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We study the biomechanical interactions between the lipid bilayer
and the cytoskeleton in a red blood cell (RBC) by developing a
general framework for mesoscopic simulations. We treated the
lipid bilayer and the cytoskeleton as two distinct components and
developed a unique whole-cell model of the RBC, using dissipative
particle dynamics (DPD). The model is validated by comparing the
predicted results with measurements from four different and in-
dependent experiments. First, we simulated the micropipette as-
piration and quantified the cytoskeletal deformation. Second, we
studied the membrane fluctuations of healthy RBCs and RBCs par-
asitized to different intraerythrocytic stages by themalaria-inducing
parasite Plasmodium falciparum. Third, we subjected the RBC to
shear flow and investigated the dependence of its tank-treading
frequency on shear rate. Finally, we simulated the bilayer–cytoskeletal
detachment in channel flow to quantify the strength of such inter-
actions when the corresponding bonds break. Taken together,
these experiments and corresponding systematic DPD simulations
probe the governing constitutive response of the cytoskeleton,
elastic stiffness, viscous friction, and strength of bilayer–cytoskeletal
interactions as well as membrane viscosities. Hence, the DPD sim-
ulations and comparisons with available independent experiments
serve as validation of the unique two-component model and lead
to useful insights into the biomechanical interactions between
the lipid bilayer and the cytoskeleton of the RBC. Furthermore,
they provide a basis for further studies to probe cell mechanistic
processes in health and disease in a manner that guides the
design and interpretation of experiments and to develop simu-
lations of phenomena that cannot be studied systematically by
experiments alone.
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The red blood cell (RBC) membrane consists of two compo-
nents: a lipid bilayer and an attached 2D spectrin network

that acts as the cytoskeleton. The resistance of the lipid bilayer to
bending is controlled by the bending rigidity, kc, whereas the
spectrin network’s resistance to shear strain is characterized by
the in-plane shear modulus, μs. Under normal conditions, the
cytoskeleton is tightly attached to the lipid bilayer from the cy-
toplasmic side. However, under certain pathological conditions,
e.g., in sickle cell disease, the cytoskeleton may become disso-
ciated from the lipid bilayer (1). Although the biomechanics of
the two-component erythrocyte membrane have been studied
extensively for decades (2), the mechanical properties of the
interactions between the lipid bilayer and the cytoskeleton (such
as elastic stiffness, viscous friction, and strength) via the pinning
connections of transmembrane proteins are still largely unknown.
This is at least in part ascribed to the fact that it is difficult to
measure these interactions directly from experiments, because the
length scale of these connections is too small compared with the
characteristic length scale of the cell mechanical experiments.
The mechanical properties associated with the bilayer–

cytoskeletal interactions strongly influence biorheology, eryth-
rocyte function, and the onset and advancement of RBC diseases

(3). For example, it has been hypothesized that the pathogenesis
of hereditary spherocytosis is related to the weakened bilayer–
cytoskeletal interaction strength, which leads to reduced spectrin
density, and the loss of bilayer membrane resulting in reduced
surface area (4). In addition, in sickle cell disease, the detach-
ment of the RBC lipid bilayer from the spectrin network owing
to hemoglobin polymerization also causes “budding off” of the
bilayer, which in turn results in reduced cell deformability (1).
Furthermore, when the RBCs pass through the interendothelial
slits in the spleen, they undergo severe deformation. Here, the
biophysical properties mediated by the bilayer–cytoskeletal in-
teractions may play a significant role in the ensuing mechanical
filtering process (5, 6).
Several computational approaches, including continuum for-

mulations and particle-based numerical models, have been de-
veloped recently and applied to RBC simulations at different length
scales; a review of these approaches can be found in ref. 7. These
models may quantitatively mimic the mechanical properties of
healthy and pathological RBCs under select experimental con-
ditions and stress states. However, they do not lend themselves
to detailed whole-cell investigations of a wide variety of bio-
physical problems involving the RBCs, such as the aforemen-
tioned issues of bilayer–cytoskeletal detachment or bilayer loss
in hereditary spherocytosis due to defective protein attachments.
In existing whole-cell models, the membrane is usually consid-
ered as a single-component shell with effective properties (8–10)
that seek to estimate the combined effects of the lipid bilayer and
the spectrin network. In situations where two-component molec-
ular models have been invoked, the computational cost is pro-
hibitively high, such that usually only a small portion of the cell
membrane is modeled, a consequence of which is that the whole-
cell response is not adequately and efficiently captured (11).
Furthermore, such models are computationally too inefficient
to be amenable to blood microrheology studies involving large
numbers of RBCs in flow. For these reasons, there is a com-
pelling need to develop a unique two-component, particle-based,
whole-cell model to study the biophysics of RBCs arising from
the interactions between the lipid bilayer and the spectrin cy-
toskeletal network. Such a model would provide a more reliable
method and an overall modeling framework to extract mechan-
ical properties of RBCs from a variety of independent experi-
mental methods.
Currently there are no experimental techniques that directly

measure the mechanical characteristics of the bilayer–cytoskeletal
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interactions. The specific characteristics of these interactions in-
fluence, in different ways, the mechanical property data inferred
from several different experiments, such as micropipette aspi-
ration and vesiculation (12, 13), membrane thermal fluctuations
(14–16), tank-treading motion (17), and tethering of the lipid
bilayer in channel flow (18). In the present study, we investigate
the effects of the bilayer–cytoskeletal interactions in these ex-
periments, using a unique two-component mesoscale RBC model
implemented in dissipative particle dynamics (DPD).

Results and Discussion
We use the DPD formulation to develop the two-component
model by extending the one-component RBC membrane model
(19). This unique two-component model is capable of in-
corporating elastic and shear energy of the lipid bilayer and the
cytoskeleton separately. In addition, we include both the normal
and the tangential interactions between the lipid bilayer and
the cytoskeleton as well as the membrane viscosities. This two-
component mesoscale RBC model can also be implemented in
conjunction with other methods such as the lattice Boltzmann
method (20) andmultiparticle collision dynamics (21). In this unique
two-component RBC model, the membrane is modeled with two
different components, i.e., the lipid bilayer and the cytoskeleton.
Specifically, each component is composed of a 2D triangulated
network with Nv vertices, where each vertex is represented by a
DPD particle. In most simulations, we use Nv = 23;867 so that
each DPD particle on the triangulated network of the cytoskel-
eton represents a junctional complex in the RBC spectrin network
(9). In contrast to the one-component DPD model, the lipid bi-
layer of the two-component model has no shear stiffness, but only
bending stiffness and a very large local area stiffness. Similarly,
the cytoskeleton has no bending stiffness, but possesses a large
shear stiffness. Further details of the model are provided in
Methods and in SI Text. Parameters are listed in Table S1.
We probe the bilayer–cytoskeletal interactions by applying the

two-component DPD model to simulate four independent experi-
ments on RBCs: (a) fluorescence-marked micropipette aspiration
(12), (b) membrane fluctuations (14), (c) tank-treading motion in
shear flow (17), and (d) bilayer–cytoskeletal detachment in chan-
nel flow (18). Because only one or two mechanical parameters in
each simulation of these four experiments are relevant to the result,
our approach provides a good protocol in investigating the effects of
these parameters in isolation, in a systematic and controlledmanner
while, at the same time, validating the two-component model.

Fluorescence-Marked Micropipette Aspiration. Using the two-
component DPDmodel we are able to simulate, with the same set
of input mechanical parameters, micropipette experiments that
provide estimates of the area modulus (kl shown in SI Text) of the
lipid bilayer (22) as well as the area and shear moduli (ks and μs
shown in SI Text) of the cytoskeleton (12, 23). Such a simulation is
not possible with the one-component model, in which the large
local area modulus of the bilayer is absent. In micropipette aspi-
ration, the local area modulus ðklÞ of the lipid bilayer is measured
as five orders higher (22) than the area or shear modulus (ks or μs)
of the cytoskeleton (12, 23). To investigate the effect of slip be-
tween the lipid bilayer and the cytoskeleton on deformation, we
perform detailed numerical simulations of the fluorescence-
marked micropipette aspiration of RBCs (12). To our knowledge,
this is a unique experiment in which the slip between the lipid layer
and the cytoskeleton as well as the local area deformation of the
cytoskeleton was quantitatively obtained. Details of the setup of
the micropipette aspiration simulation can be found in SI Text.
We use the two-component DPD model and compare the

results with experimental data (12) and finite-element method
(FEM) simulations (24) as shown in Fig. 1. We consider three cases
in DPD simulations: Nv = 23,867 and Nv = 5,000 with a stress-free
initial configuration and Nv = 23,867 with a prestressed initial

configuration in which a negative isotropic stress T = − 30 pN=μm
is applied in the cytoskeleton. The cytoskeleton density is higher in
the DPD simulations than in the FEM simulation with the same
prestress T = − 30 pN=μm in the cytoskeleton (24). The results
of all three DPD simulation cases are in the range of experimental
data, and the cytoskeleton deformation is smaller in the pre-
stressed DPD case and the coarser DPD case with Nv = 5,000 as
shown in Fig. 1B. The prestressed DPD case is closer to the FEM
case in the entrance region, but the stress-free DPD case matches
better with the FEM case in the cap region. The discrepancies
may be due to the fact that the analysis of the deformation of
individual spectrin molecules is performed in the DPD model
with 23,867 DPD particles of the whole cell (25), whereas such
details are absent in the FEM model. In addition to the cyto-
skeletal deformation, we are also able to quantify the maximum
bilayer–cytoskeletal interaction force on one junctional complex
(near the cap region) as 5.7 pN when L=Rp = 12. Such estimates of
the interaction force between the lipid layer and the spectrin
network provide valuable information about the vesiculation
process in a micropipette (13). In vesiculation, detachment of
the lipid bilayer from the cytoskeleton occurs due to the bilayer–
cytoskeletal bond rupture during aspiration. In summary, the
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Fig. 1. Cytoskeletal area deformation during micropipette aspiration. (A)
Simulated red blood cell in the micropipette. The gray triangular network is
the lipid bilayer and the colored triangular network is the cytoskeleton. For
clarity, only half of each triangular network is shown due to symmetry. The
contour is the area deformation of the cytoskeleton. (B) Comparison of the
two-component DPD model with the experiment (12) and the FEM model
(24). The area expansion of the contour is defined as λ1 · λ2, where λ1 and λ2
are the principal stretches. Rp is the pipette radius, ρ and ρ0 are the current
and initial protein densities in the cytoskeleton, L is the aspiration length
under different pressures, and Nv is the number of DPD particles in each
triangular network. Note that ρ=ρ0 = 1=ðλ1 · λ2Þ.

Peng et al. PNAS | August 13, 2013 | vol. 110 | no. 33 | 13357

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

EN
G
IN
EE

RI
N
G

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1311827110/-/DCSupplemental/pnas.201311827SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1311827110/-/DCSupplemental/pnas.201311827SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1311827110/-/DCSupplemental/pnas.201311827SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1311827110/-/DCSupplemental/pnas.201311827SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1311827110/-/DCSupplemental/pnas.201311827SI.pdf?targetid=nameddest=STXT


two-component model allows us to simulate accurately both
micropipette aspiration experiments of measuring bilayer area
modulus and cytoskeletal moduli with the same set of parameters,
hence quantifying the cytoskeletal deformation and estimating the
bilayer–cytoskeleton interaction force directly at the molecular
level in the micropipette aspiration; this cannot be achieved using
existing models.

Membrane Fluctuations. Nanoscale fluctuations or “flickering” of
RBCs have been studied theoretically and experimentally for
decades (15, 26–30). Determining RBC membrane fluctuations
provides a diagnostic capability to assess the health or pathological
state of the whole RBC (14, 15). Membrane fluctuations experi-
ments can probe the local mechanical properties of the lipid-
bilayer membrane at different locations, such as central and rim
regions, separately. This approach provides a noninvasive tech-
nique, in which the mechanical properties of the undeformed
state are measured, whereas in micropipette aspiration the cell is
subject to significant deformation.
The cell shape has a strong effect on the extent of thermal fluc-

tuations (15), which, in turn, could be correlated with the healthy
or pathological state of the cell. In addition, the interactions
between the lipid bilayer and the cytoskeleton are usually simpli-
fied. For example, the cytoskeleton is often modeled as completely
rigid (28), as a 3D network (31), or as a 2DGaussian network (29).
Friction and elastic interactions between the lipid bilayer and the
cytoskeleton are usually ignored (30). Therefore, it is desirable to
use whole-cell models to study thermal fluctuations with sufficient
molecular details.
Recently, diffraction phase microscopy (DPM) has been used to

map the instantaneous thickness of RBCs whereby nanometer
levels of accuracy in the measurement of membrane fluctuations
could be achieved at a temporal resolution of 1 ms (14, 15). In our
previous work, the one-component DPD model was used to sim-
ulate healthy RBCs and RBCs parasitized to different intra-
erythrocytic asexual stages by the malaria-inducing parasite
Plasmodium falciparum (32). Although the simulation results
from the one-component model match well with the fluctua-
tions of healthy cells at room and normal physiological tem-
peratures, they underestimate thermal fluctuations of RBC
membranes for healthy RBCs at febrile temperature and ring
stage malaria-infected RBCs, unless the bending stiffness is
artificially reduced significantly (32).
Fig. 2A shows the full width at half maximum (FWHM) (32) of

membrane fluctuations for a healthy RBC at the normal physio-
logical temperature (T ∼ 37 °C) for different values of the bilayer–
cytoskeletal elastic interaction coefficient kbs and different levels
of coarse graining with Nv = 500, 1,000 and 2,000, using the two-
component model. The detailed simulation setup and coarse-
graining procedure can be found in SI Text. We find that the
amplitude of membrane fluctuations decreases with increased kbs
(Fig. 2A) and approaches a constant limiting value after kbs reaches
a critical value. This critical value of kbs is smaller for the model
with Nv = 2,000, because the limiting lower-bound value of am-
plitude with large kbs is higher with Nv = 2,000 due to the finer
resolution, so that it reaches this limiting value faster. It is also
due to the fact that with the same value of kbs, the effective elastic
stiffness of a single junctional complex connection is larger with
a higher resolution (SI Text). When kbs is very large, there is
a strong coupling between the bilayer and the cytoskeleton; i.e.,
they fluctuate as if they were one effective membrane, consistent
with the analysis in ref. 33. If kbs is small, the bilayer–cytoskeletal
coupling is weak. In the extreme case where kbs = 0, the amplitude
of fluctuations is the same as that for a pure lipid bilayer. We also
find that the FWHM value increases with finer DPD resolution
but it is independent of the bilayer–cytoskeletal friction co-
efficient fbs, cytoskeleton viscosity ηs, and bilayer viscosity ηb, in
agreement with existing theoretical models (34).

We compare our simulation results with experimental data and
the one-component DPD model for healthy RBCs and RBCs
parasitized to the ring stage (i.e., about 10–24 h following the in-
vasion of the P. falciparum malaria parasite into the erythrocyte).
These simulations for physiological (T ∼ 37 °C) and febrile
(T ∼ 41 °C) temperatures are shown in Fig. 2B. The shear moduli
of the RBC membrane for these different cases were measured
experimentally in ref. 14, and they are shown in Table S2. The
error bars of the simulations are obtained using different values of
kbs (upper bound, kbs = 4.6 pN/μm; midvalue, kbs = 46 pN/μm;
lower bound, kbs = 460 pN/μm), as the FWHM value increases
with decreased kbs. Fig. 2B shows that the results of the two-
component DPD model are more consistent with the experi-
mental data, especially with more DPD particles and at a smaller
value of kbs. This result shows that the bilayer–cytoskeletal elastic
interaction coefficient kbs indeed plays a key role in the thermal
fluctuations experiments, and the discrepancy between the exper-
imental data and the one-component RBC model can be signifi-
cantly reduced by the two-component model.

Tank-Treading Motion of a RBC in Shear Flow. Next we simulate the
motion of a RBC in shear flow, known to exhibit complex dynamic
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Fig. 2. Membrane fluctuations. (A) Effect of the bilayer–cytoskeletal in-
teraction stiffness kbs on the full width at half maximum (FWHM) (32) of mem-
brane fluctuations for the case of healthy RBCs at the physiological temperature
(T ∼ 37 °C), using two-component models with Nv = 500, 1,000, 2,000. (B)
Comparison of FWHM from simulations and experiments for different stages
of malaria-infected RBCs at the physiological temperature (T ∼ 37 °C) and the
febrile temperature (T ∼ 41 °C). The simulations are conducted using different
two-component models with Nv = 500, 1,000, 2,000. The error bars of the
simulations are obtained using different values of kbs (upper bound, kbs = 4.6
pN/μm; midvalue, kbs = 46 pN/μm; lower bound, kbs = 460 pN/μm).
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behavior. This includes tank-treading (TT) motion, in which the
RBC deforms to an ellipsoidal shape and the membrane circulates
around while the inclination angle remains almost unchanged
(35). An important characteristic of the TT dynamics of a RBC in
shear flow is its frequency, i.e., the number of TT cycles per sec-
ond. Although many experimental studies have been devoted to
the measurement of TT frequency, considerable uncertainty exists
with respect to the dependence of TT frequency (f) of RBCs on
shear rate ð _γÞ. For example, Fischer et al. (35) and Tran-Son-Tay
et al. (36) found that f increases linearly with _γ. By contrast,
Fischer (17) found that f ∼ _γβ with the scaling exponent β between
0.85 and 0.95. Another fundamental question is the importance of
apparent slip between the lipid bilayer and the cytoskeleton during
the TT motion of a healthy or diseased RBC, e.g., in hereditary
spherocytosis where the transmembrane protein density may be
significantly reduced (37). Here, we simulate the TT motion of
a RBC in a shear flow to investigate the correct functional re-
lationship between f and _γ and to quantify the effect of apparent
slip by varying the bilayer–cytoskeletal friction. The detailed sim-
ulation setup and parameters can be found in SI Text.
Fig. 3A shows that the TT frequency f increases linearly with _γ

for RBCs in a narrow gap flow with gap width H = 12 μm in both
one-component and two-component RBC models but non-
linearly when we increase the gap width to H = 36 μm. These
results are consistent with the experimental findings in refs. 35
and 36 for small gaps and with Fischer (17) in the experiment
with a wide gap. Specifically, we observe a nonlinear dependence
f ∼ _γβ with the exponent β ’ 0:91 in both RBC models. When the
RBC rotates in shear flow, the velocity field of fluid flow around
the RBC changes significantly (38). In a narrow channel, the
strong confinement induces a flow parallel to the channel walls,
resulting in enhanced local shear stress around the RBC. In
a wide channel, the influence of solid walls on the local flow field
around the RBC is very small or even negligible. Thus, there is
a decrease in f compared with that for the RBC in a narrow
channel. The functional relationship between f and _γ is similar
for both the one-component and the two-component models,
although the values of f for the latter are somewhat lower.
Next, we study the effect of the bilayer–cytoskeletal friction

coefficient fbs as shown in Fig. 3B. To this end, we define the an-
gular trajectory θ of a marked particle either on the lipid bilayer or
on the cytoskeleton as an angle between the position vector of
marked particles and the flow direction as shown in Fig. 3A, Inset.
Fig. 3B shows θ as a function of time for different cases with the
same initial position. We find that when using the value of fbs =
0.194 pN·μm−1·s−1, which is derived on the basis of experimentally
measured diffusivities of transmembrane proteins and the fluctu-
ation dissipation theorem (39, 40), the two particles on the bilayer
and the cytoskeleton move together. This is indicated by the
overlapped red solid and dashed lines in Fig. 3B. Hence, there is
no significant bilayer–cytoskeletal slip in this case. However, as-
suming a pathological RBC state where fbs is decreased by one or
two orders of magnitude, an apparent bilayer–cytoskeletal slip
occurs after a few TT cycles. Specifically, the TT frequency of the
bilayer and the cytoskeleton with fbs= 0.194 pN·μm−1·s−1 is greater
than the frequency of the cytoskeleton but lower than the frequency
of the lipid bilayer in the case with fbs = 0.00194 pN·μm−1·s−1. For
comparison, two cases of the one-component DPDmodel are also
shown in Fig. 3B: one with the local area modulus kl = 2μS and the
other with kl = 103μS. We find that the frequency of the latter case
is close to the case of the two-component model with fbs = 0.194
pN·μm−1·s−1. This is because there is no bilayer–cytoskeletal slip
with large fbs and the local area deformation of the cytoskeleton is
the same as that of the bilayer; hence we have local conservation of
the surface area of the cytoskeleton in agreement with ref. 41. The
frequency of the one-component model with areamodulus kl = 2μs
is even greater than the frequency of the bilayer in the case of two-
component model fbs = 0.00194 pN·μm−1·s−1, because it is close to

the case of the two-component model with fbs= 0.0. In this case we
do not have local conservation of the surface area of the cyto-
skeleton in contrast to ref. 41 but in agreement with ref. 42. Hence,
our two-component model can be used to quantify the existence of
slip and the cytoskeletal local surface area preservation depending
on the RBC state, e.g., in health or in diseases with reduced
transmembrane protein density (40). In summary, we resolved two-
decades-old controversies on the dependence of TT frequency on
shear rate and the role of bilayer–cytoskeletal slip, with the reso-
lution of the latter achieved only by explicitly incorporating the
bilayer–cytoskeletal friction in the two-component model.

Fig. 3. Tank-treading motion of a RBC in shear flow. (A) TT frequency as
a function of shear rate (the data of the two-component model are shifted
horizontally for clarity; the error bars are obtained by increasing or decreasing
membrane viscosities by 10% from their default values; η0 is the suspending
medium viscosity). Experimental data (red circles) from ref. 17 are shown. The
TT frequency is investigated by tracking the marked particle in the RBC mem-
brane. Inset shows the schematic diagram of the TT RBC in a shear flow. θ
represents the angle between the position vector of the marked particle and
flow direction. (B) Angular trajectory (θ) as a function of time. For the case with
fbs= 0.194 pN·μm−1·s−1, the bilayer and the cytoskeleton are represented by red
solid and dashed lines, respectively. For the case with fbs= 0.00194 pN·μm−1·s−1,
they are representedbygreen solid anddashed lines, respectively. fbs denotes the
friction coefficient of the bilayer–cytoskeletal interaction. The one-component
model cases with local areamodulus kl = 2μs and kl =103μs are represented by
blue and black solid lines, respectively, where μs is the shear modulus.
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Bilayer–Cytoskeletal Detachment in Channel Flow. Another impor-
tant and largely unresolved problem in RBC mechanics involves
determining the forces needed to detach the lipid bilayer from
the cytoskeleton (43). The prevalent description of this bilayer–
cytoskeletal interaction strength is based on the definition of an
adhesion energyW0 (43, 44). Although this adhesion energy model
matches well with experimental data, this description involving
W0 does not provide mechanistic insights into the molecular or-
igin of the bilayer–cytoskeletal interaction. The assumption in the
adhesion energy model that the bilayer–cytoskeletal adhesion is a
continuum property of the membrane is not rigorously true, be-
cause integral proteins are known to create discrete attachments
of the spectrin network to the lipid bilayer. Therefore, we use our
two-component model with Nv = 23,867 to predict the bilayer–
cytoskeletal interaction force explicitly and directly at the mo-
lecular level when the bilayer–cytoskeletal bonds rupture occurs
under a certain threshold value of shear stress (∼1.5 dyn/cm2 or
0.15 pN/μm2) during the tethering process in channel flow (18).
The detailed simulation setup can be found in SI Text.
First, we model whole-cell stretching, with a line attachment

between the cell and the substrate instead of a single-point at-
tachment. The dependence predicted in the DPD simulation of
the extension ratio of the RBC on the shear stress matches well
with the experimental data shown in Fig. 4A. The extension ratio
is defined as the ratio of maximum dimension between the cur-
rent cell shape and the initial cell shape.
Next, we simulate the case with one attachment point. The bi-

layer–cytoskeletal interaction force applied on a single junctional
complex in the case of critical shear stress (0.15 pN/μm2) is
shown in Fig. 4B, and the bilayer–cytoskeletal interaction strength,
i.e., the maximum force applied on a junctional complex, is esti-
mated as σbs= 10.45 pN.Hwang andWaugh (43) reported that the
bilayer–cytoskeletal adhesion energy W0 is about 60 μJ=m2. Fol-
lowing the scenario that during dissociation band 3 is separated
from the bilayer, this adhesion energy is related to the energy to
pull band 3 out. Taking into account the fact that band 3 is a chain
that crosses the bilayer 14 times (45), the subsequent adhesion
energy is the energy required to pull all these crossings sequen-
tially out. Assuming that during the process the applied force
decreases linearly from the critical contact force to zero as band 3
is completely taken out, the adhesion energy is given as W0 =
ð5 nm× 14=2Þ · σbs=Ajc, for a bilayer thickness of 5 nm, where Ajc
is the area of a junctional complex. If the junctional complex is
assumed to be circular with a diameter of 75 nm and area is Ajc =
0.004418 μm2, then W = 80 μJ  =  m2, which is close to the value
ð60 μJ=m2Þ obtained by Hwang and Waugh (43). In summary,
these simulations lead to direct quantification of molecular-level
mechanical forces involved in bilayer–cytoskeletal dissociation.
Such quantitative assessment is essential for elucidating bilayer
loss in RBC diseases such as hereditary spherocytosis (4) and
sickle-cell anemia (1).

Conclusions. In this work, we have presented a unique computa-
tional framework for simulating the interactions between the
lipid bilayer and the cytoskeletal network of human RBCs. This
mesoscale analysis, predicated on dissipative particle dynamics,
is tested and validated through rigorous comparisons with ex-
perimental data from four different sets of independent experi-
ments that probe different aspects of biophysical and rheological
properties of RBCs. Furthermore, the present two-component
model is compared with corresponding results obtained from
prior one-component model predictions and with theoretical
estimates, wherever appropriate. The capabilities and limitations
of the two-component model are assessed.
By applying the two-component whole-cell model, we also rec-

onciled and resolved several controversies and issues in RBC
mechanics. First, we were able to realistically model the micropi-
pette aspiration experiments of measuring both the area moduli of

the cytoskeleton ðksÞ and the lipid bilayer ðklÞ, using the same set
of input parameters, although these two area moduli differ by five
orders of magnitude. Second, we found that the two-component
model matches the thermal fluctuations experiments better than
the one-component model due to the explicit incorporation of
bilayer–cytoskeletal elastic interaction. Third, we found that the
dependence of the tank-treading frequency on the shear rate fol-
lows a linear relationship for a narrow channel but a nonlinear one
for a wide channel, hence reconciling a controversy in the litera-
ture (17). In addition, we demonstrated that the tank-treading
motion is too fast for the bilayer–cytoskeletal slip to occur for
healthy RBCs; however, we also showed that apparent bilayer–
cytoskeletal slip occurs if the bilayer–cytoskeletal friction co-
efficient fbs is significantly reduced for certain diseases. Finally,
we quantified the strength of the force per junctional complex by
which the bilayer remains attached to the cytoskeleton at the mo-
lecular level during RBC tethering in the channel flow experiment.

Methods
In this unique two-component RBC model, the membrane is modeled by two
different components, i.e., the lipid bilayer and the cytoskeleton. Specifi-
cally, each component is constructed by a 2D triangulated network with Nv

vertices, where each vertex is represented by a DPD particle as shown in
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Fig. 4. Bilayer–cytoskeletal detachment in channel flow. (A) Comparison
of cell extension ratio between the DPD simulation and the experiment for
the whole-cell stretching with a line attachment (18). The error bars are
obtained by increasing or decreasing the default value of shear modulus μs
by 10%. (B) Simulation of the bilayer–cytoskeletal detachment in channel
flow. Inset shows the local view of the bilayer–cytoskeletal interaction near
the attachment point. The bilayer is shown as a gray surface and the cyto-
skeleton is shown as a triangular network with the contour. The contour is
the magnitude of the bilayer–cytoskeletal interaction force on a junctional
complex. The unit of force is pico-Newtons (pN).
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Fig. S1A. The potential of the RBC membrane including these two differ-
ent components is written as

U=Us +Ub +Ua+v +Uint ; [1]

where Us is the spectrin’s potential energy from the cytoskeleton, Ub is the
bending energy from the lipid bilayer, Ua+v corresponds to the area and
volume conservation constraints from the lipid bilayer, and Uint is the po-
tential energy of the interaction between the lipid bilayer and the cyto-
skeleton. The detailed expressions of Us, Ub, and Ua+v can be found in
SI Text.

The bilayer–cytoskeletal interaction potential Uint can be expressed as
a summation of harmonic potentials given by

Uint =
X

j∈1:::Nbs

kbs
�
dj −dj0

�2

2
: [2]

Here Nbs is the number of bond connections between the bilayer and the
cytoskeleton, i.e., the interactions between the transmembrane proteins
(band 3 and glycophorin C) and spectrins; kbs denotes the spring constant of
the bond; dj is the distance between the vertex j of the cytoskeleton and the
corresponding projection point j′ on the lipid bilayer as shown in Fig. S1C;
and dj0 is the initial distance between the vertex j and the point j′. The
vertex in the spectrin cytoskeletal network is projected onto the closest
triangle face of the lipid bilayer, and the distance and relative velocity be-
tween the cytoskeleton vertex and its projection point on the lipid bilayer

are obtained. The corresponding elastic force on the vertex j of the cyto-
skeleton is given as

fEj = kbs
�
dj −dj0

�
nj ; [3]

where nj is the normal direction of the lipid-bilayer surface at the projection
point of vertex j.

The tangential friction force between the lipid bilayer and the cytoskel-
eton on the vertex j of the cytoskeleton is given as

fFj = − fbs
�
vj −

�
vj ·nj

�
nj
�
; [4]

where fbs is the tangential friction coefficient, and vj is the relative velocity
between the vertex j and the corresponding projection point j′ on the lipid
bilayer. Detailed descriptions of other aspects of the model, e.g., membrane
viscosities, can be found in SI Text.
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Methods and Models
First, we briefly describe the dissipative particle dynamics (DPD)
method. Second, we present details of the two-component red
blood cell (RBC) model, including the elasticity of both the lipid
bilayer and the cytoskeleton, the bilayer–cytoskeletal interactions,
and membrane viscosities. Third, we derive the scaling relation-
ships between model units and physical units.

Dissipative Particle Dynamics. The DPD method is a particle-based
mesoscopic simulation technique that allows modeling of fluids
and softmatter.ADPDsystem is represented byNparticles, which
interact through pairwise effective potentials and move according
to Newton’s second law (1, 2). In a DPD simulation, a particle
represents the center of mass in a cluster of atoms, and the po-
sition and momentum of the particle are updated in a continuous
phase but spaced at discrete time steps. Particles i and j at posi-
tions ri and rj interact with each other via pairwise conservative,
dissipative, and random forces, which are given by

FC
ij = aijω

�
rij
�
nij; [S1]

FD
ij = − γω2�rij

��
nij · vij

�
nij; [S2]

FR
ij = σω

�
rij
�
ζijΔt−1=2nij; [S3]

where rij = ri − rj, rij = jrijj, nij = rij=rij, and vij = vi − vj. The coeffi-
cients aij, γ, and σ define, respectively, the strength of conserva-
tive, dissipative, and random forces. In addition, ζij is a random
number with zero mean and unit variance, and Δt is the time-
step size. The weight function ωðrijÞ is given by

ω
�
rij
�
=
�
1− rij=rc rij < rc
0 rij ≥ rc;

[S4]

where rc is the cutoff radius, which gives the extent of the in-
teraction range. In the DPD method, the dissipative force and
the random force act as heat sink and source, respectively, and
the combined effect of the two forces acts a thermostat. Also,
a common choice of the soft repulsion for the conservative force
permits us to use larger integration time steps than are usually
allowed by the molecular dynamics (MD) simulation technique;
thus, DPD is a simple but efficient simulation method that cor-
rectly represents hydrodynamic interactions.

Membrane Elasticity of the Two-Component RBC Model. In this
unique two-component RBC model, the membrane is modeled by
two different components, i.e., the lipid bilayer and the cytoskel-
eton, as shown in Fig. S1A. Specifically, each component is con-
structed by a 2D triangulated network withNv vertices, where each
vertex is represented by a DPD particle. Different from the one-
component DPDmodel, the lipid bilayer has no shear stiffness but
only bending stiffness and a very large local area stiffness, whereas
the inner layer (cytoskeleton) has no bending stiffness but a large
shear stiffness. The potential of the RBC membrane including
these two different components is written as

U =Us +Ub +Ua+v +Uint; [S5]

where Us is the spring’s potential energy from the cytoskeleton,
given by

Us =
X

j∈1:::Ns

"
kBTlm

�
3x2j − 2x3j

�

4p
�
1− xj

� +
kp

ðn− 1Þln−1j

#
; [S6]

whereNs is the number of springs, lj is the length of the spring j, lm
is the contour length, xj = lj=lm, p is the persistence length, kB is
the Boltzmann constant, T is the temperature, kp is the spring
constant, and n is a parameter. The first term is a worm-like chain
(WLC) model (3) and the second term is a repulsive force term.
Note that in the finite-element simulation (4), instead of using this
exponential form of repulsive force, a simple functional formC=A
is used, where C is a constant and A is the area of the correspond-
ing triangle in the spectrin network. To be consistent in the com-
parison with the finite-element method (FEM) simulation result,
we also used the same function form C=A in the prestressed DPD
simulation case of micropipette aspiration. The isotropic mean
stress for an equilateral triangle in the network is given as

T = −
3lfWLCðlÞ

4A
−

C
A2; [S7]

where l is the length of the spectrin link, fWLCðlÞ is the force
of the WLC model, and A=

ffiffiffi
3

p
l2=4.

In our simulations, we have T = 0 for the lipid bilayer. For the
cytoskeleton, we also have T = 0 in the case of stress-free initial
configuration, but in the case of prestressed initial configuration,
T can be nonzero; e.g., T = − 30 pN/μm.
Also, Ub is the bending energy from the lipid bilayer, given by

Ub =
X

j∈1:::Ns

kb
�
1− cos

�
θj − θ0

�	
; [S8]

where kb is the bending coefficient and kb = 2kc=
ffiffiffi
3

p
, where kc is

the bending stiffness of the bilayer. Also, θj is the instantaneous
angle between two adjacent triangles as shown in Fig. S1B, and θ0
is the spontaneous angle, which is set to zero in our simulations.
Finally, Ua+v corresponds to the area and volume conservation
constraints from the lipid bilayer, given by

Ua+v =
X

j∈1:::Nt

kl
�
Aj −A0

�2

2A0
+
kv
�
V tot −V tot

0

�2

2V tot
0

; [S9]

where Nt is the number of triangles in the lipid bilayer, Aj is the
instantaneous triangle area as shown in Fig. S1B, and A0 is the
initial triangle area. V tot is the current total RBC volume, and
V tot
0 is the initial total RBC volume. Also, kl and kv are the bi-

layer local area constraint coefficient and the global volume
constraint coefficient, respectively.

Bilayer–Cytoskeletal Interactions. In addition to the commonly used
elastic potentials for the membrane, we invoke another term Uint

to capture the interaction between the lipid bilayer and the cy-
toskeleton, which can be expressed as a summation of harmonic
potentials given by

Uint =
X

j∈1:::Nbs

kbs
�
dj − dj0

�2

2
:

[S10]
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Here Nbs is the number of bond connections between the bilayer
and the cytoskeleton, i.e., the interactions between the transmem-
brane proteins (band 3 and glycophorin C) and spectrins, which is
set to be the same as the number of vertices Nv in the current
model; kbs denotes the spring constant of the bond. Although there
are two kinds of interactions in each junctional complex, including
the major connections via band 3 and ankyrin and the secondary
connections via actin, glycophorin C, and band 4.1, here we con-
sider them together as an effective bilayer–cytoskeletal interaction
in one junctional complex and model this interaction as a normal
viscoelastic spring along with a tangential friction force as shown in
Fig. S1 C and D. As shown in Fig. S1C, dj is the distance between
the vertex j of the cytoskeleton and the corresponding projection
point j′ on the lipid bilayer; and dj0 is the initial distance between
the vertex j and the point j′, which is set to zero in our simulations.
Experiments show that dj0 ≈ 30 nm (5), but we found that the
difference is negligible in our simulations. Also, nj is the normal
direction of the lipid-bilayer surface at the projection point of
vertex j. Numerically, a master–slave penalty contact algorithm is
applied to calculate the force (6). The vertex in the spectrin cyto-
skeletal network is projected onto the closest triangle face of the
lipid bilayer, and the distance and relative velocity between the
cytoskeleton vertex and its projection point on the lipid bilayer are
obtained as shown in Fig. S1C.
The corresponding elastic force on the vertex j of the cyto-

skeleton is given as

fEj = kbs
�
dj − dj0

�
nj; [S11]

and the vertical damping force related to this elastic spring is

fDj = − cbs
�
vj ·nj

�
nj; [S12]

where cbs is the vertical damping coefficient, and vj is the relative
velocity between the vertex j and the corresponding projection
point j′ on the lipid bilayer. The tangential friction force between
the lipid bilayer and the cytoskeleton is given as

fFj = − fbs
�
vj −

�
vj ·nj

�
nj
	
; [S13]

where fbs is the tangential friction coefficient.
To ensure that the temperature is constant, another random

force term is added, as in ref. 7,

fRj Δt=
ffiffiffiffiffiffiffiffiffiffiffi
2kBT

p
 

ffiffiffiffiffiffiffi
2fbs

p
dWA

ij +
ffiffiffiffiffiffiffiffi
3cbs

p tr
�
dWij

	

3
1

!
·nj; [S14]

where tr½dWij� is the trace of a random matrix of independent
Wiener increments of dWij. The Wiener increment dWijðtÞ=
Wijðt+ΔtÞ−WijðtÞ over a time-stepΔt is a random variable drawn
from a normal distribution with zero mean and a time-step vari-
ance N½0;Δt�. dWA

ij = ðdWij − dWjiÞ=2 is the antisymmetric part,
and Δt is the magnitude of the time step.
Hence, the total interaction force is given by

f intj = fEj + fDj + fFj + fRj : [S15]

In addition, f intj is also distributed to the three vertices of the
corresponding bilayer triangle with one-third of the magnitude
and an opposite sign to follow Newton’s third law. For simplicity,
the vertical damping coefficient is always set to be the same as
the friction coefficient; i.e., cbs = fbs.

Membrane Viscosities.Themembrane viscosity is incorporated into
both the lipid bilayer and the cytoskeletonby adding two terms, i.e.,
dissipative and random forces, respectively, as

FD;k
ij = − γTk vij − γCk

�
vij · eij

�
eij; [S16]

FR;k
ij Δt=

ffiffiffiffiffiffiffiffiffiffiffi
2kBT

p
 ffiffiffiffiffiffiffiffi

2γTk

q
dWS

ij +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3γCk − γTk

q tr
�
dWij

	

3
1

!
· eij; [S17]

where γTk and γCk are dissipative parameters ð3γCk > γTk Þ; and eij
and vij are the relative position and velocity vectors of spring
ends i and j. Also, dWS

ij = dWS
ij − tr½dWS

ij�1=3 is the traceless sym-
metric part of the random matrix of independent Wiener incre-
ments of dWij, and k= b; s stands for the lipid bilayer or the
cytoskeleton, respectively. The viscosities of the lipid bilayer
and the cytoskeleton can be calculated as

ηk =
ffiffiffi
3

p
γTk +

ffiffiffi
3

p
γCk
4

: [S18]

Experiments show that the cytoskeleton viscosity ηs is about 50–
100 times larger than the lipid-bilayer viscosity ηb (8).

Scaling of DPDModel and Physical Units.Within the DPD approach,
reduced units are used for the mass, length, and energy. In the
following, we derive the scaling relationships between model units
and physical units.
Let r= 1 m denote the length scale in the physical system in SI

units and r′ denote the length scale of the DPD model. The same
initial diameter (D0 = 7:82 μm) of the RBC can be expressed in
both the DPD system and the physical system as

D0 =DM
0 · r′=DP

0 · r= 7:82× 10−6 m; [S19]

where DP
0 = 7:82× 10−6 and m is meter. The variables with upper

index “P” (e.g., DP
0 ) are values (numbers without units) of the

quantities (e.g., D0) in the physical system with SI units, whereas
the variables with upper index “M” (e.g.,DM

0 ) are values (numbers
without units) of the quantities (e.g., D0) in the DPD system. We
can choose the length-scale r′ of the DPD system, and usually
specific values of r′ andDM

0 depend on the size of the DPD system.
Because



kBT
μs

�
= length2; [S20]

where ½·� denotes the dimension of a quantity, μs is the shear
modulus, kB is the Boltzmann constant, and T is the tempera-
ture, we should have

kBT
μs

=
ðkBTÞM
μMs

�
r′
�2

=
ðkBTÞP
μPs

ðrÞ2: [S21]

Plugging Eq. S19 into Eq. S21, we get

ðkBTÞM =
μMs
μPs

 
DM

0

DP
0

!2

ðkBTÞP: [S22]

Similarly for the force N, because


kBT
N

�
= length; [S23]

we have

NM =
ðkBTÞM
ðkBTÞP

rM

rP
NP =

ðkBTÞM
ðkBTÞP

DP
0

DM
0
NP =

μMs
μPs

DM
0

DP
0
NP: [S24]
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For time scaling, because



ηD2

0

N

�
= time; [S25]

where η is a characteristic viscosity, we have

ηD2
0

N
=
ηM
�
DM

0

�2

NM τ′=
ηP
�
DP

0

�2

NP τ; [S26]

where τ= 1 s is the timescale in the physical system with SI units,
and τ′ is the timescale in the DPD system. Plugging Eq. S24 into
Eq. S26, we get the timescale of the DPD system as

τ′ =
DP

0

DM
0

ηP

ηM
μMs
μPs

s; [S27]

where s denotes second.
For example, in the simulations of tank-treading motions, the

RBC diameter, the membrane Young’s modulus, and the interior
fluid viscosity are DM

0 = 7:82, μMs = 12:125, and ηM = 1:8, re-
spectively, corresponding to DP

0 = 7:82× 10−6, μPs = 4:725× 10−6,
and ηP = 0:006 in the physical system with SI units. Hence, the
DPD timescale is τ′ ’ 2:7 ms. In the simulations of tank-treading
motions, a time-step size ΔtM = ð0:0005∼ 0:005Þ in DPD units is
used, which gives Δt=ΔtMτ′= ð1:35∼ 13:5Þ μs.
Comparison with Existing Models. Two-component whole-cell
erythrocyte membrane models have been developed before (4, 9,
10). Compared with the existing models, the current two-compo-
nent DPD model has three major advantages. The first advantage
is that we explicitly model the bilayer–cytoskeletal interaction in-
cluding the normal interaction and tangential friction based on
realistic protein connectivity, in such a way that the bilayer–
cytoskeletal interaction force and cytoskeleton deformation at
the molecular level can be investigated directly. Second, we use a
systematic coarse-graining procedure starting from the spectrin
level (11, 12) so that different coarse-graining levels can be used to
produce adequate levels of desired accuracy. Third, the model
proposed here can predict the physical phenomena of quasi-static
deformation, fluid dynamics, and thermal fluctuations, whereas
some of the prior two-component whole-cell models (4, 10)
cannot simulate thermal fluctuations. In addition, in contrast
to the existing particle-based two-component model (9), our
thermal fluctuation simulations have been validated exten-
sively by comparing the results with experimental data (13).
In addition to two-component whole-cell models, there are also

sophisticated two-componentmodels of localmembranes, inwhich
only a small piece of RBC membrane is simulated, such as the
model by Li and Lykotrafitis (14). Their model is more detailed
with molecular information on lipid diffusion. Consequently, the
computational cost is prohibitively high for it to be applicable to
study whole-cell problems at the present time. However, the
computational framework we present here can be further ex-
tended in future work to include these extra details as studied in
ref. 14. As the first step, and for computational expediency, we
neglect these details here and focus on the problems of the whole
cell, such as in rheology, where details like lipid diffusion are not
important. Hence, our two-component model is a good compro-
mise between the one-component whole-cell DPD model and the
two-component detailed molecular dynamics model in ref. 14. It
can be used to explore important problems involving cell physi-
ology and pathological states mediated by protein mutations,
such as the bilayer loss in hereditary spherocytosis and the bilayer–
cytoskeleton uncoupling in sickle-cell anemia (15).

Simulation Setups and Parameter Estimation
Here, we present details of the simulation setups of micropipette
aspiration, membrane fluctuations, tank-treading motion, and
channel flow stretching. Subsequently, we estimate the default
main parameters.

Micropipette Aspiration Simulation Setup. In the micropipette as-
piration (16), a negative pressure is applied to aspirate a RBC into
a small glass pipette. The RBC membrane undergoes large defor-
mation during this aspiration process. To measure the area de-
formation of the cytoskeleton alone, the actins in the RBC mem-
brane are labeled using rhodamine–phalloidin, an antibody with
fluorescence. By measuring the fluorescence light intensity, the
actin density in different regions of the cytoskeleton can be de-
termined, which is inversely proportional to the area deformation
of the cytoskeleton. It was found that the cytoskeleton in the cap
region of the aspirated cell inside the pipette is significantly ex-
panded, whereas the cytoskeleton near the pipette entrance is
compressed. The density of the lipid molecule marked by another
antibody was found uniform over the cell surface because the lipid
bilayer is incompressible. This experiment takes up to 30 min to
allow the bilayer–cytoskeletal slip to reach steady state, so that it is
modeled as a quasi-static process in our simulation; i.e., the bi-
layer–cytoskeletal friction and membrane viscosities are neglected.
The parameters used in this simulation are listed in Table S1.
The RBCs are hypotonically swollen (osmotic pressure is in a

typical range of 160–250 mOsm) in the beginning of this experi-
ment (16) and correspondingly our RBC model is also inflated
from a standard biconcave shape accordingly in the beginning of
the simulation. A rigid cylindrical surface is used to represent the
pipette. The interaction between the lipid bilayer and the pipette is
modeled as a hard contact by using a master–slave algorithm (6)
similar to the bilayer–cytoskeletal interaction but with a large
spring constant. As indicated in the experiments, during the as-
piration the membrane is usually separated from the pipette by a
small gap of fluid so that the friction between them is insignificant
and thus not considered in our model. We further simplify the
fluid pressure distribution inside the pipette as a uniform pressure
difference applied on the cap region of the lipid bilayer and a
linear distribution along the aspiration length; the pressure dif-
ference equals zero at the entrance.
In addition to the results shown in Fig. 1 in the main text, we also

applied the one-component DPDmodel to study this problem, and
we found that the area expansion is abnormally large in the cap
region. The reason is that we applied a uniformpressure on the cap
region of the cell with a linear distribution along the aspiration
length, which is different from the interaction pressure applied on
thecytoskeleton fromthe lipidbilayer in the two-componentmodel.
Basically, the large local areamodulus of the bilayer is absent in the
one-component DPD model. In the Monte Carlo simulation (3),
instead of applying the pressure to deform the cell, a canonical
shape (cylinder/sphere) was assumed; the vertices of the triangular
network were allowed to slide along this assumed shape.

Membrane Fluctuations Simulation Setup. We use the two-compo-
nent DPD model to simulate membrane fluctuations. Because
cells adhere to the substrate in the experiment, we fixed 13% of
vertices on the RBC bottom and the simulations show that the
effect of attachment strength (percentage of fixed vertices on the
RBC bottom) on the amplitude fluctuations is negligible as long
as more than 13% of the vertices are fixed (13). The extracellular
and intracellular fluids with different viscosities were modeled
using DPD particles. The top surface with a radius of 3 μm was
monitored.
We did not use the full resolution model to study this problem

because of computational cost. To reach the same timescale, the
full resolution model with Nv = 23;867 is about 8,000 times more
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expensive than the model with Nv = 500. The latter takes 1 h to
run a typical case on a 32-core 800-MHz node.
Although we invoke a systematic coarse-graining approach (11,

12) for the in-plane mechanical properties such as shear modulus
in the current study, the proper coarse-graining procedure for the
properties of the bilayer–cytoskeletal interaction in the vertical
direction in thermal fluctuations is unclear. For example, if we
assume kbs = k23;867bs in the full resolution model with Nv = 23;867
and kbs = k500bs in the coarse-grained model with Nv = 500, it can be
derived that k500bs = 23;867=500 · k23;867bs ≈ 48 · k23;867bs , because k23;867bs
represents the stiffness of one junctional complex connection
whereas k500bs represents the stiffness of 48 junctional complex
connections. However, simulation results show this simple coarse-
graining procedure makes the 500 DPD particle model too stiff in
membrane fluctuation simulations. Lumping of 48 junctional
complexes into one connection means that these junctional com-
plexes always move with the same displacement, but in reality or in
the simulation using the full resolution model with Nv = 23;867,
the fluctuations of these 48 junctional complexes follow a distri-
bution and their motions are not synchronized. Instead, simu-
lations show that more reasonable results can be obtained by using
k500bs ≈ k23;867bs . Therefore, in the simulations of membrane fluctua-
tions, we use the same physical values of kbs, cbs, and fbs for dif-
ferent coarse-graining levels. For other simulations such as micro-
pipette aspiration and tank-treading motion, we found the effect
of kbs is insignificant. The parameters used in this simulation are
listed in Table S1.

Tank-Treading Simulation Setup. In the simulations of the tank-
treading (TT) motion of a RBC in shear flow, we place a single
RBC in linear shear flow between two planar solid walls and
simulate the TT motion at different shear rates, using both the
one-component and the two-component RBC models. The no-
slip boundary condition between the fluid and the solid wall and
that between the fluid and the RBCmembrane are enforced using
the bounce-back condition (17). The viscosity of the suspending
medium is specified as η0 = 0:0289 Pa s based on the experiment
(18) and the viscosity of the cytosol inside the RBC is given as
η1 = 0:006 Pa s (19). For the membrane viscosities, it was found
that the viscosity of the cytoskeleton is about 50 times larger than
that of the lipid bilayer (8). By selecting the bilayer and cyto-
skeleton viscosities as ηb = 0:008 Pa s and ηs = 0:372 Pa s, re-
spectively, the TT frequency matches the experimental results
well as shown in Fig. 3A in the main text. Other parameters used
in this simulation are listed in Table S1.

Channel Flow Stretching Simulation Setup. Channel flow stretching
experiments have been carried out to examine the response of cells
attached to a substrate to shear stresses exerted by an incoming
flow. In a typical channel flow setup, erythrocytes are allowed to
sediment inside a channel consisting of two parallel plates. The
substrate is coatedwith BSA so that most cells do not adhere to the
bottom plate with large attachment areas. When external flow is
introduced, the cells deform while one point (in some cases more
than one) remains attached to the substrate. Long membrane
strands (tethers)mayappearwhen thehydrodynamic shearexceeds
a certain threshold value (∼ 1:5 dyn=cm2 or 0:15 pN=μm2) (20).
In the simulation of whole-cell stretching with a line attachment

between the cell and the substrate, two points at the bottom of the
cell are fixed as shown in Fig. 4A, to create a line attachment.
Because the line attachment edge of the cell was between 2 μm
and 3 μm in the experiment, the distance between these two points
is chosen with an average value of 2.5 μm in our simulations.
In the case with one attachment point, the cell attaches to the

substrate not at a geometric point but within a small attachment
area. In our model this attachment area is depicted as a circular
area on the cell membrane whose diameter Da is chosen to be

0:15 μm, which is within the same range as the diameter of the
tether estimated from optical and scanning electron photo-
micrographs, i.e., 0.1–0.2 μm (20). It is important to note here
that the two are not expected to be exactly the same, because the
radius of the tether Rt depends on the applied force f0 by the
relation Rt = 2πkc=f0, where kc is the bending stiffness (21).

Parameter Estimation.The default values of themain parameters of
the two-componentDPDmodel are listed in Table S1 for different
cases. The initial membrane shear modulus without deformation
μs is measured as 6 pN=μm in the micropipette aspiration ex-
periment (19), but at a smaller value in the thermal fluctuations
experiment (22). The shear modulus increases with deformation
due to strain-induced stiffening (3) and may decrease at very
large deformation due to spectrin unfolding (23). It can be one
order higher for malaria-infected RBCs (24, 25). The bending
modulus kc = 2:4× 10−19 J is a relatively well-accepted value (19).
The membrane viscosity is measured as about 1.0 Pa s (26, 27),
which is considered the sum of the bilayer viscosity ηb and the
cytoskeleton viscosity ηs. According to Berk et al. (8), the cyto-
skeleton viscosity is 50–100 times larger than the bilayer viscosity.
The membrane viscosity plays a significant role in tank-treading
frequency (17) and by comparing predicted tank-treading fre-
quency with experimental data we estimated typical values of ηb
and ηs as shown in Table S1 and use them as default values.
The strength of the bilayer–cytoskeletal interaction bond is

estimated on the order of 10 pN on a junctional complex in the
current study by simulating the channel flow stretching experi-
ment. If we assume the bond displacement to be around 0.2 μm
when the bond breaks, a rough estimation of kbs can be obtained
as kbs = 10 pN/0.2 μm = 50 pN/μm for a junctional complex. We
used a default value of kbs = 46 pN=μm as shown in Table S1. In
addition, if we assume the stiffness of the bilayer–cytoskeletal
interaction bond is in the same order of the stiffness of a spec-
trin, the linearized stiffness of a spectrin modeled using the WLC
model is given as kbs = 3kBT=2pLc = 4 pN=μm with a persistence
length of P = 7.5 nm and contour length Lc = 200 nm (3); this can
be considered as a lower-bound value. The bilayer–cytoskeletal
friction coefficient fbs has been estimated as 0:194 pN·μm−1·s−1
for a single junctional complex based on the experimentally mea-
sured diffusivity of transmembrane proteins and the fluctuation
dissipation theorem (10). For simplicity, the vertical damping
coefficient is always set to be the same as the friction coefficient;
i.e., cbs = fbs.
In addition to these main parameters, other parameters are

given as follows: bilayer local area constraint kl = 5; 000 and global
volume constraint kv = 5; 000 (both in DPD units). They serve as
penalty parameters and their influence is negligible as long as their
values are high enough. In Eq. S7, n= 2, kp = 1:0, and lm = 2:2x0,
where x0 is the initial length of the spring in the cytoskeleton. The
biconcave shape is chosen to be the stress-free state of the cyto-
skeleton, and θ0 = 0 in Eq. S8; i.e., the spontaneous curvature is zero.
One objective of the current study was to probe the mechanical

characteristics associated with the bilayer–cytoskeletal viscoelastic
interactions, which cannot be measured directly by existing ex-
periments, and to investigate the effects of these mechanical
parameters on overall experimental results. For example, in the
fluorescence-marked micropipette aspiration experiments, we
validate our model by predicting local cytoskeletal spectrin de-
formation. It mainly depends on the constitutive law of the cyto-
skeleton. Because it is a quasi-static process, the result is indepen-
dent of dissipative parameters such as fbs, ηb, and ηs; the influence
of kbs is found to be small as well. In the membrane fluctuations
experiment, the amplitude of the fluctuations is independent of
viscous parameters fbs, ηb, and ηs (28, 29), and consequently we
mainly study the effect of kbs and μs. In the experiments involving
tank-treading motion in shear flow, we focus on the effects of
dissipative parameters fbs, ηb, and ηs, because they play a major
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role in influencing the tank-treading frequency. As for bilayer–
cytoskeletal detachment in the channel flow experiments, our
objective was to estimate bilayer–cytoskeletal bond strength σbs.
Because only one or two parameters in each simulation of these

four experiments are relevant to the result, our approach provides
a good protocol in validating the two-component model and in
investigating the effects of these parameters in isolation, in a sys-
tematic and controlled manner.
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Fig. S1. (A) Two-component DPD model of the whole cell (Nv = 23, 867, i.e., 23,867 DPD particles on each triangular network). (B) Local triangular networks of
the two-component model: lj is the spring length of the cytoskeleton; θj is the instantaneous angle between two adjacent triangles on the bilayer; and Aj is the
triangle area. (C) Normal and tangential interactions between the lipid bilayer and the cytoskeleton. j′ is the projection point on the lipid bilayer of vertex j on
the cytoskeleton; dj is the distance between point j and point j′;fFj is the tangential friction interaction force, whereas fEj is the normal elastic interaction force;
and nj is the normal direction vector of the bilayer triangle. (D) Physical picture of the local bilayer–cytoskeletal interaction. Although there are two kinds of
interactions in each junctional complex, including the major connections via band 3 and ankyrin and the secondary connections via actin, glycophorin C, and
band 4.1, we consider them together as an effective bilayer–cytoskeletal interaction in one junctional complex and model it as a normal elastic force and
a tangential friction force. The vertical damping force fDj and the random force fRj are not shown for clarity.
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Table S1. Main parameters of the two-component DPD model

Study cases μs, pN/μm kc , J ηs, Pa s ηb, Pa s kbs, pN/μm fbs, pN·μm−1·s−1

Default 6 2.4e-19 0.372 0.008 46:0 0:194
Micropipette 6 2.4e-19 Independent Independent 46:0 Independent
Fluctuations Table S2 2.4e-19 Independent Independent Fig. 2A Independent
Tank treading 6 2.4e-19 0.372 0.008 46:0 Fig. 3B
Channel flow 6 2.4e-19 Independent Independent 46:0 Independent

μs, initial cytoskeleton shear stiffness (19); kc , bilayer bending stiffness (19); ηs, cytoskeleton viscosity (27);
ηb, bilayer viscosity (8, 27); kbs and fbs, the elastic and friction coefficients of the bilayer–cytoskeletal inter-
actions (10).

Table S2. Shear moduli of healthy RBCs and ring-stage RBCs at the physiological and febrile
temperatures obtained in ref. 25

Healthy, 37 °C, pN/μm Healthy, 41 °C, pN/μm Ring, 37 °C, pN/μm Ring, 41 °C, pN/μm

6:2 4:9 14:5 20:4
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