creep
By FE simulation, we examined the state of deformation

when a conical indenter is pressed into a power-law creep
material. The indentation load is given by F ¼ F0 expð2¡tÞ,
where F0 = 0.29N and ¡ = 2.5 © 10¹4 ¹ 4.0 © 10¹3 s¹1.
Figure 1 shows the change in indenter displacement over
time (open circles) at ¡ = 5.0 © 10¹4 s¹1. For convenience,
only data measured every 100 s is plotted. Immediately after
loading, an instantaneous indenter displacement u0 occurred
due to elasto-plastic deformation in the region exactly under
the indenter. Subsequently, indenter displacement increased
in a sigmoidal shape as loading time elapsed. In the figure,
the indentation creep curve for a perfectly rigid plastic
body obtained from eq. (8) is shown as a thick line. The
values A1 = 5.40 © 107 s¹1, C1 ¼ 1=3, and C2 ¼ 1=3:6 (to
be described later) were used in the calculation. This curve
agrees well with the FE simulation results for a perfectly
elasto-plastic body (open circles). This finding demonstrates
that the influence of elastic deformation on the indentation
creep curve is negligibly small.

Figure 2 shows as open circles the changes over time in
the indentation creep rate and indentation pressure obtained
from the indentation creep curve (Fig. 1). Both decreased
rapidly for the first 500 s, but they asymptotically approached
the respective constant values _¾inðsÞ and ps at approximately

1000 s. In this case, _¾inðsÞ ¼� 5:0� 10�4 s¹1, and _¾inðsÞ ¼� ¡

of eq. (11) holds true. Furthermore, ps ¼� 15:6MPa, which
agrees well with ps ¼� Eð¡=A2Þ1=n ¼ 15:5MPa of eq. (12).
These results demonstrate that eqs. (11) and (12) are valid.
This suggests that by knowing the relationship between
_¾inðsÞ and ps, the stress exponent set in the FE model can be
accurately extracted from eq. (13). Actually, it has been
confirmed that the same value as the stress exponent
(n = 3.0) set in the FE model is evaluated from the slope
of the straight line obtained by double-logarithmically
plotting _¾inðsÞ and ps=E.14) The above finding demonstrates
that the creep characteristic values of a material small block
at the CV representative point can be accurately extracted
using eqs. (13) and (14) from the experimental results of
constant-pressure indentation creep test.

4.2 Self-similarity of contour line pattern of equivalent
plastic strain

Figure 3(a) shows the contour line pattern (right) of
equivalent plastic strain �¾ occurring beneath the indenter at
1600 s in Fig. 1. The dash-dot line represents the center
line passing through the tip of the conical indenter, and the
diagonal lines represent the exterior shape of the conical
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indenter. A large strain of �¾ � 2:0� 10�1 occurs exactly
under the indenter during indentation creep, but at a distance
3 times the radius of the impression from its center, the
strain is �¾ � 5:0� 10�3. This shows that deformation due to
indentation is concentrated in a very limited region beneath
the indenter.

Figure 3(b) shows a tracing of the movement of the
contour line of �¾ ¼ 1:0� 10�1 in Fig. 3(a). As the loading
time elapses from t = 1200 to 2000 s, the contour lines
expand toward the interior of the sample like ripples on the
surface of water. On the contour line at 1600 s, the principal
direction of each point is represented by a short straight line
toward the direction where maximum compressive strain
occurs. Line RQPF is drawn by connecting point Q on this
contour line with point P at 1200 s and point R at 2000 s,
which have the same principal direction as point Q. In the
figure, the 4 lines obtained in this manner are shown as
dashed lines. The more gradual the slope of these lines, the
closer to the origin O they intersect with the center line.
In the pseudo-steady deformation state, there is regularity
in the expansion direction of the �¾ contour lines because
the intersection points of F and so forth are immobilized.
Now, let us examine the relationship between the expansion
direction and indenter displacement. The position of the
indenter tip is marked as S at 1200 s, T at 1600 s, and U at
2000 s. When the ratio ¢ ¼ SU=ST is determined, it is
¢ = 2.33. The ratio of movement distances of the corre-
sponding contour lines £ ¼ PR=PQ is determined. The
average value of £ of the 4 lines is £ ¼ 2:33� 0:05. This
result indicates that the relationship ¢ = £ holds true within
the range of error. This shows that during the pseudo-steady
deformation state, the �¾ contour line pattern expands
while maintaining geometrical self-similarity as the indenter
displacement increases. This result also supports the fact that
the indentation creep rate can be expressed by eq. (3).

4.3 Pseudo-steady deformation state
In Fig. 4, the top level (a) illustrates the contour line

pattern of equivalent stress at 1200, 1600 and 2000 s of
Fig. 1, and the bottom level (b) illustrates the contour line

pattern of equivalent plastic strain rate at the same points in
time. If we examine the relationship between the indenter
displacement and the expansion direction of each contour
line pattern, the ratio ¬ of the indenter displacement at each
point in time with respect to t = 1600 s is ¬ = 0.82 at 1200 s,
and ¬ = 1.2 at 2000 s. Next, if we shrink or enlarge the
contour line pattern at 1600 s by ¬ and overlay it on that
contour line pattern, we ascertain that they are in complete
agreement. When this scaling rule holds true, if we take the
indenter tip as the origin and normalize the coordinates with
respect to the indenter displacement, �· and _�¾ maintain the
same values at each coordinate during indentation creep test.
That is to say, in indentation creep testing, the pseudo-steady
deformation state is realized around the conical indenter
when the indentation pressure and indentation creep rate are
constant.

4.4 Control volume and representative points
Figure 5(a) shows only the contour lines for �· ¼ 5:0 to

5.4MPa among the equivalent stresses at 1600 s of Fig. 1.
From Fig. 2, the indentation pressure at this time is
ps = 15.6MPa. From eq. (2), the representative stress of
the CV is �· r ¼ 5:2MPa. In the figure, the places where
a �· r value occurs, namely the CV representative points, are
indicated by a thick continuous line. In three-dimensional
space, a shallow-bowl-shaped CV representative surface
exists in the region beneath the indenter. Figure 5(b) shows
only the contour lines of _�¾ ¼ 1:2� 10�4 to 1:6� 10�4 s¹1

among the equivalent plastic strain rates of the same region as
Fig. 5(a). As illustrated in the figure, the equivalent plastic
strain rate at the CV representative points® that is, the
representative strain rate® is _�¾r ¼ 1:4� 10�4 s¹1. Since the
indentation creep rate is _¾inðsÞ ¼� 5:0� 10�4 s¹1, conversion
coefficient C2 of eq. (4) is as follows:

C2 ¼ 1=3:6 ðwhen the stress exponent for creep n ¼ 3:0Þ:
ð15Þ

Here, C2 depends on stress exponent for creep but does not
depend on test conditions such as temperature. Details will be
described elsewhere.

(a) (b)

Fig. 3 (a) Contours of equivalent plastic strain �¾. Loading time is 1600 s. (b) Tracing of a contour line for �¾ ¼ 1:0� 10�1. The short
straight lines on the contour line for 1600 s indicate the direction of maximum compressive stress at the corresponding points.
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To evaluate the size of the CV, FE simulations were
performed under the following deformation conditions:

�· >

�
©_�¾r

A

�1=3:0

at _�¾ ¼ A �·3:0;

�· �
�
©_�¾r

A

�1=3:0

at _�¾ ¼ 0:

9>>>=
>>>;

ð16Þ

In the above equation, creep occurs in the whole region
beneath the indenter at © = 0, and at © = 1, creep occurs only
inside the CV representative surface. The results of FE
simulation show that on the indentation creep curve of Fig. 1
(© = 0), u = 85 µm at 2000 s, but when © = 1, u = 68 µm is
obtained at 2000 s. Therefore, the relative error r of the
indenter displacement u when © = 1 is r = 20%. Further-
more, in the pseudo-steady deformation state (t ² 1000 s), r
has the same value regardless of loading time. Here, for
convenience, the size of the CV is estimated using © = 0.02,
resulting in a relative error of 2%® that is, 1/10 the r value
at © = 1. Thus, the CV is expressed as:

_�¾ � ¡=180: ð17Þ
The above equation indicates that CV decreases as the
indentation creep rate (_¾inðsÞ ¼� ¡) increases. Furthermore,

since the slope of _�¾ becomes steeper as the stress exponent
increases, CV gets smaller.

4.5 Average strain within the control volume
Figure 6 shows the contour line pattern of the equivalent

plastic strain rate _�¾ at ¡ ¼ 5:0� 10�4 s¹1, t = 1600 s. In the
figure, the 3 contour lines of _�¾ ¼ _�¾r© (where _�¾r ¼ 1:4�
10�4 s¹1, © = 0.02, 0.1 and 1) are drawn as solid lines. The
contour line at © = 1 corresponds to the location of the
CV representative points. Furthermore, the contour line at
© = 0.02 represents the outside edge of the CV, and the
interior of the CV is the area shown in gray. The diameter of
the projected contact area of the indenter at this time is
d0 ¼ 344µm, and the diameter of the CV on the sample
surface is d = 1389 µm. In the pseudo-steady deformation
state (t ² 1000 s), d ¼� 4d0 always holds true.

Next, we will look at the representative value of strain
introduced by pressing the indenter (representative strain). If
we determine the average by taking the sum of the products
of the length of each element on the contour line at © = 1 and
�¾ of that portion and dividing by the total length of the
contour line, the result is h�¾i©¼1 ¼ 0:14. At © = 0.1, it is
h�¾i©¼0:1 ¼ 0:07. Furthermore, if we determine the average by

t = 1600s,   u = 69.4µmt = 1200s,   u = 56.7µm t = 2000s,   u = 84.9µm
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Fig. 4 Contours of (a) equivalent stress and (b) equivalent plastic strain rate. The contour lines expand toward the undeformed region
while maintaining the geometrical self-similarity.
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Fig. 5 Contours of (a) equivalent stress and (b) equivalent plastic strain rate. The thick curve shows the location of the representative
points for the CV. These points are found on the curved surface having a shallow-bowl-like shape in three-dimensional space.
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taking the sum of the products of the area of each element
within the CV and �¾ of that portion and dividing by the total
area of the CV, the result is h�¾iCV ¼ 0:04. These respective
averages do not change as loading time elapses during the
pseudo-steady deformation state. Branch et al.26) performed
FE simulation of hardness test of linear hardening materials
and demonstrated that the average equivalent plastic strain
(representative strain) in the deformation region of �¾ �
2:0� 10�3 underneath the Vickers indenter was �¾r ¼� 0:035.
Since the positions of the contour line of �¾ ¼ 2:0� 10�3

(dashed line) and the contour line of _�¾ at © = 0.02 in Fig. 6
are essentially the same, the value they obtained for �¾r agrees
well with h�¾iCV ¼ 0:04. However, Tabor2) used ¾r ¼ 0:08 as
the representative strain introduced by the Vickers indenter,
and Chaudhri27) used ¾r = 0.25 to 0.36. Furthermore, Dao
et al.28) estimated the representative strain introduced by
NanoIn testing at ¾r ¼ 0:033. One reason that the represen-
tative strain values differ depending on the researcher in this
manner is the individual differences in how they define it.
In the present paper, we define the representative strain h�¾iCV
as the average value of equivalent plastic strain within the
CV. Representative strain h�¾iCV ¼ 0:04 is close to the values
reported by Branch et al. and Dao et al.

4.6 Indentation creep test
Constant-pressure indentation creep tests were performed

on an Al­5.3mol% Mg solid-solution alloy using a micro-
indenter. The indentation load was given by F ¼ F0 expð2¡tÞ,
where F0 = 0.29N and ¡ ¼ 2:5� 10�4 to 4:0� 10�3 s¹1.
Figure 7 shows the indentation creep curves at each temper-
ature at ¡ ¼ 5:0� 10�4 s¹1. These curves have the same form
as the results of the FE simulation in Fig. 1. When Eu2 versus
Tm=T at a certain loading time is plotted semilogarithmically
as shown in the inset figure, the experimental data (open
circles) fall on a straight line. This relationship always holds
true in the pseudo-steady deformation state (t ² 1000 s). From
eq. (8), the slope of this straight line equals �Q=2:3nRTm,
and it depends on the ratio of activation energy Q and stress
exponent n for creep. The fact that all experimental data fall
on parallel lines suggests that indentation creep is governed
by the same deformation-rate-controlling mechanism.

Figure 8(a) shows the change in indentation creep rate
over time at each temperature. The indentation creep rate
rapidly decreases immediately after loading, and when time
reaches t � 1000 s, it approaches a constant value _¾inðsÞ ¼� ¡.
This experimental fact is consistent with eq. (11). These
curves become one with no apparent dependence on

200 μm

0.02=

0 2d

2d

1=

0.1=

η
η

–32 × 10=

η

ε

Fig. 6 Contours of equivalent plastic strain rate _�¾ at 1600 s. The CV is
indicated by the area in gray. The dashed line shows the contour line for
equivalent plastic strain �¾ ¼ 2� 10�3.
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temperature. This parallels the fact that eq. (9) does not
include a temperature term. Figure 8(b) shows the change in
indentation pressure over time. As is assumed from eq. (12),
indentation pressure asymptotically approaches a constant
value ps fixed at each temperature. When these values are
arranged as shown in the inset figure, the experimental data
points (open circles) fall on one line. If the slope � of the
straight line is equivalent to Q=2:3nRTm and the values of �
and n are known, then Q can be estimated. In this case,
� ¼ 2:14, and if n ¼ 3, it is estimated that Q = 112 kJ/mol.
We performed indentation creep tests in the range of
¡ ¼ 2:5� 10�4 to 4:0� 10�3 s¹1, and those results showed
that _¾inðsÞ ¼� ¡ always holds true. It was also confirmed that ps

increases as the value of ¡ increases, and decreases as
temperature increases. These facts suggest that the pseudo-
steady deformation state under the indenter is realized when
_¾inðsÞ and ps are constant.

4.7 Creep characteristic values
Figure 9 is a double-logarithmic plot of _¾inðsÞ and ps=E

obtained from constant-pressure indentation creep tests at
ps = 13.9 to 159MPa. The open circles in the figure each
represent the average of 3 experimental data points. These
open circles fall on a different single straight line for each
temperature. From eq. (13), the slope of this straight line
is equivalent to the stress exponent for creep n. In this
experiment, when �· r ¼ 4:6 to 53MPa, n ¼ 3:2� 0:1. This
result agrees closely with the results of tensile creep tests by
other researchers (Al­5.1mol% Mg solid-solution alloy:
n = 2.8 to 3.0 at T = 601 to 734K, · = 4.9 to 24.6MPa,29)

Al­5.5mol% Mg solid-solution alloy: n ¼ 3:1 at T = 673K,
· = 9.8 to 49.0MPa30)).

Figure 10 is an Arrhenius plot of the data (open circles)
of Fig. 9. From eq. (14), the slope of this straight line is
equivalent to �Q=2:3RTm. The activation energy for creep
determined from this slope is Q ¼ 122 kJ/mol, which is
close to the tensile creep test results of other researchers (Q =
135 to 144 kJ/mol,29) and Q = 140 kJ/mol30)). This also
agrees closely with the activation energy (Qd = 130 kJ/mol)
for diffusion of magnesium atoms in the aluminum matrix.31)

Judging from the creep characteristic values obtained in this
study (n = 3.2 « 0.1, Q = 122 kJ/mol),32,33) the creep rate
of an Al­5.3mol% Mg solid-solution alloy under these
experimental conditions (T = 636 to 773K, �· r ¼ 4:6 to
53MPa, and _�¾r ¼ 6:9� 10�5 to 1.1 © 10¹3 s¹1) is governed
by the viscous glide of dislocations that drag the solute
atmosphere.

4.8 Prediction of the constitutive equation for uniaxial
creep

Figure 11 is a flow chart that explains the procedure for
deriving the constitutive equation for conventional tensile
creep or uniaxial creep from the results of an indentation
creep test. (a) Perform a constant-pressure indentation
creep test, and obtain the indentation creep curve u ¼ fðtÞ.
From this curve, determine the stress exponent n and
activation energy Q for creep, and obtain the constitutive
equation for indentation creep _¾inðsÞ ¼ Aðps=EÞn expð�Q=
RT Þ. (b) Perform FE simulation, and obtain the indentation
creep curve u ¼ gðtÞ. In the FE model, assume that power-
law creep (_�¾ ¼ B �·n) occurs. Set the value of n in this model
to the experimental result of step (a). Select an appropriate
value of B such that gðtÞ ¼� fðtÞ. (c) From the contour line
pattern of equivalent stress, find the point where the
representative stress of the CV is �· r ¼ C1ps (C1 ¼ 1=3)
(representative points), and examine the equivalent plastic
strain rate thereof® that is, the representative strain rate _�¾r.
Determine the value of C2 ¼ _�¾r=_¾inðsÞ. However, the value of
C2 depends on the stress exponent n such that when n = 3,
C2 = 0.28, and when n = 5, C2 = 0.67. This is done because
if a correspondence table for n versus C2 can be obtained
beforehand, the FE simulation in step (b) can be omitted.
(d) Using C1 and C2, calculate �· r from ps and _�¾r from _¾in ðsÞ.
From these values of �·r and _�¾r, one can obtain the
constitutive equation for conventional tensile creep or
uniaxial creep _�¾r ¼ A0ð �· r=EÞn expð�Q=RT Þ.

In Fig. 12, the vertical axis is the Zener­Hollomon
parameter (ZinðsÞ ¼ _¾inðsÞ expð122 ½kJ=mol	=RT Þ or Zr ¼
_�¾r expð122½kJ=mol	=RT Þ), and the horizontal axis is ps or
�· r normalized by the Young’s modulus E at each temperature.
The open circles are the data from Fig. 9 represented by
line A. When ps=E on this line is multiplied by C1 ¼ 1=3,

Normalized Indentation Pressure,    ps / E

2 × 10-4

726K

773K

681K

636K

10 -4

10-3

10-3

10 -2

In
de

nt
at

io
n 

C
re

ep
 R

at
e,

in
(s

)
ε

/  
s-1

6 × 10-3

3.2n =

–4 –3 –1~ 4.0 × 10 s= 2.5 × 10α

Fig. 9 Relationship of indentation creep rate _¾inðsÞ versus normalized
indentation pressure ps=E, both on logarithmic scales. All data fall on a
group of parallel straight lines at each test temperature, and the slope of
these lines corresponds to the stress exponent for creep n.

1 1.1 1.2 1.3 1.4

m2.3RT

Q

in
(s

)(
 E

 / 
p 

ε
s

) 
3.

2
/  

s-1

Reciprocal Homologous Temperature,    Tm / T

Q = 122 kJ/mol

10 5

106

107

108

–

Fig. 10 Arrhenius plots of _¾inðsÞðE=psÞn, where n ¼ 3:2. The activation
energy for creep can be determined from the slope of this straight line.

H. Takagi, M. Dao and M. Fujiwara282



the result is line B, which represents ZinðsÞ versus �· r=E.
When ZinðsÞ on this line is multiplied by C2 ¼ 1=3:6, the
result is line C, which represents Zr versus �·r=E. Through
this process, the constituent equation for conventional tensile
creep or uniaxial creep is obtained:

_�¾r ¼ 1:12� 1016
�· r

E

� �3:2

exp � 122 ½kJ=mol	
RT

� �
½s�1	:

ð18Þ
The two lines represented by the dotted line and dashed line
in the figure are the results of tensile creep test reported by
other researchers.29,30) It is clear from the figure, line C

agrees well with the results of tensile creep test. This
experimental fact shows that the constitutive equation for
conventional tensile creep or uniaxial creep can be predicted
with sufficient accuracy from the results of constant-pressure
indentation creep test.

In this paper, we defined the CV representative points
when the pseudo-steady deformation state occurs during
indentation creep. It was demonstrated that by appropriately
processing the experimental results, the results of an
indentation creep test agree well with tensile creep test
results. In practice, it is very important that the constitutive
equation for uniaxial creep can be predicted through this
method of testing and analysis. This method will play a key
role in research and development of advanced light-weight
heat-resistant structural materials that can only be obtained in
small quantities.

5. Conclusion

Indentation creep experiments and FE simulations using
an Al­Mg solid-solution alloy as a model material were
performed in order to demonstrate that the constitutive
equation for uniaxial creep (including all the creep parameter)
can be predicted through the instrumented indentation testing
technique. The main results are summarized as follows.
(1) When indentation pressure p and indentation creep rate

_¾in are constant (p ! ps; _¾in ! _¾inðsÞ; ¡), the contour
line patterns of equivalent stress �· and equivalent
plastic strain rate _�¾ expand while maintaining geo-
metrical self-similarity. The pseudo-steady deformation
state is realized at this time.

(2) The deformation region just below the indenter in
which the indenter velocity has been substantially
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determined is called the control volume (CV). When the
stress exponent for creep n is 3.0, _�¾ � ¡=180 is
estimated for that region. The size of the CV decreases
as the value of ¡ increases.

(3) The location that represents creep behavior beneath the
indenter is taken as the CV representative points. The
representative stress at these points is �· r ¼ ps=3, and
the representative strain rate is given by _�¾r ¼ ¡=3:6
when n = 3.0. The average value of equivalent plastic
strain within the CV is h�¾iCV ¼ 0:04.

(4) When the pseudo-steady deformation state is realized
in a constant-pressure indentation creep test, the values
of the stress exponent and activation energy for creep
extracted from this method are in good agreement with
the results of conventional tensile creep tests.

(5) By appropriately processing the results of constant-
pressure indentation creep tests, the constitutive equa-
tion (including all the creep parameter) for conventional
tensile creep or uniaxial creep can be predicted with
sufficient accuracy.
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