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A modified model for deformation via partial dislocations
and stacking faults at the nanoscale
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The partial dislocation model for the deformation mechanism of nanocrystalline materials is extended to consider the influence of
non-uniform dislocation extension. The non-uniform partial dislocation extension model is more consistent with experimental data
than the original partial dislocation model. Additionally, the flow stress obtained from the non-uniform extension model is com-
pared with that from the Hall–Petch relation.
� 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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Nanocrystalline metals with grain sizes in the
nanometer-scale show appealing mechanical behaviors
[1–3]. The Hall–Petch relation has been used to describe
the variation of the flow stress or hardness with grain
size down to the nanoscale [2,3]. The Hall–Petch relation
[4,5] predicts that flow stress increases as grain size de-
creases. However, once the grain size becomes extremely
small at the nanoscale (of the order of �10 nm or less),
the flow stress instead decreases with the grain size. This
is known as grain size softening [6,7].

Recognizing the evidence of partial dislocations in
nanocrystalline materials from experiments [8] and
atomic-scale simulations [9], Asaro and coworkers
[10,11] proposed a partial dislocation model for evaluat-
ing the shear stress required to emit intragranular partial
dislocations and create stacking faults. In Asaro et al.’s
model, the contribution to the required shear stress
comes from the partial dislocation and stacking fault
energies. In parallel, the partial dislocation mechanism
was also investigated in Refs. [12,13] for related
strengthening processes at the nanoscale. This intragran-
ular emission of partial dislocation was incorporated
into a three-dimensional constitutive methodology for
numerical simulations of the mechanical behavior of
nanostructures [14].
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The partial dislocation model, also known as the
stacking fault model, predicts higher mechanical
strength than that measured from experiments [10].
One possible source of this discrepancy may arise from
the fact that the model only considers that the emitted
partial dislocation line is parallel to the original full dis-
location line or the grain boundary, i.e., it assumes uni-
form extension. A more realistic case is that the
propagating partial dislocation segment is no longer a
straight line parallel to the grain boundary. In this pa-
per, we propose a modified deformation mechanism
through non-uniform partial dislocation extension. In
other words, we extend the partial dislocation model
developed in Ref. [10] to consider the influence of non-
uniform partial dislocation extension.

As considered in Ref. [10], when the partial disloca-
tion is emitted from the grain boundary, it creates two
segments on the two lateral sides and the stacking fault,
as shown in Figure 1a. The total energy consists of two
portions: the energy in the two side segments and the en-
ergy associated with the propagating segment.

Consider a face-centered cubic metal whose primary
slip system has the Burgers vector of dislocation
b ¼ a=2½1 0�1�, where a is the lattice parameter. The
two Shockley partial dislocations are �b ¼ a=6½2�1�1� and
��b ¼ a=6½1 1�2�. When the partial dislocation �b extends
across the entire grain, the dislocation line is increased
by 2d in length after creating two side segments, where
d is the grain size. If the energy per unit length in the
sevier Ltd. All rights reserved.
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Figure 1. (a) Uniform partial dislocation extension. (b) Non-uniform partial dislocation extension.
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side segments is taken as 1=2G�b2, where �b is the magni-
tude of the Burgers vector of the partial dislocation and
G is the shear modulus, the energy created in the two
side segments is thus 1=2G�b2 � 2d. On the other hand,
the work done by the resolved shear stress on the slip
plane during the dislocation extension can be expressed
as ðss

�bsþ sz
�bzÞd2. Here, ss and sz are the components of

the shear stress on the slip plane along the direction s
and z, respectively; the �bs and �bz are the Burgers compo-
nents in the direction s and z, respectively. The axis s is
defined along the original dislocation line, the axis m is
along the normal of the slip plane, and the axis z is per-
pendicular to the above two axes. Therefore, the shear
stress required for the two side segments is

s � ss
�bs þ sz

�bz

b
¼ G

b
3d
; ð1Þ

where b is the magnitude of b.
For the propagating portion of the partial disloca-

tion, the energy per unit length E for moving the dis-
tance d is given in Refs. [10,15] as:

E ¼ �2E12 ln
d
r0

� �
� ðss

�bs þ sz
�bzÞðd� r0Þ þ Cðd� r0Þ;

ð2Þ
where E12 ¼ G=ð4pÞ�bi

��bi ¼ 1=ð24pÞGb2, C is the stacking
fault energy, and r0 is the radius of the dislocation core
cut-off. Minimizing Eq. (2) with respect to d, we obtain
the equilibrium distance:

d ¼ 2E12

C� ðss
�bs þ sz

�bzÞ
: ð3Þ

For extension across the grain, in the above expression
we let d ¼ d and obtain the shear stress required for
the propagating segment. Then, the obtained shear
stress is combined with that given in Eq. (1) to obtain
the required shear stress for the partial dislocation
extension across the grain:

s
G
¼ C

Gb
þ c

b
d
: ð4Þ

In Eq. (4), c ¼ 1=3� 1=ð12pÞ. Expression (4) is the same
as expression (7) in Ref. [10]. This shows the dependence
of the flow stress on the grain size.
In deriving the required shear stress in Eq. (4), it is
assumed that the propagating segment of the partial
dislocation is parallel to the grain boundary. In other
words, this means that the partial dislocation exten-
sion is uniform across the grain. It is likely that the
dislocation extension is non-uniform. This is to say
that, as systematically shown in Figure 1b, the propa-
gating portion is not parallel to the grain boundary
and is not a straight line. In the well-known Frank–
Read source [16], the dislocation segment is pinned
at the end points due to certain local barriers, and
the applied shear force bows out the segment on the
slip plane. Grain boundaries on the two lateral sides
in Figure 1 can serve as such barriers to induce
non-uniform dislocation emission into the grain. For
example, as described in Ref. [16], an array of disloca-
tions existing in low-angle grain boundaries on the lat-
eral sides in Figure 1 can interact with the
propagating dislocation and serve as the pinning
points of the extending segments. In fact, detailed
atomistic simulations, shown in Figure 4 of Ref. [9],
have illustrated the formation, extension and approach
to the opposite grain boundary of an intragranular,
non-uniformly extending partial dislocation.

We shall consider non-uniform dislocation emission
into the grain. Taking the following scenario for the dis-
location extension, as shown in Figure 1b, the straight
dislocation line is bowed out with pinned points on
the two lateral sides of the grain in step I. When the cur-
vature becomes sufficiently large, e.g., when further
bowing-out with the two pinned points at the ends of
the dislocation segment becomes impossible due to the
lateral-side boundary constraint, further extension of
the dislocation creates straight segments along the two
lateral sides. In step II, the two side segments grow with
further extension. In step III, together with the growth
of the side segments, the extended partial dislocation fi-
nally reaches the opposite boundary of the grain. In or-
der to capture the non-uniform extension inside the
grain, we denote the extension distance of the propagat-
ing dislocation segment as dðxÞ, where x is the position
along the originally straight dislocation line as shown
in Figure 1b. We define the averaged extension distance
inside the grain as:
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igure 2. Comparison of non-uniform partial dislocation extension
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d� ¼ 1

d

Z d

0

dðxÞdx ¼ bd: ð5Þ

Here, b ¼ 1=d2
R d

0
dðxÞdx. The extension parameter b,

which is between 0 and 1, represents the influence of
non-uniform partial dislocation extension.

Following similar steps that lead to the expression
(4), we obtain the shear stress that is required for dislo-
cation extension with the averaged extension distance d�

as:

s
G
¼ C

Gb
þ 1

3
� 1

12pb

� �
b
d
: ð6Þ

The expression (6) is a linear relation with respect to d�1,
and the slope becomes negative for small values of b.
The critical value is

bc ¼
1

4p
: ð7Þ

For very small b, the second term in Eq. (6) is negative; in
this case, it is dominant in the expression such that the va-
lue of the shear flow stress becomes negative. When this
happens, the model does not predict the required shear
stress due to insufficient dislocation extension. The lower
bound for b given by Eq. (7) is independent of the material
properties, whereas the upper bound for b is 1.

In addition to the intragranular emission of partial
dislocations, another possible deformation mechanism
is grain boundary sliding. Conrad and Narayan [17] pro-
posed a model to account for grain boundary softening,
i.e., the decrease of flow stress along with the grain size
for sufficiently small grain. Expressions (6) and (7) sug-
gest that the grain size softening may become the mech-
anism for the flow stress when the extension distance is
less than that given in Eq. (7), d� < d=ð4pÞ � 0:08d.

The flow stress in Eq. (6) consists of a grain size inde-
pendent term (the first term on the right-hand side) and
a grain size dependent term (the second term on the
right-hand side). From the definition in Eq. (5), it is seen
that the extension parameter b is a function of the grain
size d. By appropriately choosing b, it is possible to en-
force the flow stress in Eq. (6) to follow the linear vari-
ation of d�0:5 such that Eq. (6) agrees with the so-called
Hall–Petch relation [4,5]. A Hall–Petch relation is ex-
pressed as:

s ¼ k0 þ k1d�0:5; ð8Þ
where k0 and k1 are the Hall–Petch constants.

Within the range that the Hall–Petch relation holds,
let the second term on the right-hand side of Eq. (6)
equal to the second term on the right-hand side of the
Hall–Petch relation given in Eq. (8). We obtain the con-
dition for Eq. (6) to follow the linear variation of d�0:5:

1

3
� 1

12pb
¼ A

ffiffiffi
d
b

r
; ð9Þ
Table 1. Material property and extension parameter b.

G (GPa) b (pm) k0 (MPa) k1 (MPa

Pd 44 280 199 0.673
Cu 50 270 128 0.969
F

m

where A ¼ k1=G=
ffiffiffi
b
p

is a non-dimensional parameter.
From Eq. (9), the extension parameter b that satisfies
the Hall–Petch relation is given by:

b ¼ 1

4p
1

1� 3A
ffiffi
d
b

q : ð10Þ

The condition 1=ð4pÞ 6 b 6 1, which was discussed

previously, needs to be satisfied. For 1� 3A
ffiffiffiffiffiffiffiffi
d=b

p� �
6

1=ð4pÞ, we take b ¼ 1. The expression (10) may be used
to estimate the extension parameter b.

Now, the value of b can be estimated using the exper-
imental data given in Refs. [3,18]. The two Hall–Petch
constants for Pd are obtained from experimental data
presented in Figure 2 in Ref. [18], by curve-fitting in
the range 0:3 6 d�0:5ðnm�0:5Þ 6 0:5. The two Hall–
Petch constants for Cu are obtained from experimental
data presented in Figure 1a in Ref. [3] and Figure 1 in
Ref. [18], by curve-fitting in the range 0:1 6 d�0:5

ðnm�0:5Þ 6 0:4. The procedure to obtain b is as follows.
First, let the grain size independent term in the Hall–
Petch relation be equal to the grain size independent
term in Eq. (6). This determines the value of C, for
known b. Second, let the grain size dependent term in
the Hall–Petch relation be equal to the grain size depen-
dent term in Eq. (6). This determines b for known G, b,
and d. Table 1 lists material properties and the values of
b as well as the values of C, for Pd and Cu. The obtained
values of C are within the ranges expected in the litera-
ture (e.g. [19]).

From Eq. (10) as well as the estimated values of b in Ta-
ble 1, we see that the extension parameter increases along
mm0.5) C (mJ m�2) d = 10 nm d = 30 nm

56 b = 0.165 b = 0.777
34 b = 0.249 b = 1
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Figure 3. Comparison of non-uniform partial dislocation extension
model with experimental data for Cu.
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with the grain size. This may be understood from the per-
spective that the propagating segments are likely to retain
smaller curvatures in larger grains than smaller grains.

The variation of the shear flow stress with d�0:5 for
the cases of representative b values and the Hall–Petch
relation is plotted in Figure 2 for Pd. The shear flow
stress for these extension parameters is plotted in Fig-
ure 3 for Cu. Expressions (6) and (8), as well as the
material properties in Table 1, are used to make these
two figures. The circle-shape and diamond-shape points
shown in Figures 2 and 3 are the measured data from
Figures 1 and 2 in Ref. [18], where circle-shape points
and diamond-shape points are from two different sam-
ples. The star-shape points in Figure 3 are measured
data from Figure 1a in Ref. [3]. In Refs. [3] and [18],
experimental data were presented in terms of Vickers
hardness. The hardness data are divided by 6 to convert
to the shear flow stresses in Figures 2 and 3 [10]. The
curves for the full extension case, b ¼ 1, represent the
original model proposed in Refs. [10,11]. The curves
for b ¼ 1=ð4pÞ and b ¼ 1 are the lower bound and upper
bound of the shear flow stress, respectively, for a suffi-
ciently small grain size. It is seen that the original model
proposed in Refs. [10,11] considerably overestimates the
flow stress for smaller grain sizes on the right side of the
two figures. In other words, the modified model for
non-uniform partial dislocation extension may be used
to better estimate the flow stress of a nanocrystalline
material.

For known extension parameter b and grain size d,
the extension distance dðxÞ along the dislocation line
can be obtained by solving the integral equation given
in Eq. (5). In the continuum theory of dislocations,
the solution for the extension distance is not unique.
Atomic-scale simulations may be used to analyze intra-
granular dislocations and stacking faults in more detail
(i.e. [9]).

In summary, the partial dislocation model for the
deformation mechanism of nanocrystalline materials is
extended to consider the non-uniform partial dislocation
extension. The flow stresses obtained from the non-uni-
form partial dislocation model are consistent with exper-
imental data. The non-uniform partial dislocation
model is compared with the Hall–Petch relation. Final-
ly, we note that rate sensitivity can be included in the
non-uniform partial dislocation model using the consti-
tutive approach discussed in Ref. [14].
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