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1 Governing Equations for RBC and DPD Models

The membrane model consists of points {rn, n ∈ 1..N} which are the vertices of surface
triangulation (Figure S1). The area of triangle α ∈ 1..Π formed by vertices (l, m, n) is given
by Aα = |(rm − rl)× (rn − rl)|/2. The length of the link i ∈ 1..S connecting vertices m and
n is given by Li = |rm − rn|. The in-plane free energy of the membrane

Fin-plane =
∑

i∈links

VWLC(Li) +
∑

α∈triangles

C/Aα, (1)

includes the worm-like chain (WLC) potential for individual links

VWLC(L) =
kBTLmax

4p
×

3x2 − 2x3

1− x
, (2)

where x = L/Lmax ∈ (0, 1), Lmax is the maximum length of the links and p is the persistence
length; the parameter C in the hydrostatic elastic energy term is defined as in (1). The

Figure S1: Coarse-grained RBC, represented by collection of points connected by links. The
model takes into account the effects of membrane viscosity, in-plane shear energy, bending
energy, constraints of fixed surface area and enclosed volume.
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bending energy is given by

Fbending =
∑

adjacent α,β pair

kbend[1− cos(θαβ − θ0)], (3)

where kbend is the average bending modulus (2), while θ0 and θαβ are the spontaneous and
the instantaneous angles between two adjacent triangles, respectively. The total volume and
surface area constraints are given by

Fvolume =
kvolume(Ω− Ω0)

2kBT

2L3
0Ω0

, (4)

and

Fsurface =
ksurface(A− A0)

2kBT

2L2
0A0

, (5)

respectively, where L0 is the average length of the link, Ω and Ω0 are the instantaneous and
equilibrium volumes of the model, and A and A0 are instantaneous and equilibrium surface
areas. The parameters kvolume and ksurface are adaptively adjusted during the simulations to
keep the deviations of instantaneous volume and surface area from the equilibrium values to
less than 1%. The elastic contribution to the forces on point n ∈ 1..N is obtained as

fEn = −∂(Fin-plane + Fbending + Fvolume + Fsurface)/∂rn. (6)

The effect of membrane viscosity is modeled by adding frictional resistance to each link.
The viscous contribution to the force on point n ∈ 1..N is given by

fVn = −
∑

(n,m)∈links

γRBC(vnm · r̂nm)rnm, (7)

where vnm = vm − vn, rnm = rm − rn, rnm = |rnm|, r̂nm = rnm/rnm, and vn is the velocity
of point n.

In simulations surrounding fluid and RBC internal fluid (hemoglobin) are modeled using
Dissipative Particle Dynamics (3, 4). All particles are assumed to have the same mass
equal to M = 1 in simulations. The particles interact with each other through conservative,
dissipative and random force. Specifically, the forces exerted on a particle n by particle m
are given by

fCnm = fC(rnm)r̂nm, (8)

fDnm = −γwD(rnm)(r̂nm · vnm)r̂nm, (9)

fRnm = σwR(rnm)ξnmr̂nm. (10)

The parameters γ and σ determine the strength of the dissipative and random forces, respec-
tively. Also, ξnm are symmetric Gaussian random variables with zero mean and unit variance,
and are independent for different pairs of particles and at different times; ξnm = ξmn is en-
forced in order to satisfy momentum conservation. Finally, ωD and ωR are weight functions.

All forces act within a sphere of interaction radius rc, which is the length scale of the
system. The conservative force is given by

fCnm =

{

a(1− rnm/rc)r̂nm, rnm < rc
0, rnm ≥ rc

, (11)
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where a is a conservative force coefficient. The requirement of the canonical distribution sets
two conditions on the weight functions and the amplitudes of the dissipative and random
forces (3, 5)

ωD(rnm) =
[

ωR(rnm)
]2
, (12)

and
σ2 = 2γkBTDPD, (13)

where TDPD is the DPD system temperature and kB is the Boltzmann constant. The weight
function takes the form (6)

ωD(rnm) = [ωR(rnm)]
2 =

{

(1− rnm/rc)
s, rnm ≤ rc,

0, rnm > rc,
(14)

with exponent s ≤ 2 (s = 2 for standard DPD). The value of exponent s affects the viscosity
of the DPD fluid for fixed parameters σ and γ in dissipative and random forces. Lower
values of s typically result in a higher viscosity of the fluid. Larger values of dissipative force
coefficient γ increase the viscosity of the DPD fluid but lower the temperature of the DPD
fluid. In all cases we have verified that there are no solidification artifacts associated with
lower temperatures. This was done by calculating the radial distribution function as well as
diffusion coefficient of the DPD fluid. In addition, the Newtonian behavior of the DPD fluid
was verified using Poiseuille flow with known exact solution.

When the RBC model is immersed into the DPD fluid, each particle experiences mem-
brane elastic and viscous forces in addition to the DPD forces from the surrounding fluid
particles. Therefore, the total force exerted on a membrane particle is given by

fn = fEn + fVn + fCn + fDn + dt−1/2fRn , (15)

while for a fluid particle
fn = fCn + fDn + dt−1/2fRn . (16)

Here fCn =
∑

n 6=m fCnm is the total conservative force acting on particle n; fDn and fRn are

defined similarly.The dt−1/2 term multiplying random force fRn in equations (15) and (16) is
there to ensure that the diffusion coefficient of the particles is independent of the value of
the timestep dt used in simulations (3). The time evolution of the particles is described by
Newton’s law

drn = vndt, (17)

dvn =
1

M
fndt. (18)

The simulations are done in non-dimensional units and therefore it is necessary to estab-
lish the link between DPD and physical scales. Specifically, we need to define the DPD units
of length, time and energy.

The unit of length (the DPD cutoff radius rc) in simulations is equal to 1 micron. The
equilibrium, persistence and maximum length of the links, as well as other parameters of
RBC model are set according to (7). In addition, we use two independent experimental
measurements to specify the units of energy and time in DPD. Specifically, we require that
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the amplitude of thermal fluctuations of the membrane at rest are within the range of ex-
perimentally observed (8). The amplitude of the membrane thermal fluctuations is affected
mostly by the choice of DPD unit of energy in simulations. We also require that the charac-
teristic relaxation time of the RBC model in simulations is equal to experimentally measured
value of 0.16s at room temperature. The relaxation time is affected mostly by the ratio of
membrane elastic and viscous forces. In simulations corresponding to 37C and 41C, the
membrane viscosity is decreased by 50 and 63.5 per cent, respectively, to match experimen-
tally measured relaxation time at these temperatures. The rest of the simulation parameters
are based on these units of length, time and energy.

The fluid domain in simulations corresponds to the middle part of the microfluidic device.
The width of the flow domain is 60µm, the length is 200µm, the height is 2.7µm. The central
part of the simulation domain is the same as in the experiment. Specifically, the flow is
constricted to rectangular cross-section of 4, 5 or 6 µm in width and 2.7µm in height. The
walls are modeled by freezing DPD particles in combination with bounce-back reflection,
similar to (9). The flow is sustained by applying an external body force. The passage of
the RBC through the microchannel with the dimension smaller than the size of the resting
RBC involves large deformations of the cell followed by the recovery of the biconcave shape.
Therefore, the ratio of the characteristic relaxation time and the RBC transition time is the
same in our simulations as in the microfluidic experiments. A single experimental data point
(4 µm wide x 2.7 µm high channel, 44 Pa pressure difference, room temperature) is used to
estimate this ratio. The unit of the DPD external body force is then calculated to match
this ratio and later used to model the remaining experimental conditions.

Previous theoretical analysis revealed that the resting RBC biconcave shape is defined by
the membrane bending energy and constraints of surface area and total volume of the RBC
(10, 11). The elastic shear energy at equilibrium is likely to be at the minimum due to the
reorganization of the spectrin network (12). The process of spectrin reorganization seems
to be quite slow with characteristic time of the order of seconds, while the characteristic
time of deformations in our experiments is of the order of 10−2 seconds (13–15). Therefore,
the material reference state for the in-plane elastic energy of the model is chosen to be a
biconcave shape (7) and spectrin network reorganization is not considered in our simulations.
As discussed in the main text, this latter assumption may not be valid for the smallest cross-
section used in the experiments (i.e. 2.7 µm x 3 µm).

2 Measurement of local pressure difference across mi-

crofluidic channels

Across several experimental runs, differences in hydrodynamic pressure losses may arise
due to several factors, such as minor leaks, the presence of debris in the channel reser-
voirs, and cell concentration gradients. Such variability would result in differences in cell
traversal/flow behavior under the same nominally applied upstream/downstream pressure
differences. Therefore, in order to minimize the effect of these variations as well as minimize
the physical domain required in our DPD simulations, a particle tracking scheme was used
to experimentally determine the local pressure gradients in the microfluidic channel.
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Viscous flow of a Newtonian fluid with viscosity (η) through a channel of rectangular
cross-section with width (w), height (h) and length (L) may be described by the well-known
pressure-velocity relationship (16):

V (x, y) =
∆P

ηL

4h2

π3

∞
∑

n=1,3,5,...

1

n3

(

1−
cosh(nπx/h)

cosh(nπw/2h)

)

sin(nπy/h) (19)

where −w/2 ≤ x ≤ w/2 and 0 ≤ y ≤ h. Neutrally-buoyant, rigid particles with a
diameter (Dp) that is small compared to the length and width of the channel (Dp << w and
Dp << h) may be expected to flow along streamlines and give a direct measurement of the
fluid velocity at a point corresponding to the center of the particle. Thus, a measured average
fluid velocity may be used to infer a pressure difference from an integrated/averaged form of
Equation 19. However, due to imaging limitations and the small channel dimensions used in
this work, we are required to use minimum particle diameters of 1µm, which is comparable to
both the channel height and width. In this case, the particle may be expected to travel with
a velocity comparable to the average fluid velocity over the projected area of the particle. In
addition, the particle may not perfectly track the fluid streamlines due to rotational effects
brought upon by the high velocity gradients in the length or width direction. Therefore,
in order to establish a relationship between the measured bead trajectories and the local
pressure gradient, a combination of numerical averaging and computational fluid dynamics
studies (CFD) was used. First, it is important to realize that bead trajectories are limited
to the region: −w/2 + Dp/2 ≤ x ≤ w/2 − Dp/2 and Dp/2 ≤ y ≤ h − Dp/2. Over this
region, a grid of points with coordinates (xb, yb) and separation (δx,δy) may be selected for
which the velocity of the beads at those points may be approximated by the average fluid
velocity of the circular region of radius Rp = Dp/2 around that point. These bead velocities
may be averaged over the bead flow region to establish a relationship between the average
bead velocity and the local pressure difference. This relationship is plotted for the channels
and temperatures used in our experiments in Figure S2. In calculating these relationships,
the fluid is assumed to have the same temperature-dependent viscous properties as water
(17–19). This relationship was compared to the results of a series of CFD simulations of a
flow of 1 µm particles in a 2.7 µm high x 4 µm wide channel. These CFD results indicated
that for flow off the centerline of the channel, rotational effects are present and beads do
not exactly travel along the fluid streamlines. However, as shown in Figure S3, these effects
have only a small effect on the bead’s average velocity in the microfluidic channel compared
to that calculated using the local average of 19. Therefore, the relationships presented in
Figure S2 are believed to be adequate for inferring the local pressure gradient for a measured
average bead velocity.

In our experiments, the minimum depth of field of our imaging system was estimated to
be 2.8 µm using the analysis presented in (20). Thus, bead images are believed to be taken
along the entire channel height. These bead trajectories were tracked and subsequently
analyzed using an image segmentation and tracking routine written in Matlab. Average
velocity measurements were checked by manually tracking a subset of beads from every
data-set. The average bead velocity is then translated to a local pressure differential using
the relationships presented in Figure S2.
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Figure S2: Relationship between average velocities of 1µm diameter beads and local pressure
difference at room, body and febrile temperatures (22◦C, 37◦C and 41◦C, respectively) for
2.7 µm high, 30 µm long channels of varying width.
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Figure S3: Comparison of analytical solutions and CFD results for fluid and bead velocities
at various positions along the width of the channel. (Inset: Pressure-velocity relationship
for beads and fluid along channel center-line)
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