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Supplemental Information:1

Thermal Controls on Ice Stream Shear Margins2

S1. CONSISTENCY CHECK ON ADVECTIVE TRANSPORT ASSUMPTIONS3

Haseloff and others (2019) present an approximation for in-plane lateral and vertical advection from4

a supplying ice ridge on a two-dimensional cross-section of variable thickness. An example advection5

profile using this approximation applied to an ice stream of uniform thickness H is shows in fig. S1.6

This approach approximates these smaller velocity components effectively, thereby significantly simplifying7

numerical computations. The analytical solution relies on the depth-averaged mass balance, assuming8

incompressibility, with uniform ice thickness H, so that9
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, (S1)

which requires downstream velocity u. However, since downstream velocity is not known a priori, while the10

lateral and vertical advective transport approximations we seek are expected to be relatively insensitive to11

minor errors in the u profile, we approximate this velocity component as negligible within the ridge and use12

the free-slip solution within the stream, which assumes homogeneous ice rheology, (e.g. Raymond, 2000)13
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(S2)

Figure S2 shows that the approximation for u used in the derivation of v and w is in good agreement with14

calculated values of downstream velocity for present-day conditions at the three Bindschadler Ice Stream15

cross-sections examined in the main paper. The approximation differs from the modeled velocity output16

most significantly near the margin, and most drastically when temperate ice is present (i.e. Downstream-S).17

The maximum error is between 5 and 10% of the stream center maximum uc, which is around 400 m/yr18

for Upstream-N and Upstream-S, and closer to 700 m/yr for Downstream-S. The tendency, in the presence19

of temperate ice, for flow near the margin to be underestimated by a plug flow approximation is consistent20

with the expectation that temperate ice leads to significant softening within the margin, thus allowing21

much higher strain rates, and much higher velocities on the stream side of the domain, near the margin.22

Because lateral advection is driven by flow from the ridge (where our approximation holds more clearly),23

we do not expect this slight under-estimation in stream velocity near the margin to cause any significant24

change to our modeled temperature profiles.25
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Fig. S1. The combined lateral and vertical advection profile for an idealized stream assuming spatially uniform 20

cm/yr accumulation and δy = 2. We specify no slip under the ridge (−W ≤ −y ≤ −Wm), and fixed basal friction

under the stream (−Wm ≤ −y ≤ 0). Lateral velocity v is much greater than vertical velocity w through the majority

of the cross-section.
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Fig. S2. Here, we show—for each of three BIS cross sections: Upstream-N (column 1), Upstream-S (column 2),

Downstream-S (column 3) (see fig. 6 for locations)—(a) approximate velocity profiles using equation (S2) under

present day conditions, (b) velocity profiles taken from simulation output, and (c) the difference between the

approximate and modeled velocities. The maximum error within each profile is between 5 and 10% of the stream

center maximum velocity uc.
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S2. SCALING ANALYSIS26

Shear heating vs. advection27

We want to analyze the behaviors between the nondimensional parameters found in fig. 5 of the main text,28

which estimate the requirements for the development of temperate ice, corresponding to a fundamental29

change in shear margin behavior from cold and rigid, to warm and soft. We look, first, to the energy balance30

equation where conduction is balanced by advective heat transport and shear heating,31
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which we will use to estimate the behavioral trends between shear heating and advection. This relationship,32

as seen in fig. 5 of the main text, is not dependent on driving stress. This point is evidenced by taking33

the plots from fig. 3 of the main text, and overlaying them on top of one another. We stack the plots34

with the lowest accommodated driving stress (leftmost) on top, and plot contour lines corresponding the35

same temperate fraction in each panel. The results of this analysis are found in fig. S3, with (a) δy = 236

corresponding to the top row of fig. 3, and (b) δy = 3 corresponding to the bottom row of fig. 3.

Fig. S3. The plots from fig. 3 overlaid on top of each other with (a) δy = 2 and (b) δy = 3, plotted in Br–Pe space

(see table 2 for definitions). Each panel from fig. 3 is represented by a unique contour line shade. We find that each

contour line is nearly continuous, an indicator that—for each set of geometric bounds—temperate volume is almost

entirely controlled by Pe and Br and much less sensitive to driving stress.
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Figure 5 in the main paper demonstrates clear and consistent scaling relationships for Gamax and the37

corresponding value of Br. To build further understanding of these relationships, we are drawn to examine38

how the energy balance scales near the melting point. Accordingly, we define a scale for each variable as:39

[k] = k0, (S4)

[c] = c0, (S5)

[v] =
ȧ

H
(W −Wm) , (S6)

[w] = ȧ, (S7)

[T ] = Tm − Ts = ∆T, (S8)

[y] = Wm, (S9)

[z] = H, (S10)

[ψ] = A
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0
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. (S11)

Here, k0 = k (0 ◦C), c0 = c (0 ◦C), A0 = A (0 ◦C), W is the domain half-width, Wm is the ice stream half-40

width, H is the ice thickness, ȧ is the average annual accumulation rate, uc is the stream center velocity,41

and L is a representative length scale.42

We can now approximate the energy balance in equation (S3) using these scales while isolating shear43

heating, which yields44
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where δy ≡ W/Wm. Dividing all terms by the vertical conduction and defining another aspect ratio45

δz ≡ H/Wm gives the relation46
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Plugging in Br and Pe where applicable (see table 2 in the main text) simplifies the expression to47

(
A∗
A0

)1/n

Br

(
H

L

)(n+1)/n

= Peδy − δ2z − 1; (S14)

and solving for Br, while recognizing that shear margin dimensions are comparable to ice depth so that48

L ∼ H, gives the relationship49

Br =

(
A0

A∗

)1/n [
Peδy − δ2z − 1

]
. (S15)
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We prefer to give relations to δy in terms of the ridge extent (δy − 1), so the final form of the energy balance50

that emerges from our scaling analysis becomes (using Ā ≡ A0/A∗)51

Br = Ā1/n Pe (δy − 1) + Ā1/n Pe− Ā1/n
(
δ2z + 1

)
. (S16)

In fig. 5 of the main text we see the relation between Br and Pe (while holding δy constant), such that52

Br = 2.60 Pe + 0.36; (S17)

and using the scaling analysis presented here we would expect the relationship53

Br = 3.8 Pe− 1.9. (S18)

The scaling analysis matches the linear dependence and has coefficients with the correct magnitudes,54

though they do differ from those produced by the numerical model; the offset may partly be ascribed to55

the thermoviscous feedback that is not fully captured by the Brinkman number (which does not include56

the temperature dependence of viscosity). We also compare the model results with the predicted relation57

between Br and (δy − 1). Our model predicted the linear relation58

Br = 15.00 (δy − 1) + 0.59, (S19)

and the scaling analysis done here predicts the relation59

Br = 11.2 (δy − 1) + 9.27. (S20)

Again, the scaling analysis performed here predicts the linear relationship between shear heating and the60

ridge extent, while the coefficients differ somewhat.61

Gravitational forcing vs. thickness-to-width ratio62

We now turn to the thickness-to-width ratio (δz) and explore what control that has on the system, starting63

with the global ice stream force equilibrium, expressed as64

ρgH sinαWm = τbWm + η
∂u

∂y
H, (S21)

so that the net downstream driving force of gravity is balanced by basal friction and viscous lateral drag.65

A key feature of this system is the large changes in viscosity with temperature over the model domain.66

To evaluate the scale of viscous stresses, we focus on the near-margin region, where velocity changes67



Hunter and others: Shear Margin Thermal Controls 7

dramatically over a horizontal length scale L (i.e. [∂u/∂y] ∼ uc/L) and we approximate the characteristic68

viscosity as69

[η] = A
−1/n
0

(uc
L

)(1−n)/n
. (S22)

Expressing τb as a fraction fτb of the driving stress (fτbρgH sinα), and rearranging equation (S21) yields70

(1− fτb)
A

1/n
0 ρgHL1/n sinα

u
1/n
c

= δz, (S23)

so that upon substituting in for Ga (see table 2 in the main text) we obtain71

(1− fτb)
(
A0L

A∗H

)1/n

Ga = δz. (S24)

Solving for Ga, while approximating the margin length scale as comparable to the ice depth so that L ∼ H72

and defining the relation f̄τb ≡ (1− fτb), gives the final form73

Ga = Ā−1/nf̄−1
τb δz. (S25)

The relation we find in fig. 5 of the main text is74

Ga = 1.20 δz − 0.032, (S26)

and using equation (S25) we get the relationship75

Ga = 0.75 δz, (S27)

so, much like in the advection vs. shear heating case, we are able to capture the overall behavioral trends76

inherent in the system, but are unable to match the subtlety of the thermoviscous feedback.77

Galilei Number: Temperate Onset vs. Maximum Value78

In our idealized ice stream study, we present the best fit lines for the location of the maximum Galilei79

value under a series of targeted parameter sweeps. Here we compare Gamax to the value for temperate onset80

Gaonset, denoted by filled markers in fig. 4 from the main text. We note that in the colder regimes (i.e. high81

Pe, high δy, or low δz) Gaonset occurs before Gamax is reached, with the opposite true for warmer regimes.82

This behavior suggests, in the case of a colder margin, a larger temperate zone is required to initiate the83

shift in shear margin behavior from cold and rigid, to warm and soft; in the case of a warmer regime84

this shift in behavior may occur before any temperate ice is present in the system. Figure S4 shows the85

linear relation between Gaonset and Gamax when δz is varied; in this scenario Gaonset ≈ Gamax leading to the86
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Fig. S4. (a) Gaonset plotted against Gamax for each of the scenarios detailed in fig. 4 of the main text. (b) the same

data zoomed in on the region depicted by the black square, with the δz data excluded. (c) Br [Gaonset] plotted against

Br [Gamax] for each of the three scenarios. The 1:1 line for each plot is traced by the black dashed line.

near perfect linearity. Plot (b) zooms in on the boxed region within plot (a), and isolates the cases where87

advection rates are varied (i.e. Pe or δy). While the relation here is still semi-linear in nature, Gamax does88

increase at a slightly higher rate as Gaonset increases. We also do a similar comparison for the corresponding89

Brinkman values (Br [Gaonset] vs Br [Gamax]), which is presented in plot (c), and find that the amount of90

shear heating required to reach Gamax increases drastically in the colder regimes, whereas the shear heating91

to initiate temperate onset does not change as dramatically.92

S3. RESOLUTION ANALYSIS93

To examine the accuracy of our numerical approach we focus on the slip/no-slip transition point along94

the bed, which is the only discontinuity in our model domain. We want to ensure that the discontinuity is95

resolved well enough for the primary model outputs (T , u) to converge, but that the mesh is not so dense as96

to be computationally infeasible. To test accuracy we looked at a series of built-in and custom resolutions.97

To illustrate this we pick three different resolutions in nondimensional space, a low resolution (minimum98

element size 2×10−5, maximum size 6.4×10−3), a high resolution (5×10−6 minimum, 1.6×10−3 maximum),99

and a variable resolution (1×10−5 minimum, 1×10−2 maximum). For the low and high resolution cases we100

allow COMSOL to choose the resolution throughout the domain, and in the variable case we force higher101

resolution near the discontinuity. For each resolution, we run a simulation on a model geometry from our102

BIS case study (Upstream-S) under RCP 8.5 conditions predicted at year 2300. This simulation is useful103

for a resolution analysis because, although this simulation produces temperate ice, we do not expect it104
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Fig. S5. Shear melt rates from the Upstream-S cross section of Bindschadler under emissions scenario RCP 8.5

conditions predicted at the year 2300. The top image is zoomed into the slip/no-slip transition with 250 m on either

side of the singularity, and a vertical extent of 250 m shown. We would not expect to see temperate ice in this region

under these conditions, however, when the data is interpolated we do see shear melting. When vertically integrated

these interpolated values give non-negligible shear melt rates. To remedy this we instead use a moving average over

200 m increments for shear melt rate only (as opposed to melting from friction along the bed). We also give the shear

melt rate, integrated laterally across this 500 m region, suggesting that even with high resolution, the singularity is

integrable and provides a relatively small amount of meltwater to the subglacial system.

to be concentrated at the slip/no-slip boundary. However, due to temperate ice forming elsewhere in the105

domain, the strain rates under these conditions are high enough to give the appearance of temperate ice106

having been produced at the transition point.107

To get the shear melt-rate profile for each simulation we extract the data from the model, which is given108

as three column vectors—one for y, one for z, and the last for the shear melt rate ṁs—and cast this to109

a regular grid, which can then be integrated vertically for basal melt distribution, and both laterally and110

vertically for total meltwater supply. We utilize interpolation techniques to get values within the domain,111

but this only works for grid points sufficiently far from the stress singularity. As seen in fig. S5, where112

the top row is a natural interpolation (continuous under differentiation), the high strain rates from the113

singularity produce a small, non-negligible temperate ice zone. When the values are integrated vertically114

to get a melt distribution rate at the bed (shown in fig. S5, bottom row, solid black line) we see melt115
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rates upwards of 2 cm/yr, which is comparable to the total melt distribution rates given in fig. 8. These116

values result from high strain-rates near an integrable singularity that is characterized by a finite total117

rate of heat input. To reduce model sensitivity to grid resolution near the singularity, we calculate moving118

averages over a fixed 200 m horizontal dimension, providing more representative melt rates shown with the119

red lines in the bottom row of fig. S5. As expected, we find that the rate of melt input at the slip/no-slip120

boundary is relatively small, and the total melt production near the singularity is nearly independent of121

the grid resolution. When the same averaging procedure is followed away from the slip/no-slip transition,122

the results match the interpolated values.123
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