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Text S1. Methods 16 

S1.1 Failure modes 17 

We assume a tensile brittle-ductile strain rate of 4×10-7 1/s (dashed red line, 18 

Figure 1a), constrained experimentally and scaled to a Glen’s flow law parameter of A = 19 

1025 s-1 Pa-3 and grain size of d ~ 1 mm (Schulson & Duval, 2009). Uncertainties in the 20 

tensile brittle-ductile strain rate associated with the prescribed material properties of ice 21 

affect our critical height estimates. We explore these effects in Figure 4, Section 4 of the 22 

main text, Figure S4, and Section 2.5 of the supplement. 23 

Previous parametrizations of cliff failure which presume failure involves 24 

Coulombic faulting (Bassis & Walker, 2012; DeConto & Pollard, 2016) are characterized 25 

by the Mohr-Coulomb failure criterion, and depend on the assumed coefficient of internal 26 

friction (µ). Bassis and Walker (2012) use µ = 0 to obtain a constant yield stress of tyield = 27 

1 MPa, equal to the cohesion of ice. This assumption follows from the observed lack of 28 

tall marine-terminating ice cliffs supported by shallow water depths. Within the context 29 

of buttressing ice shelf removal over finite timescales, glacier termini represent the static 30 

end-member case; previously tall cliffs may have deformed viscously to reach flotation 31 

(hence the dearth of observation of such cliffs). Additionally, the material properties (i.e., 32 

coefficient of internal friction and tensile strength) of intact ice are different from the 33 

damaged ice found at glacier termini, motivating our choice of a non-zero coefficient of 34 

friction. The coefficient of kinetic friction observed from sliding ice blocks against each 35 

other may range from 0.15 to 0.76 and depend on both temperature and sliding velocity 36 

(Schulson & Fortt, 2012). We use an intermediate value of µ = 0.5. While this value is 37 

poorly constrained, our conclusion that the Tensile regime controls the initiation of cliff 38 
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failure (instead of the Thermal Softening or Coulombic regimes) means varying µ would 39 

not affect our results. 40 

 41 

S1.2 Rheology and material properties 42 

 We assume ice is incompressible and adopt a Maxwell viscoelastic rheology for 43 

ice, described by the constitutive relation relating the deviatoric stress (tij) and strain-rate 44 

( ij) tensors (Eq. 1).          45 

      (1) 46 

Here te is the effective deviatoric stress (the square root of the second invariant of the 47 

deviatoric stress tensor). We can calculate the effective strain rates from the deviatoric 48 

stresses and the stressing rate, which is set by the transition time Dt ( ). 49 

Using a shear modulus G = 2 GPa, we approximate the rheology of a Burgers viscoelastic 50 

material with a shear modulus of 3.8 GPa. While the Burgers element better models the 51 

viscoelastic rheology of ice, the Maxwell model is a valid approximation over timescales 52 

(Dt) longer than 0.04 days (Gudmundsson, 2011). We set the Glen law pre-exponential 53 

parameter to A = 1.2×10-25 s-1 Pa-3 (corresponding to a temperature T = -20ºC; Cuffey & 54 

Paterson, 2010). We consider cases with both Newtonian and non-Newtonian rheologies. 55 

For the non-Newtonian case, we set the stress exponent n=3. For the Newtonian case, we 56 

prescribe an average effective deviatoric stress (te) to obtain a constant effective viscosity 57 

(heff = [2A (teave)n-1]-1). With these approximations and assumptions, the constitutive 58 

relation becomes: 59 

✏̇ij =
1

2G
⌧̇ij +A⌧n�1

e ⌧ij

⌧̇ij ⇡ �⌧ij/�t
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  (2) 60 

If we assume an effective deviatoric stress of 220 kPa (the average stress teave for a sub-61 

aerial cliff height of 100 m), we obtain an effective viscosity of heff = 9×1013 Pa⋅s. The 62 

effective viscosity scales with the subaerial cliff height. We assume temperature is 63 

constant throughout the ice cliff, and test values of A corresponding to a range of 64 

plausible temperatures from -35 to -3ºC (Cuffey & Paterson, 2010). We set the densities 65 

of the ice and water to 900 and 1000 kg/m3, respectively. 66 

 67 

S1.3 Numerical method 68 

We consider two ice geometries in which we either keep the ice thickness (H) 69 

constant at 1000 m (Figures S1 & S2) or assume the cliff is at flotation such that the total 70 

ice thickness (H) and water depth (D) increase with the subaerial cliff height (h) (Figures 71 

3 & S3; Movie S1). The horizontal domain size is 3000 m. Numerical tests show that 72 

increasing this horizontal distance does not affect stresses and strain rates in the zone of 73 

interest (within 500 m of the cliff face), thus excluding edge effects near the left 74 

boundary. We impose a no-slip boundary condition on the left boundary (where the ice 75 

cliff is attached to the remainder of the ice sheet). We impose a free-slip boundary 76 

condition on the bottom of the ice block. Over the length of each transition we run 50 77 

timesteps, set the vertical grid size by dividing the subaerial cliff height by 50, and use a 78 

horizontal grid size of 20 m. 79 

To simulate deformation we use the model SiStER (Simple Stokes solver for 80 

Exotic Rheologies; Olive et al., 2016), a particle-in-cell staggered grid finite difference 81 
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code that solves the momentum and continuity equations for the velocity and pressure 82 

fields. We use the stresses and strain rates from the model runs to determine if and where 83 

the ice reaches our failure criteria within each of the deformation regimes shown in 84 

Figure 1a. We emphasize that our models examine only the viscoelastic deformation 85 

leading up to the (inferred) onset of plastic failure; future work is required to simulate 86 

deformation after plastic failure. 87 

In the numerical model, we retain the geometry of the analytical solution (Figure 88 

1b,c). We set up the ice cliff on the left-hand side of the domain, with a total ice 89 

thickness H. On the right-hand side, we initially mirror the ice cliff to simulate the 90 

buttressing ice shelf. The “shelf” is thinned linearly to an air/water interface, over a 91 

transition time (D t), and is replaced by water beneath the shelf and by air above it. At the 92 

end of the transition time, the ice shelf is completely replaced by a water layer of height 93 

D, and by an air layer exposing a subaerial cliff of height h. The model is run over a 94 

range of prescribed subaerial cliff heights (h) and transition times (Dt) over which the 95 

buttressing ice shelf is removed. 96 

 97 

Text S2. Results 98 

S2.1  Analytical scaling 99 

We derive an analytical scaling from a simplified one-dimensional model of 100 

stresses and strain rates along the cliff face. We take the depth (y) as positive downward, 101 

where y = 0 at the top of the cliff. We take compressive stresses as negative. We assume 102 

the geometry described in the main text (see Figure 1b,c). 103 
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We first consider the “final” stresses acting on the cliff face once the buttressing 104 

ice shelf is fully removed (Figure 1c). The final vertical stress arises from the overburden 105 

of the ice cliff (of total thickness H): 106 

        (3) 107 

The final horizontal stress arises from the hydrostatic pressure of the water 108 

(extending from sea-level at y = h to the ground at y = H): 109 

    (4) 110 

We assume there are no additional stresses present (as the basal boundary 111 

condition is free-slip), meaning the vertical stress (syy) is the most compressive (s1) and 112 

the horizontal stress (sxx) is the least compressive (s3). The confinement ratio (R = s3/s1) 113 

gives the local mode of deformation, which is Tensile in the sub-aerial portion of the cliff 114 

(y < h) as there s3 = sxx = 0. We also determine the final vertical deviatoric stress: 115 

  (5) 116 

As we assume the cliff is initially fully buttressed by an ice shelf, the initial 117 

deviatoric stress is zero, and the rate of change of the deviatoric stress is approximately 118 

the final deviatoric stress divided by the ice-shelf removal time: 119 

       (6) 120 

We determine effective strain rates from deviatoric stresses, assuming a linear 121 

Maxwell rheology (Eq. 2). We evaluate the strain rates at sea-level (y = h), where the 122 

�yy(y) = �⇢igy

�xx(y) =

(
0, 0 < y  h

�⇢wg(y � h), h < y < H

⌧yy(y) =
�yy(y)� �xx(y)

2

=

(
� 1

2⇢igy, 0 < y  h

� 1
2

⇥
⇢igy � ⇢wg(y � h)

⇤
, h < y < H

⌧̇yy ⇡ �⌧yy
�t

⇡ ⌧yy
�t
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cliff is most likely to fail, as the local strain rate is maximized and the mode of 123 

deformation is in the weak Tensile regime. 124 

  (7) 125 

 126 

Here teave is the depth-averaged effective stress and determines the effective 127 

viscosity (see section 1.2). 128 

 (8) 129 

 We find the critical height (h*) above which tensile fractures initiate (green lines 130 

in Figure 4) by equating the tensile brittle-ductile strain rate to the local deviatoric strain 131 

rate. To determine the tensile brittle-ductile strain rate ( ) we employ the 132 

parametrization of Schulson and Duval (2009), which depends on the fracture toughness 133 

(KIc), the grain size (d), the ratio of the crack length to the grain size (l = 3.7; Lee & 134 

Schulson, 1988), and Glen’s flow-law parameter. 135 

 (9) 136 
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In the viscous limit, D t >> tR, the elastic term disappears and we obtain a critical 137 

height independent of the transition time or flow-law parameter: 138 

 (10) 139 

 140 

S2.2 Numerical simulations 141 

We find that throughout the ice cliff, effective strain rates increase over the length 142 

of the transition time (Dt) and are greatest at the end of the transition (this timestep is 143 

shown in Figure 3). Strain rates are generally greatest near the cliff face, at sea-level 144 

(Figure 3; top row). The entire cliff is pulled horizontally into the ocean as the 145 

buttressing ice shelf is removed, deviatoric stresses are horizontally tensile. Regions of 146 

the cliff at subaerial heights are under net tension (R<0.01, green in Figure 3; middle 147 

row), while regions near sea-level are under low confinement corresponding to the 148 

Coulombic failure regime (grayscale in Figure 3; middle row). For a coefficient of 149 

friction µ = 0.5, the Thermal Softening regime dominates much of the submarine ice cliff 150 

(purple in Figure 3; middle row). 151 

By mapping the modes of deformation onto the ice cliff, we can determine the 152 

associated critical strain rate for each region (red lines in Figure 1a) and subtract this 153 

value from the local strain rate (Figure 3; bottom row). We predict failure initiates in 154 

regions where this difference is positive (orange). As the tensile brittle-ductile strain rate 155 

is much lower than either the compressive brittle-ductile strain rate necessary for 156 

Coulombic faulting or the thermal softening critical strain rate, failure always initiates in 157 

the unconfined subaerial cliff, near sea-level, in agreement with the analytical prediction. 158 
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Consequently, for a given subaerial cliff height, repeating the numerical experiments with 159 

different water depths does not change our failure prediction. Similarly, imposing a no-160 

slip basal boundary condition locally increases stresses and strain rates at the base of the 161 

cliff, but not enough to overcome the critical strain rate required for large-scale failure 162 

within the Thermal Softening deformation regime; our prediction of Tensile failure near 163 

sea-level is unaffected (see section S2.5). 164 

For small cliff heights and fast transition times, strain rates are highest closest to 165 

the cliff face, suggesting failure initiates with the sloughing off of thin sheets of the 166 

subaerial ice. For larger cliff heights, critical strain rates are reached further to the interior 167 

of the ice sheet, potentially detaching larger blocks. 168 

Following the onset of Tensile failure, cliffs higher than 540 m undergo plastic 169 

deformation. This deformation is potentially dominated by the Thermal Softening 170 

deformation mode as the majority of the submarine cliff is under high confinement due to 171 

hydrostatic horizontal stresses (purple zone in middle row of Figure 3). However, the 172 

manner in which these regimes interact and the mode of subsequent deformation remain 173 

unclear, and may not necessarily expose the taller cliff faces that would initiate runaway 174 

cliff collapse. 175 

 176 

S2.3 Evolution of numerical strain rates through time 177 

We further used our numerical models to examine the time-dependent trends of 178 

maximum stresses and maximum strain rates within ice cliffs of different subaerial 179 

heights and transition times (Figure S1). In Figure S1a,b, we show the maximum strain 180 

rate within regions of the ice cliff undergoing extension (green zone in middle row of 181 
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Figure 3), at a given time step. Strain rates are initially near-zero and increase sharply at 182 

the onset of the transition period. Strain rates then follow an approximately exponential 183 

increase until the supporting cliff is fully removed (t/Dt = 1). Strain rates are highest at 184 

the penultimate timestep (t/Dt = .98), when a very thin ice shelf presses against the cliff, 185 

inducing locally high strain rates. The onset of brittle Tensile failure is predicted when 186 

the maximum local strain rate exceeds the tensile brittle-ductile strain rate (red bar, 187 

Figure S1a,b). Due to their high critical strain rates, we find no scenario in which failure 188 

initiates within the Coulombic or Thermal Softening regimes. 189 

For a constant subaerial cliff height (see Figure S1a for h=100 m), the effect of 190 

changing the transition time depends on whether we are in the viscous or elastic limit of 191 

Maxwell viscoelasticity. Within the elastic limit (Dt < 1 hour or 0.04 days), increasing the 192 

transition time leads to a proportional decrease in strain rate. As we run the model with 193 

increasing transition times, approaching the viscous limit (Dt > 6 days), we find strain 194 

rates from different runs converge (compare light and dark blue lines in Figure S1a) and 195 

become independent of the assumed transition time. Moreover, after the end of each 196 

transition, all strain rates converge to a final, constant strain rate seemingly controlled by 197 

the cliff geometry. Newtonian and non-Newtonian runs behave similarly, especially in 198 

the elastic limit where viscosity is negligible. We find the strain rates within a 100-m cliff 199 

only reach the tensile brittle-ductile strain rate if the transition time is less than one hour 200 

(0.04 days; an order of magnitude less than the Maxwell relaxation time, tR ~ 0.6 days). 201 

Effective deviatoric stresses increase steadily through time and are independent of the 202 

transition time (Figure S1c), as these stresses are primarily controlled by cliff geometry. 203 
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Increasing the subaerial cliff height, while keeping the transition time fixed, will 204 

increase strain rates and stresses (Figure S1b,d). For D t = 0.6 days, the maximum cliff 205 

height before the Tensile failure criterion is reached lies between 200 and 500 m. If we 206 

were to shorten the transition time, the maximum cliff height (before the onset of tensile 207 

fractures) would decrease accordingly. However, if we apply the Mohr-Coulomb failure 208 

criterion and assume a yield stress of 1 MPa (red bar in Figure S1c,d), any cliff greater 209 

than ~300 m would fail regardless of transition time. This again implies that different 210 

failure criteria make different predictions regarding the conditions under which failure 211 

originates. 212 

Finally, we note that the Newtonian and non-Newtonian runs (compare dashed 213 

and solid lines in Figure S1) generally agree. Most importantly, the maximum strain rate 214 

within a given run (which predicts whether or not the cliff fails) is consistent over a range 215 

of cliff heights and transition times. This supports our analytical scaling (which employs 216 

a Newtonian rheology) and its implications towards cliff failure in nature, as presented in 217 

section 4 of the main text. 218 
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 219 

Figure S1: Evolution through (normalized) time of the maximum strain rates (a,b) and 220 

stresses (c,d) within an ice cliff, for different numerical runs. In the left column, the 221 

transition time (D t) is varied while the subaerial cliff height (h) is fixed at 100 m. In the 222 

right column, the cliff height varies while the transition time is fixed at 0.6 days. Both 223 

Newtonian runs (dashed lines) and non-Newtonian runs (solid lines) are shown. The top 224 

row shows the maximum strain rate within the ice cliff, relative to a critical strain rate; 225 

the red bar shows a tensile brittle-ductile strain rate of 4×10-7 1/s. The bottom row shows 226 

the maximum effective stress; the red bar shows a yield stress of 1 MPa. The total ice 227 

thickness (H) is kept constant at 1000 m (cliffs of subaerial height h = 1000 m are 228 

“dry”). 229 
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 230 

S2.4 Numerical vs. analytical failure predictions 231 

We next compare the deformation mode calculated by the numerical and 232 

analytical models as a function of cliff height and transition time. The maximum strain 233 

rates from our numerical runs and our analytical solution predict tensile brittle failure 234 

occurs in ice cliffs of similar subaerial height and transition time (Figure S2a). 235 

Numerical simulations predicting tensile brittle failure (black circles) are characterized by 236 

high cliff heights or rapid transition times. Under these conditions, the corresponding 237 

analytical strain rate exceeds the tensile brittle-ductile strain rate (red background color in 238 

Figure S2a). For lower cliff heights and longer transition times, both solutions predict 239 

the cliff deforms ductilely (white circles and blue background color in Figure S2a). Both 240 

models agree the brittle-ductile transition occurs under similar conditions, within the 241 

subaerial cliff height/transition time parameter space, with one exception. The numerical 242 

run for a 100-m cliff formed over 6 × 10-3 days predicts brittle failure while the analytical 243 

solution predicts ductile flow, likely a consequence of the simplifications made in 244 

deriving the analytical scaling. The offset between the numerical and analytical strain 245 

rates appears systematic (Figure S2b). From the numerical runs, 100-m cliffs may be 246 

predicted to fail over timescales D t < 0.02 days instead of the D t < 0.003 days predicted 247 

analytically. This timescale remains under an hour and does not change our conclusions. 248 

Finally, both approaches indicate deformation is tensile, as their respective maximum 249 

strain rates are comparable and follow a similar dependence on transition time (Figure 250 

S2b) and subaerial cliff height (Figure S2c). 251 
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 252 

Figure S2: a) Analytically derived maximum local strain rates at sea-level (y = h), as a 253 

function of sub-aerial cliff height (h) and transition time (D t). The total ice thickness (H) 254 

is set as 1000 m (instead of at flotation, as in Figure 4). The solid green line is the 255 

location of the tensile brittle-ductile strain rate (4 ´ 10-7 1/s), for A = 1.2 ´ 10-25 s-1 Pa-3. 256 

The yellow line is the Maxwell relaxation time. Numerical runs are plotted as circles and 257 

are shaded black if any point within the cliff meets the criteria for tensile brittle fracture. 258 
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transition time, through a constant h = 100 m. c) Strain rates versus cliff height, through 260 

a constant D t = 0.6 days. 261 

 262 

S2.5 Comparison with previous studies 263 

We compare our critical cliff height predictions with those made for static cliffs 264 

found at glacier termini. The Bassis and Walker (2012) formulation (corrected for a 265 

factor of 2 by Ultee and Bassis (2016)) predicts shear failure occurs above a critical 266 

height of 440 m for a dry cliff free of pre-existing cracks, and a yield stress of 1 MPa. 267 

This height falls within our predicted range (170–710 m). However, we emphasize that 268 

while our different solutions make similar predictions concerning the critical cliff height 269 

(over long timescales), they represent different physical phenomena (i.e., the initiation of 270 

tensile cracks versus Coulombic shear failure). Ma et al. (2017) find that imposing a no-271 

slip basal boundary condition leads to shear failure as described above. However, in our 272 

model we find the associated increase in strain rate is localized near the base of the cliff, 273 

where high confinement suppresses failure (Figure S3). While the strain rate field in 274 

Figure S3 (top row) differs slightly near the base of the cliff compared to the free-slip 275 

case (Figure 3), the failure predictions (bottom rows) remain essentially the same. Thus, 276 

even with a no-slip basal boundary condition, failure is still found to occur higher in the 277 

cliff where strain rates are not strongly affected by the basal boundary condition. 278 
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 279 

Figure S3: Results of numerical simulations for three different ice cliffs at the end of 280 

their respective transitions, for a no-slip basal boundary condition (compare to Figure 281 

3). From left to right, the cliffs have subaerial heights of 100 m, 100 m, and 600 m, and 282 

transition times of 0.6, 6 ´ 10-4, and 0.6 days, respectively. The top row shows effective 283 

strain rates within the cliff face (the color map is centered around the tensile brittle-284 

ductile strain rate). The middle row shows the confinement ratio (R), color-coded by the 285 

3 deformation regimes: Thermal Softening (purple), Coulombic (gray), or Tensile 286 

(green). The bottom row shows the difference between the local strain rates and the 287 
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critical strain rate (defined separately for each deformation regime as in Figure 1a). 288 

Failure is predicted to initiate in the positive (red) zones. 289 

 290 

Additionally, Parizek et al. (2019) conducted a numerical analysis of a static cliff 291 

and applied the Tensile and Coulombic strain rate failure criterion. They conclude that 292 

subaerial cliffs higher than ~200 m fail by “slumping”, as both the Tensile and 293 

Coulombic-faulting criteria are met (using a fracture toughness of 50 kPa m1/2 and crack 294 

half-length of 50 mm). We reiterate that the initiation of tensile fractures would precede 295 

compressive Coulombic failure, changing the strain rate field. Given their choice of 296 

parameters, these tensile fractures would initiate in subaerial cliffs higher than 60 m 297 

(Figure S4). If we were to suspend tensile failure in the viscous limit of our model, using 298 

a fracture toughness of 80–120 kPa m1/2 and grain sizes of 1–8 mm, we would predict 299 

compressive Coulombic failure only occurs in subaerial cliffs higher than 1200 – 5100 m. 300 

The discrepancy between our results and those of Parizek et al. (2019) arises largely from 301 

their use of a 50 mm characteristic crack half-length (more appropriate for fractured 302 

calving fronts), whereas we use crack half-lengths related to the grain size (more 303 

appropriate for undamaged ice). 304 
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 305 

Figure S4: Critical subaerial cliff heights for the initiation of failure, within space of 306 

selected ice material properties. a) Critical cliff height above which strain rates near sea-307 

level exceed the tensile brittle-ductile transition and tensile fractures may initiate, as a 308 

function of fracture toughness and crack half-length. b) Critical cliff height above which 309 

strain rates near sea-level exceed the compressive brittle-ductile threshold required for 310 

the formation of a Coulombic fault.   311 
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Movie S1: Results of 2-D numerical simulations for three different ice cliffs (as in Figure 312 

3 of main text) through time (indicated in top right corner). From left to right, the cliffs 313 

have subaerial heights of 100 m, 100 m, and 600 m, and transition times of 0.6, 6 ´ 10-4, 314 

and 0.6 days, respectively. The total ice thickness is set such that the cliff is at flotation 315 

(note the 600 m case extends to 6 km and is truncated here) – the grounding line and 316 

edge of the cliff is at x = 0. The top row shows effective strain rates within the cliff face. 317 

The color map is centered around the tensile brittle-ductile strain rate of 4 ´ 10-7 1/s 318 

(Schulson & Duval, 2009). The red solid and dashed lines show the location of the 319 

surface and base of the buttressing ice shelf. The middle row shows the confinement ratio 320 

(R), color-coded by the 3 deformation regimes: Thermal Softening (purple), Coulombic 321 

(gray), or Tensile (green). The bottom row shows the difference between the local strain 322 

rates and the critical strain rate (defined separately for each deformation regime as in 323 

Figure 1a). Failure is predicted to initiate in the positive (red) zone. 324 


