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Abstract

We present a unified mechanistic model to rationalize size-dependent flow stress, activation volume and strain-rate sensitivity for met-
als with either nanocrystalline grains or nanoscale twins. The non-uniform partial dislocation model for flow stress [Asaro and Suresh,
Acta Mater, Vol. 53, pp. 3369–3382, 2005; Gu et al., Scripta Mater, Vol. 62, pp. 361–364, 2010] is generalized here to consider both grain-
size dependence and twin-thickness dependence of nanotwinned metals. A non-homogeneous nucleation model is proposed to predict the
dependence of activation volume on both grain-size and twin-thickness. With the activation volume predicted from the non-homoge-
neous nucleation model and the flow stress obtained via the non-uniform partial dislocation model, strain-rate sensitivity as a function
of characteristic structural length scale is also evaluated. This provides a unified approach from envisioning partial dislocation emission
for the three size-dependent parameters characterizing the plastic deformation mechanism, flow stress, activation volume and strain-rate
sensitivity, so that each one of these parameters is predicted when the geometry of the grains or nanotwins is known. The model pre-
dictions are shown to be consistent with a variety of available experimental data.
� 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Plastic deformation of polycrystalline metals with grain
size at the microscale is mainly controlled by intragranular
lattice dislocations. When the grain size is refined into the
nanoscale, typically below 100 nm, the abundance of grain
boundaries provides barriers for intergranular dislocation
motion, and the smaller grain size limits the scope of intra-
granular dislocation motion [1]. Such a change in deforma-
tion mechanism results in much higher strength, much
lower activation volume and much higher strain-rate sensi-
tivity for nanocrystalline materials compared with the
microcrystalline materials [2–5]. Nanoscale twin lamellae
embedded in ultrafine grains (typically a few hundred
nanometers in size) can be introduced by means of pulsed
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electrodeposition [6]. These nanoscale twin lamellae pro-
vide coherent twin boundaries, i.e. the (1 1 1) planes of
face-centered cubic (fcc) structures are crystallographic
mirror planes. It has been shown that these twin structures
with twin thickness at the nanoscale provide considerably
higher ductility than nanocrystalline materials with a grain
size similar to the twin thickness, in addition to a similar
high strength [6–12].

The understanding of plastic deformation characteristics
in nanocrystalline and nanotwinned materials, i.e. flow
stress, activation volume and strain-rate sensitivity, is one
of the major objectives in the ongoing investigation of
nanoenhanced materials. In Refs. [2,3], an analytical model
was developed for grain-size-dependent flow stress by envi-
sioning the process of emitting partial dislocations from the
grain boundary, which was observed in experiments and
molecular dynamics (MD) simulations [6,13]. The model
was later extended to consider a non-uniform partial
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dislocation extension, and it was shown that the non-uni-
form partial dislocation model is more consistent with
experimental data for the flow stresses of Cu and Pd [5].
The activation volume characterizing plastic deformation
kinetics and strain-rate sensitivity characterizing the
rate-controlling process are discussed in Refs. [3,4,
6–8,10,11,14–16] for nanocrystalline and nanotwinned
metals. By evaluating the change of free energy around a
crack-like stress concentrator near the nanoscale grain, a
size-independent activation volume pb3 (where b is the
magnitude of the Burgers vector), consistent with the order
of experimental data, was predicted in Ref. [3]. In this
paper, we generalize the results from Refs. [3,5] to develop
a non-homogeneous nucleation model to predict the size-
dependent activation volume and strain-rate sensitivity,
and to extend the non-uniform partial dislocation model
for flow stress in nanocrystalline metals to nanotwinned
metals. The model developed here for activation volume
and strain-rate sensitivity, together with the models devel-
oped previously and here for flow stress [2,3,5], provide a
unified approach for envisioning partial dislocation emis-
sion for these nanoscale quantities (flow stress, activation
volume and strain-rate sensitivity), i.e. they can be pre-
dicted when grain size and twin thickness are known. These
mechanistic models are formulated in terms of both grain
size and twin thickness, and they are fully consistent with
available experimental data.

In a thermally activated process contributing to plastic
deformation, the activation volume is defined using the
change of tensile strain rate _e with respect to tensile flow
stress r, the absolute temperature T and the Boltzmann
constant k as [3]

V ¼
ffiffiffi
3
p

kT
@ ln _e
@r

: ð1Þ

The strain-rate sensitivity, m, is related to the activation
volume, V, by the expression:

m ¼
ffiffiffi
3
p

kT
V r

: ð2Þ

Combining Eqs. (1) and (2), it is seen that the strain-rate
sensitivity is essentially m ¼ @ ln r=@ ln _e, which is consis-
tent with the power law relationship of stress as a function
of strain rate. As noted in the discussion below, V measures
a physical volume in the thermally activated process that
triggers considerable plastic flow. The inverse proportion
of strain-rate sensitivity to activation volume is consistent
with experimental data (e.g. [10]). Experimental measure-
ments of plastic deformation at different strain rates, or dif-
ferent tests, e.g. stress-relaxation tests [11], are needed, in
addition to uniaxial tensile tests, to determine the three
quantities of interest: the flow stress, the activation volume
and the strain-rate sensitivity. With the flow stress obtained
from the partial dislocation model or the classical Hall–
Petch relation [17,18] and the activation volume obtained
from the non-homogeneous nucleation model, the strain-
rate sensitivity is determined from Eq. (2). This provides
a means to theoretically evaluate the three parameters that
characterize plastic deformation at the nanoscale. How-
ever, the free-energy approach in Ref. [3] results in a size-
independent activation volume due to its over-restrictive
requirement that both the free energy and the associated
effective force reach maximum (Eqs. (30a,b) in Ref. [3]).
In this paper, we formulate the free-energy approach that
will lead to the evaluation of the size-dependent activation
volume.

The outline of this paper is as follows. In Section 2, the
non-uniform partial dislocation model for flow stress in
nanocrystalline metals is extended to nanotwinned metals
by considering representative partial dislocation extensions
in the twin system. The predicted flow stress is compared
with various experimental measurements reported for
nanotwinned Cu. In Section 3, a concise review of mecha-
nistic models for activation volume is given, and the
non-homogeneous nucleation model to predict activation
volume is developed. Using nanocrystalline Cu and nano-
twinned Cu as illustrative examples, we show that the
model prediction is consistent with all available experimen-
tal data for both activation volume and strain-rate sensitiv-
ity. This is followed by a concluding discussion and
remarks that link the present general analysis to a variety
of size-dependent deformation characteristics of nanocrys-
talline and nanotwinned materials.

2. Size-dependent flow stress in nanocrystalline and

nanotwinned metals

In the non-uniform partial dislocation model [5], shear
flow stress s is expressed in terms of the stacking fault
energy C, the magnitude of Burgers vector b, the shear
modulus G, the grain size d and a parameter to measure
the non-uniform extension b as

s
G
¼ C

Gb
þ 1

3
� 1

12pb

� �
b
d
: ð3Þ

The parameter b is defined as b ¼ 1=d2
R d

0
dðxÞdx, where the

extension distance d(x) is non-uniform along the original
dislocation line (grain boundary), and is related to the
grain size. Eq. (3) clearly shows the dependence of flow
stress on grain size, whereas the expressions in Refs. [2,3]
arrange flow stress in two terms which incorporate the con-
tributions of side segments and stacking fault. By appropri-
ately choosing b, the flow stress can be shown to vary
linearly with d�0.5, similar to the so-called Hall–Petch
relation, s = k0 + k1d�0.5, where k0 and k1 are Hall–Petch
constants. Recasting Eq. (3) so that it is equivalent to the
Hall–Petch relation, the following condition is obtained [5]:

b ¼ 1

4p
1

1� 3 k1

G
ffiffi
b
p

ffiffi
d
b

q : ð4Þ

Equating the grain-size-independent term of the Eq. (3) to
that of the Hall–Petch relation, we note that C = Gbk0. The
stacking fault energy calculated from this relationship falls
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Fig. 1. Dislocation extensions on the twin boundary and matrix slip
plane. According to the MD simulation [20], dislocation loops on the
matrix slip planes are sources for strengthening (increasing strength with
decreasing twin thickness); dislocation loops on the twin boundary are
sources for softening (decreasing strength with decreasing twin thickness).
Flow stress is evaluated from the unit cell model for intratwin slip.

P. Gu et al. / Acta Materialia 59 (2011) 6861–6868 6863
into the expected range. For Cu, the stacking fault energy
obtained from such approach is 34 mJ/m2.

For the nanotwinned structures shown in Fig. 1, disloca-
tion-mediated plastic deformation is active on the matrix
slip plane for the strengthening mechanism to play a dom-
inant role [6–8,10,19,20]. The partial dislocation extension
along the transverse direction of the matrix slip plane
(shown in green color) was considered in Refs. [7,8],
whereas the partial dislocation extension parallel to the
twin boundary (in blue color) was discussed in the molecu-
lar dynamics simulation in Ref. [20]. We generalize the
non-uniform partial dislocation extension model for nona-
crystalline materials [5] to include nanotwinned materials
by considering representative intratwin extensions: the par-
tial dislocation loops toward and parallel to the twin
boundary (the green and blue color loops in Fig. 1).

Let the shear stresses required to extend the partial dis-
location loops toward and parallel to the twin boundary be
s1 and s2, respectively; both can be obtained by the proce-
dures outlined in Ref. [5]. The shear flow stress for the twin
structure is regarded as lying in between the above two flow
stresses and is estimated as s = (s1 + s2)/2, which gives

s
G
¼ C

Gb
þ 1

2

1

3
� 1

12pb1

� �
b
k1

þ 1

2

1

3
� 1

12pb2

� �
b
d
: ð5Þ

In this expression, there are two extension parameters,
b1 ¼ 1=ðk1dÞ

R d
0

d1ðxÞdx and b2 ¼ 1=ðk1dÞ
R k1

0
d2ðxÞdx, with

k1 = k/sin h and h = 70� being the angle between the matrix
slip plane and the twin boundary. Both extension parame-
ters are related to the geometrical lengths, grain size d and
twin thickness k, and so is the flow stress. In the numerics
that follow, we use the approximation k1 � k.

The shear flow stress model in Eq. (5) is developed by
recognizing intratwin dislocation extension, whereas the
shear flow stress model in Eq. (3) is derived by recognizing
intragranular dislocation extension. Eq. (5) shows that
both twin thickness and grain size contribute to the shear
flow stress of nanotwins. For large grain size, the third term
on the right-hand side is ignored such that the twin thick-
ness is similar to the grain size in Eq. (3) for nanocrystalline
materials. If b1 = b2, d = 400 nm and k = 20 nm, the mag-
nitude of the third term is only 5% of the second. Note
from prior work [9–11] that the effect of twin thickness
for nanotwinned copper (with a fixed grain size of
�500 nm) was found to be equivalent to that of the grain
size for nanocrystalline copper in relation to their respec-
tive size dependence of flow stress. Here the flow stress,
activation volume and strain-rate sensitivity vs. twin thick-
ness for nanotwins provide good correlation for size depen-
dence of the same parameters when the grain size is used
for nanograins as a characteristic size scale. In such cases,
the effects of twin thickness on mechanical response are
similar to those seen as a function of grain size. In Eq.
(5), for the case without nanotwins, k = d and b1 = b2 such
that it recovers Eq. (3) for the flow stress in nanocrystalline
metals.

If the Hall–Petch-type relation for nanotwins can be
written as s ¼ k0 þ k�1k

�0:5 þ k1d�0:5, b1 and b2 can be recast
from Eq. (5) to be equivalent to the Hall–Petch-type
relation:

b1 ¼
1

4p
1

1� 6
k�1

G
ffiffi
b
p

ffiffi
k
b

q ; b2 ¼
1

4p
1

1� 6 k1

G
ffiffi
b
p

ffiffi
d
b

q : ð6Þ

At the intersection of the twin boundary and the matrix
slip plane, various situations for absorption of the disloca-
tions onto the twin boundary or transmission of the dislo-
cations onto the adjacent matrix slip plane have been
envisioned in the MD simulations and multiscale simula-
tions [7,21–24]. A cross-slip model [8] gives a simple crite-
rion:

ffiffiffi
3
p

ps2k=ðGbÞ � 0:65s ¼ 0:024G; where the plus sign
is for absorption, the minus sign is for transmission, and
G is the shear modulus.

Once the twin size becomes very small (on the order of
�10 nm or less), the flow stress of a nanotwinned metal
instead decreases along with the twin thickness, just as
the flow stress of a nanocrystalline material drops below
a critical nanograin size of comparable magnitude; this
phenomenon of softening with feature-size refinement is
known as strength softening, or inverse Hall–Petch behav-
ior [9,25]. In this situation, an active plastic deformation
mechanism results from the dislocation nucleation and
extension on the twin boundary (red colored loop in
Fig. 1), instead of those dislocations on the matrix slip
plane, and from the thermal activation equation the flow
stress in the strength softening is expressed as [20]

s ¼ Q
SV
� kT

SV
ln

d
k

vD

_e

� �
: ð7Þ

In the above expression, Q is the activation energy, S is a
scalar representing local stress and geometry, V is the
activation volume, vD is the Debye frequency and _e is the
strain rate. The values chosen for these constants are
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Q = 1 eV, S = 0.25, V = 2.4X0 (with X0 being the atomic
volume) and vD = 1.3 � 1013 s�1. For nanocrystalline met-
als, inverse Hall–Petch behavior is associated with grain
rotation to a larger extent than with dislocation nucleation
at the grain boundary [26].

The typical material properties for Cu are G = 50 GPa,
b = 0.255 nm and C/(Gb) = 0.00425. Taking the non-uni-
form partial dislocation extension parameter b to be 0.18,
the shear flow stress calculated from Eq. (3) is plotted in
Fig. 2 against experimental data of nanocrystalline Cu,
which are recompiled from those plotted in Fig. 3 of Ref.
[5]. The Hall–Petch fit is also shown in Fig. 2, which gives
the coefficient for the constant term k0 = 0.128 GPa
and the coefficient for the grain-size-dependent term
k1 = 0.97 GPa nm0.5. The shear flow stress for nanotwinned
Cu with d = 500 nm is plotted in Fig. 3 against the twin
thickness and experimental data given in Ref. [9], using
Fig. 2. Shear flow stress of nanocrystalline Cu predicted from the non-
uniform partial dislocation model and Hall–Petch relation. Data are
recompiled from Ref. [5].

Fig. 3. Shear flow stress of nanotwinned Cu predicted from the non-
uniform partial dislocation model is compared with that measured in
experiments in Ref. [9].
expressions (5) and (7). For simplicity, we choose
b1 = b2 = 0.204, which is obtained by fitting the data around
k = 16 nm. The intersection of the two curves (blue and red)
in Fig. 3, which is indicated by an open diamond symbol, is
where strength softening occurs. The critical twin size is
around 14.25 nm, which is comparable to the critical grain
size for the transition in nanocrystalline Gu. From the two
figures, for both nanocrystalline and nanotwinned struc-
tures, the model prediction is consistent with experimental
data. For strain-rate dependence, the extension parameters,
b, b1 and b2, which also measure the side segments of the dis-
locations, can be related to the strain-rate sensitivity m. In
Refs. [3,28], the side segments of the dislocations are envi-
sioned to be affected by strain rate.
3. Size-dependence of activation volume and rate sensitivity

3.1. A size-dependent, non-homogeneous, partial dislocation

model for activation volume

We begin with the examination of the free energy asso-
ciated with the dislocation loop. The energy of a half-circu-
lar loop with radius r is [3,27]

U 1 ¼ Gb2 2� m
8ð1� mÞ r ln

r
r0

� �
; ð8Þ

where b is the magnitude of the Burgers vector, r0 is the
core cut-off radius and m is Poisson’s ratio. For homoge-
neous nucleation, i.e. for large grain size and no stress con-
centration, the energy associated with shear flow stress s on
the slip plane is

U 2 ¼
1

2
spbðr2 � r2

0Þ: ð9Þ

The free energy for the dislocation loop is U = U1 � U2.
The energies created by a half-circular partial dislocation
loop are estimated [3,27] by replacing b in the above expres-
sions for the energy of perfect dislocation loop with
b1 ¼ b=

ffiffiffi
3
p

, the magnitude of Burgers vector for the partial
dislocation. In considering non-homogeneous nucleation, a
grain boundary facet crack was introduced [3] where the
shear stress field on slip plane is KII=

ffiffiffiffiffiffiffi
2pr
p

and
KII ¼ s

ffiffiffiffiffiffiffiffiffiffiffi
pd=2

p
. The size of a grain boundary facet crack

approximates the grain size. The energy associated with
the shear stress in the facet crack case is
U 2 ¼ 1:4KIIb1ðr3=2 � r3=2

0 Þ. In addition, in the partial dislo-
cation loop case, there is energy term associated with the
creation of a stacking fault, which is expressed in terms
of the stacking fault energy C as U 3 ¼ 1

2
pCðr2 � r2

0Þ. The
free energy for the partial dislocation loop is
U = U1 � U2 + U3. As r increases, the free energy U goes
to a minimum and then a maximum. In Ref. [3], the critical
loop radius rc and the driving force KII associated with the
maximum of U were estimated by having both o U/o r = 0
and o 2U/o r2 = 0. This leads to the result that the activa-
tion volume is grain-size independent, i.e. V = pb3. This
estimate correctly predicts the order of activation volume,
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as demonstrated by the data from nanoexperiments (e.g.
[6,10]). As seen from Fig. 4, setting only the free energy
to be maximum (i.e. o U/o r = 0) is sufficient to overcome
the required activation energy.

In obtaining V = pb3, the crack tip stress field, which is
singular in the order of 1=

ffiffi
r
p

, was taken as the driving
force. It is reasonable to probe the stress concentration
because the misoriented structure of a grain boundary
under deformation generates intense local stress concentra-
tion. The question then arises whether a grain boundary or
its triple junction exhibits such a strong stress gradient.
Recognizing this, Asaro and Suresh [3] discussed a homo-
geneous nucleation model for a perfect dislocation loop,
where uniform shear stress on the slip plane was employed.
With the free energy U = U1 � U2 and the energy from the
uniform shear stress U 2 ¼ 1

2
spbðr2 � r2

0Þ, the requirement of
maximum free energy, o U/o r = 0, gave a loop size for
activation as

rc ¼
5

16p
s
G

� ��1

b½lnðrc=r0Þ þ 1�: ð10Þ

Note that, in obtaining the above expression, the over-
restrictive requirement o 2U/o r2 = 0 is dropped. Substitut-
ing the simple estimation for flow stress s/G = b/d into Eq.
(10), it would be possible to obtain the size for activation in
terms of grain size d from the algebraic equation. When we
consider partial dislocation nucleation and neglect stacking
fault energy for the time being, the above expression for the
loop size at activation becomes

rc ¼ a
s
G

� ��1

b ln

ffiffiffi
3
p

rc

b
þ 1

 !
: ð11Þ

In this expression, a ¼ 5=ð16
ffiffiffi
3
p

pÞ, and the core cut-off ra-
dius is taken to be b=

ffiffiffi
3
p

; the shear flow stress s is given by
the models in the previous section, specifically Eqs. (3) and
(5).
From Fig. 4, the activation energy is the first maximum
free energy from the left minus the first minimum free
energy from the left. Therefore, the loop size for activation
is the second root of the algebraic equation, Eq. (11), in the
region r > 0, and the activation volume is given by

V ¼ 1

2
pr2

cb: ð12Þ

However, the value of a in Eq. (11), which is needed to
determine rc, is smaller in the case of non-homogeneous
nucleation.

Consider that the partial dislocation loop is nucleated
from a non-homogeneous source such as a grain boundary,
where the shear stress in Eqs. (3) and (5) is enlarged by a
concentration factor q > 1, i.e. the shear stress is approxi-
mately qs. Then, the same derivation leading to Eq. (11)
gives a ¼ 5=ð16

ffiffiffi
3
p

pqÞ for non-homogeneous nucleation.
This tells that the larger the stress concentration, the smal-
ler the non-homogeneous nucleation factor. Additionally,
when the partial dislocation extends, there exists an inter-
action between the leading and trailing partial dislocations
during the creation of the stacking fault. This interaction
lowers the self-energy U1 for the system, as seen in the
Eq. (5) of Ref. [2] (the first term on the right-hand side),
and thus can also result in a lower value for a.

We propose a non-homogeneous model for determining
the activation volume where the loop size for activation is
the second root of the Eq. (11) from the left of Fig. 4. In the
non-homogeneous nucleation case, the shear stress in Eqs.
(3) and (5) are employed for s in Eq. (11). The non-homo-
geneous nucleation factor a is determined by evaluating the
heterogeneous nature of the nanostructure at the nucle-
ation site, or by fitting experimental data of activation vol-
ume. It is expected that the non-homogeneous nucleation
factor is considerably less than 5=ð16

ffiffiffi
3
p

pÞ. Note that, in
deriving Eq. (11), we ignored the contribution to the energy
from stacking fault, U3. In other words, the non-homoge-
neous nucleation factor also accounts for the influence of
the stacking fault, in addition to the influences of the stress
concentration and dislocation loop interaction. More accu-
rately, the stacking fault energy should be interpreted vis-à-
vis unstable and stable stacking fault energies [3]. Due to
the uncertainty of the data for unstable stacking fault
energy, its contribution is represented in the non-homoge-
neous nucleation factor. In general, the non-homogeneous
nucleation factor can be written as a = a(q, b1, b2, C) (b1

and b2 are the magnitudes of the leading and trailing par-
tial dislocations’ Burgers vectors).

The above analysis qualitatively describes the role for
the non-homogeneous nucleation factor a and also charac-
terizes its numerical range.

In Ref. [8], the free energy for the perfect dislocation
loop was used to model cross-slip (absorption vs. transmis-
sion) in nanotwinned grains, where a term for the energy of
constricted segment along the intersection of two slip
planes was included. The activation volume was evaluated
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from the change of activation energy with respect to flow
stress, V = �o Q/o s. The result estimated in this way is lar-
ger than that from atomistic reaction pathway calculations
[7], which are more consistent with experimental measure-
ment. Conrad [14] compared the expression for the change
of strain rate with respect to stress (which is related to acti-
vation volume via thermal activation) with experimental
data to estimate the activation volume. Although the cor-
rect order of magnitude estimate for activation volume
was obtained, its grain-size dependence was not deter-
mined. Assuming a Hall–Petch relation for flow stress,
Refs. [15,16] developed a Hall–Petch-type relation for 1/
V, where the Hall–Petch constants were expressed in terms
of some internal variables, such as the activation volume
for the grain boundary and the activation volume for the
thermally activated flow of the entire grain. The Hall–
Petch-type relation for the activation volume is not fully
validated because of the scatter in experimental data
around a Hall–Petch-type fitting line [10,11]. Nevertheless,
the Hall–Petch relation for 1/V provides a basis for practi-
tioners to fit their data using a straight line. As mentioned,
Lu et al. [10,11] used the Hall–Petch-type relation to fit
data for the activation volume.

3.2. Comparison of model prediction with experimental data

We chose Cu to validate the non-homogeneous model
for nanocrystalline and nanotwinned structures because
of the availability of experimental data for this fcc metal
with both nanograins and nanotwins.

The material properties of nanocrystalline Cu are given
in Section 2. Substituting the shear flow stress given by Eq.
(3), where b is taken to be 0.18, into the expression (11), the
size for activation, which is the second root of the resulting
equation, is obtained using the Newton–Raphson scheme
(which can be done by writing a simple program). The
inverse of activation volume 1/V is plotted in Fig. 5 against
0
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Fig. 5. Activation volume vs. grain size for nanocrystalline Cu. The curves
are predicted, and experimental data are from Ref. [10]. The nonhomo-
geneous nucleation factor is taken as 0.0084. The curve marked as “from
H-P relation” is obtained by using the Hall–Petch fit for shear flow stress
in Eqs. (11) and (12).
the inverse of the square root of grain size d�0.5 and exper-
imental data from Ref. [10]. The non-homogeneous nucle-
ation factor a is chosen to be 0.0084 in fitting the
experimental data, and this value falls into the range dis-
cussed in Section 3.1. We see that the activation volumes
calculated from Eqs. (11) and (12) match the experimental
data. The data on the left-hand side are for the grain size of
around 270 nm, and the data on the right-hand side are for
the grain size of around 10 nm. It appears that in some
regions the activation volumes obtained by using the
non-uniform partial dislocation model match the data bet-
ter, whereas in others the activation volumes obtained by
using the Hall–Petch relation for flow stress match the data
better. However, the experimental measurements can be
scattered along the vertical direction for the same grain
size, as shown in Refs. [6,11]. The shear flow stress
obtained from the perfect dislocation model, i.e. s/G = b/
d, is also used in Eqs. (11) and (12) to calculate the activa-
tion volume. As shown in Fig. 5, the perfect dislocation
model does not satisfactorily predict the activation volume
at the nanoscale. The smaller the grain size, the larger the
difference between the prediction of the perfect dislocation
model and the experimental data. As seen in Figs. 2 and 5,
only predictions from the non-uniform partial dislocation
model and the Hall–Petch relation are consistent with the
data. It was shown in Ref. [2] that the perfect dislocation
model predicts unrealistically higher shear flow stress at
the nanoscale.

For nanocrystalline materials, the shear flow stress (Eq.
(3)) and the activation volume obtained from Eqs. (11) and
(12) are substituted into Eq. (2) to calculate the strain-rate
sensitivity, where the connection between the shear flow
stress and the tensile flow stress is taken to be r = 2s.
Fig. 6 plots the strain-rate sensitivity exponent m against
grain size on a logarithmic scale along with experimental
data from Ref. [10]. The trends predicted by the model
are again consistent with experimental data. The data on
the left-hand side are for the grain size of around 10 nm,
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Fig. 6. Strain-rate sensitivity vs. grain size for nanocrystalline Cu. The
curves are predicted, and experimental data are from Ref. [10]. The
nonhomogeneous nucleation factor is taken as 0.0084.
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and the data on the right-hand side are for the grain size of
around 100,000 nm. In the region on the right-hand side
well above the nanoscale, where the grain size is much lar-
ger than 100 nm, the prediction of the model developed for
nanograins is not expected to match the experimental data.
In the microcrystalline region, because large numbers of
dislocations can be present in a grain, dislocation loop
interactions may become significant such that the non-
homogeneous nucleation factor a is no longer valid. This
also raises questions about the accuracy in using the energy
of a single loop to represent a system that has numerous
dislocation loop interactions. In the microcrystalline
region, dislocation cell structures [14] or dislocation pile-
ups [27] would be expected to be present during plastic
deformation. Note the similarity of the predicted curve in
Fig. 6 with the curve in Fig. 1a of Ref. [10], which was
obtained by simply fitting the strain-rate sensitivity data.

For nanotwinned Cu, the shear flow stress given by Eq.
(5), where b1 and b2 are taken to be 0.205, is substituted
into Eqs. (11) and (12) to calculate the activation volume
and strain-rate sensitivity. Here, r = 3s is used to correlate
the shear flow stress and tensile flow stress. The predicted
activation volume and strain-rate sensitivity are plotted
in Figs. 7 and 8 against experimental data taken from
Table 2 in Ref. [11]. Again, the model predictions of both
activation volume and strain-rate sensitivity for the nano-
twinned Cu are consistent with experimental data. In the
calculation, the non-homogeneous nucleation factor a is
taken as 0.006 in fitting the experimental data, and this
value is within the range discussed in Section 3.1. A
decrease in the factor a from that for the nanocrystalline
case (0.0084) can be expected since the stress concentration
near the grain boundary in nanotwinned structures is
higher than that in nanocrystalline structures due to the
high aspect ratio of the edges of twins. However, this esti-
mate is predicated upon continuum mechanics consider-
ations. In addition, dislocations in nanotwinned Cu may
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Fig. 7. Predicted and measured activation volume vs. twin thickness for
nanotwinned Cu. The data are from Table 2 of Ref. [11]. The square
symbols are from the nanoindentation test; the triangular symbols are
from the jump test; the circle symbols are from the relaxation test.
behave differently from those in nanocrystalline Cu [2–
11,20], and such differences may have an influence on a.
In other words, the fact that the a for nanotwinned Cu is
different from that for nanocrystalline Cu may suggest dif-
ferent dislocation responses and different stress concentra-
tions between the two nanostructures. Overall, the result in
Figs. 5–8 shows that the non-homogeneous nucleation
model can be used to estimate the trends in the size depen-
dence of the activation volume and strain-rate sensitivity in
both nanocrystalline and nanotwinned Cu. Future experi-
mental data for other nanocrystalline and nanotwinned
metals will elaborate the size dependence of these materials
at the nanoscale, and should provide a further basis to
assess the present model.

4. Concluding remarks

In summary, with the activation volume predicted from
the non-homogeneous nucleation model and the flow stress
obtained via the non-uniform partial dislocation model,
strain-rate sensitivity as a function of characteristic struc-
tural length scale is evaluated. For both nanocrystalline
and nanotwinned materials, the approach presented in this
paper provides a unified model from envisioning partial
dislocation emission for evaluating the three size-
dependent parameters characterizing plastic deformation
mechanism: flow stress, activation volume and strain-
rate-sensitivity. This model also incorporates the possible
effects of dislocation loop interactions, stress concentration
and stacking faults. Predictions of the analysis are found to
be generally consistent with experimental data. For the
nanotwinned structures, where plastic deformation
involves a competition between grain size and twin
thickness effects, we generalize the non-uniform partial
dislocation model [5] to express the flow stress explicitly
in terms of grain size and twin thickness.
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By employing a methodology similar to that discussed in
Ref. [28], where the side segments of partial dislocation
loops are envisioned as contributing to rate sensitivity,
the flow stress from the non-uniform partial dislocation
model can be employed to develop a viscoplastic, rate-
dependent constitutive relationship. The strain rate tensor
resulting from the slip on the matrix slip plane is given as

_e ¼
X

_csm; ð13Þ

where s is the unit vector along the Burgers vector and m is
the unit normal of the matrix slip plane. The summation is
over active slip systems. The shear strain rate on the matrix
slip plane is

_c ¼ _c0

s� ss

g

� �1=m

for s� ss > 0;

0 for s� ss < 0:

8><
>: ð14Þ

Here _c0 is a reference strain rate and

g ¼ G
6

b
k
þ b

d

� �
; ss ¼

C
b
� G

24pb
b
k
þ b

d

� �
: ð15Þ

For slip on the twin plane, the shear strain rate _c is that ob-
tained from Eq. (7). Such a rate-dependent and size-depen-
dent three-dimensional constitutive relationship can be
used to investigate the influence of grain size and twin
thickness distributions to the deformation mechanism of
nanoenhanced polycrystalline aggregates.

The present development does not address the poten-
tially vital issue of the stability of either nanocrystalline
or nanotwinned fcc structures. For instance, as shown by
Zhang et al. [29] for nanocrystalline Cu (via microindenta-
tion) and by Liao et al. [30] for nanocrystalline Ni (via

high-pressure torsion), nanoscale grains undergo severe
coarsening when subjected to deformation under intense
states of stress. Nanotwinned structures offer the prospect
of far greater stability, due, in part, to the inherent low
energy of coherent twin boundaries [31]. The optimality
of nanotwinned structures vs. nanocrystalline structures
has been explored via MD simulation by Kulkarni et al.
[32], who later showed that not only were nanotwinned
structures optimal, but that there was a ranking among
fcc nanotwinned structures with respect to strength, ductil-
ity and stability. Recently, however, Fang et al. [33] have
shown that gradient structures involving nanocrystalline
and microcrystalline Cu can display attractive combina-
tions of strength and ductility. The stability of such gradi-
ent structures was not explored, which still leaves open the
question of optimality. Thus it would be useful to address
in further work a “unified” methodology for comparing the
expected behavior with respect to stability of nanocrystal-
line vs. nanotwinned fcc structures.
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