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ABSTRACT 
In this paper, we discuss the design and testing 
of an underwater acoustic ad hoc network using 
OPNET Modeler/Radio. The network is intended 
for the long-term monitoring of a selected ocean 
area. The data flow of the network is mainly 
towards a master node, which is responsible for 
collecting data generated by sensor nodes. When 
the network is first deployed, an initialization 
algorithm is executed and preliminary routes are 
determined. Since the network nodes are battery 
powered, an important measure of effectiveness 
is power efficiency. Therefore, in addition to the 
initialization algorithm, a genetic algorithm 
based routing optimization that maximizes the 
network’s lifetime is employed. Simulation 
results are presented. 
 
I. INTRODUCTION 
With the advances in acoustic modem 
technology that enabled high data rates and thus 
reliable communications, current research 
focuses on communication between various 
remote instruments within a network 
environment. Underwater acoustic (UWA) 
networks are generally formed by acoustically-
connected ocean-bottom sensors, autonomous 
underwater vehicles (AUVs) and a surface 
station, which provides a link to an on-shore 
control center. While many applications require 
long-term monitoring of the deployment area, the 
battery-powered network nodes limit the lifetime 
of UWA networks. In addition, shallow water 
acoustic channel characteristics, such as low 
available bandwidth, a highly varied multipath 
and large propagation delays, restrict the 
efficiency of UWA networks. Within such an 
environment, designing an UWA network that 
maximizes throughput and reliability while 
minimizing the power consumption is a very 
difficult task. 
 
A packet transfer protocol that provides reliable 
transmission of information through an 
underwater acoustic network was presented in 
[1]. In this paper, we investigated a dynamic 
routing algorithm, which consists of an 
initialization algorithm and a genetic algorithm 
based routing optimization. In Section II, we 
give a brief description of the network model. 

Section III presents the network initialization 
algorithm. Routing optimization algorithm is 
discussed in Section IV. Section V gives the 
OPNET implementation of the initialization 
algorithm. Section VI and VII present the results 
and conclusions, respectively.  
 
II. NETWORK MODEL 
The network consists of two types of nodes: 
 
•  Sensor Nodes: These nodes collect data 

using their sensors. The collected data is 
then passed to the master nodes through the 
network. There may be as many sensor 
nodes as needed depending on the area to be 
covered. 

•  Master Nodes: Master nodes are 
responsible for collecting data from sensor 
nodes. The collected data is then passed to a 
gateway node that connects the acoustic 
network to the user on shore.  

 
The sensor nodes are connected to the master 
node in a hierarchical manner. The number of 
hops that is required for a sensor node to 
communicate with the master node determines 
the level of the node. 
 
III. INITIALIZATION ALGORITHM 
Since the network in consideration is an ad hoc 
network, an initialization algorithm is needed to 
establish preliminary connections autonomously. 
The algorithm is based on polling and as such it 
guarantees connectivity to all the nodes that are 
acoustically reachable by at least one of their 
nearest neighbors. During initialization, the 
nodes create neighbor tables. These tables 
contain a list of each node's neighbors and a 
quality measure of their link, which can be the 
minimum required output power level for 
reliable communications with the corresponding 
neighbor. The master node then collects the 
neighbor tables, and form a routing tree. We 
assume that ID numbers of all the sensor nodes 
in the network is entered to the master node 
before deployment. The initialization steps can 
be listed as follows: 
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1. The master node sends a polling packet to 
the first node on the list. The packet contains 
the unique wakeup sequence and ID of the 
node that is polled. The master makes the first 
attempt to send the packet using the minimum 
output power level. If it cannot get an answer, 
the output power is increased in steps up to the 
maximum output power level. 
2. If the polled node receives the polling 
packet, it replies to the master, and is registered 
as a first level node by the master. In case the 
master cannot get an answer even with the 
maximum output power, it is assumed that this 
node is not a neighbor. The polling for the first 
level continues for all the nodes and the master 
node generates a list of the first level nodes. 
3. The master node then sends the list of all 
nodes to one of the first level nodes. The first 
level node polls the nodes in the list as in steps 
1 and 2, and generates a neighbor list. After 
completion of polling of the last node in the 
list, the first level node sends its neighbor list 
to the master node. Instead of sending a list 
that contains all the nodes in the network to the 
first level nodes, the master can eliminate the 
already registered nodes and send a reduced 
list. We prefer to poll all the nodes at each step 
to get a complete picture of the network, which 
will ensure more accurate and efficient 
operation of the routing optimization. 
4. The master now asks the remaining first 
level nodes to poll their neighbors. After 
gathering all the neighbor tables from the first 
level nodes, the master generates a connectivity 
tree that represents the packet routes. The 
master also fills the matrices needed for the 
routing optimization algorithm. During polling, 
master tries to get the link qualities in both 
direction, out of and into a node, since the 
acoustic channel can be asymmetric. 
5. The master notifies the registered nodes 
about the routing tree it has generated and 
sends the node list to the second level nodes 
one-by-one for the polling of the remaining 
nodes. The procedure continues until all the 
nodes are polled and a complete connectivity 
matrix with required power levels is generated. 

 
IV. ROUTING OPTIMIZATION  
A genetic algorithm based optimization is used 
to obtain a routing tree that results in minimum 
energy consumption. The algorithm needs the 
connectivity graph of the network and the 
average energy consumption of each node in the 
network. The connectivity graph,  minimum 
required power for successful packet 

transmission (Pm) for each link, and the physical 
length of links are obtained during initialization 
by polling all the nodes in the network. The 
master node calculates another required output 
power (Pc) for each link using the physical length 
of the links  assuming that the channel is an 
additive white Gaussian noise. Since the 
underwater channel is time varying, Pm is not a 
reliable estimate. Therefore, the estimate of 
average required output power (Pout) for each 
link is obtained as the mean of Pm and Pc. By 
multiplying Pout and average number of 
transaction, a cost value based on the average 
energy consumption is calculated for each link. 
During simulations, offered load is used as the 
estimate of the average number of sessions per 
node. The details of the algorithm can be found 
in [2]. 
 
V. IMPLEMENTATION OF THE 
INITIALIZATION ALGORITHM 
The network layer, which is called Layer 3, is 
responsible for the initialization process. Since 
the tasks of the master node and the sensor nodes 
during the initialization stage are different, we 
created two different Layer 3 processes. The 
finite state machine (FSM) representations of 
these processes are given in Figure 1. The Layer 
3 process of the sensor nodes can be viewed as a 
subset of the master node's Layer 3 process. 
 

 
Figure 1. The finite state machine (FSM) 
representation of Layer 3 processes. The one on the 
top is the FSM used by the master node, while the one 
on bottom is used by sensor nodes. 
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The states of the Layer 3 process and their main 
functions are listed in the following:  
 

1. INI_ROUTE: This is a forced state that 
controls the initialization process. 
2. PING: This state is used to model the 
polling of the neighboring nodes. For the 
master node, neighboring nodes are initially the 
first level nodes. (After the initialization stage, 
the dynamic routing algorithm can change the 
network configuration.) 
3. POLL: This state is used to model the 
polling of the second and higher level nodes. 
4. TREE: This state is used to send the 
routing trees to a newly registered node level 
after collecting all the neighbor tables from the 
corresponding level. 
5. START: This state is used to send the 
optimized routing tree and start operation 
command to all the nodes in the network. 
6. COMPOSE: This state is responsible for 
creating a packet when data becomes available. 
7. PROCESS: This state receives data 
packets from other network nodes and 
processes them according to the type of the 
data received. 

 
We also introduced Layer 3 commands that will 
be passed to Layer 2 together with the Layer 3 
packets. During the initialization stage, the 
packet may have different purposes than carrying 
data, and Layer 3 needs to notify Layer 2 about 
the type of the data. In this way, Layer 2 can 
decide on the transmission scheme. The Layer 3 
commands are as follows: 
 

1. DATA 
2. PNG (ping) 
3. ECH (echo) 
4. POLL 
5. NEIGHBORS 
6. NODE_TREE 
7. START 

 
The Layer 2 process implements a data link 
control protocol that ensures error-free 
communication between a source and a 
destination to transport the Layer 3 information 
sequence [3]. The protocol is based on the 
MACA protocol [4], which uses RTS-CTS-
DATA exchange [1]. However, during the 
polling stage, we don't need multiple 
transmissions (like RTS-CTS exchange) to 
determine if a node is within the transmission 
range. Such an approach would cause 
unnecessary energy consumption. Therefore, we 

established a communication link between Layer 
2 and 3 through the Layer 3 commands. For 
polling purposes, we use two Layer 2 
commands: 
 

1. PNG_XMT 
2. ECH_XMT 

 
It is assumed that the master node knows the ID 
numbers of the sensor nodes present in the 
network. The list of the node IDs is kept in a 
variable called NodePollList. Also, the neighbor 
tables of each node are initialized as empty lists 
called MyNeighborTable. Layer 3 handles the 
neighbor tables and, when needed, sends a copy 
of the MyNeighborTable to Layer 2. When the 
network is activated, Layer 3 of the master node 
issues a PNG command for the first node in the  
NodePollList and switches to the PING state. 
The PNG command and an empty neighbor table 
are passed to Layer 2. Since the neighbor table is 
empty, Layer 2 starts the transmissions using the 
minimum output power level and creates a 
temporary neighbor table to store the last output 
power level used. Layer 2 creates a packet that 
contains the PNG_XMT command and the ID of 
the node to be polled as the destination ID, and 
the packet is sent to the acoustic channel. Then 
Layer 2 switches to the INFO state. If the master 
node times out, the packet is sent again with 3 
dB more output power. This process is continued 
until the sensor node answers or the maximum 
output power level is reached. 
 
If the destination node (the node that is being 
polled) receives the PNG packet, it immediately 
responds with an ECH packet. The output power 
level is determined by checking the number of 
PNG trials that have been sent with the PNG 
packet. Since the minimum output power level is 
known to all nodes, the successful output power 
level can be calculated by using the formula: 
 
Pout=2k*Pmin 
 
where k is the number of PNG trials. The 
destination node then returns to its IDLE state. 
When the master node receives the ECH 
command, it passes the last used output power 
level to Layer 3, destroys the temporary neighbor 
table, and returns to the IDLE state. If the master 
cannot get a response from the destination, it 
generates a remote interrupt to notify Layer 3 
and returns to the IDLE state. The process is 
repeated until all nodes in the NodePollList are 
polled. At this point, Layer 3 switches to the 
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INI_ROUTE state, where first level nodes are 
determined, the connectivity graph is filled, 
average power consumption levels are 
determined, and neighbor tables are updated. 
 
In addition to determining the minimum power 
required for successful packet exchange, the 
range of the sensor nodes are also measured and 
stored in the neighbor tables. As discussed in 
Section 4, the instantaneous power levels may 
not represent the average required power level. A 
more reliable average can be obtained by using 
the range information together with the average 
attenuation in the water as shown in the 
following formula: 
 
Pest = (Pmax*L(r)+Plast)/2 
 
where Pmax is the maximum output power of the 
nodes, r is the range between two nodes, and L(r) 
is the path loss due to propagation through the 
water at range r [1]. 
 
The next phase of the initialization is the POLL 
state for the master node. At this state, the master 
node sends the POLL command and the 
NodePollList to the first level nodes one-by-one, 
and passes the updated neighbor table to Layer 2. 
When Layer 2 receives the POLL command, it 
concludes that the polling of the first level is 
complete, and fixes its neighbor table until a new 
routing update. The POLL command is sent 
using the usual data transmission protocol, which 
includes an RTS-CTS exchange. Since the first 
level nodes are not yet initialized, they do not 
have neighbor tables where the output power 
levels are registered. To complete the data 
exchange, the first level nodes need to send back 
a CTS packet. The output power level for the 
CTS cannot be determined without a neighbor 
table. Therefore, the number of trials is sent with 
the RTS of the POLL command to ensure a 
minimum number of CTS transmissions. 
 
When an uninitialized sensor node receives an 
RTS packet, it responds with CTS using the 
power level determined with the number of trials 
included in the PNG packet. The destination 
node creates a temporary neighbor table during 
the data transmission. The Layer 3 packet that 
contains the POLL command and the 
NodePollList is passed to Layer 3 of the sensor 
node. Since Layer 2 protocol requires 
acknowledgment and the first sent ACK packet 
may not be received by the source node, the 
polling is started with the source node of the 

POLL command. This also reduces the number 
of PNG trials, since the destination node already 
knows the required power level. The source node 
of the POLL command can also use the PNG 
packet as an acknowledgment and return to the 
IDLE state. 
 
Upon receiving the POLL command, Layer 3 of 
the destination node switches to the PING state, 
which handles the polling of the nodes as in the 
case of the master node. The sensor node creates 
a neighbor table, which contains the IDs and 
required power levels of its neighbors. The 
neighbor table is sent to the master node using 
the NEIGHBOR command. 
 
The correct transmission of the POLL and 
NEIGHBOR commands is imperative for the 
proper operation of the initialization algorithm. 
The reliability of these commands is ensured by 
setting the maximum number of RTS and DATA 
transmissions to infinity. During the simulations 
we saw that for some nodes, seven retries were 
needed for the correct transmission of these 
commands, as opposed to a maximum of five 
retransmissions used for DATA transmission. 
Another possible approach is to discard the node 
that did not get the POLL command, or did not 
respond with a NEIGHBOR command from the 
level list. The node is set as not registered and 
the routing tree is updated accordingly. 
 
The master node gathers all the neighbor tables 
from the first level nodes. The neighbor tables 
are used to fill the GA matrices and to create the 
initial routes. The master node then switches to 
the TREE state and waits for the network to 
settle before sending any packets. The resulting 
routing trees are sent to the first level nodes 
using the NODE_TREE command. The first 
level node that receives its node tree finishes its 
initialization and switches to the data 
communication mode. However, no sensor data 
is generated and sent to the master node until the 
master notifies all the nodes that initialization is 
complete. The master node determines an 
average delivery time for each NODE_TREE 
packet depending on the number of hops, and 
pauses before sending the next NODE_TREE 
command. This ensures that NODE_TREE 
packets will not collide with other packets on the 
channel. 
 
The initialization process continues until all the 
nodes are polled. When the GA matrices are 
completed, they are passed to the dynamic 
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routing algorithm and an optimized routing tree 
is generated. The final optimized routing tree is 
sent to the sensor nodes with the START 
command. This process in carried in the START 
state. Since the START command carries node 
tree information, the master node does not send 
the NODE_TREE command to the last nodes 
that are registered, but only sends it the START 
command. Each START command also carries a 
global start time for the sensor nodes to start data 
transmission. This global start time is calculated 
by the master node, as in the case of  the 
NODE_TREE command. The master node sends 
unique START commands only to the first level 
nodes. Then, the first level nodes send START 
commands to their immediate children. This 
way, the master node does not need to send 
unique START commands to each node in the 
network, but uses a flooding type approach 
instead. The network starts data transmissions 
only after the global start time is reached. This 
may happen before all the nodes receive a 
START command. However, it is enough to 
prevent excessive packet collisions. 
 
Interested readers can contact the author for the 
models used in the simulations. 
 
VI. SIMULATION RESULTS 
The OPNET simulation program is first run 
without employing routing optimization. Instead, 
the network is initialized using the initialization 
algorithm discussed in Section 5, and the routing 
tree that is obtained during initialization is used 
for data transmissions. Figure 2 shows the 
routing tree for the network for this test case. 
 

 
Figure 2. The routing tree obtained after initialization 
without optimization. 
 
This routing tree is tested for two different 
offered load values, 0.1e-3 and 1e-3 

packets/sec/node, which correspond to 
approximately 120 and 1200 packets per day, 
respectively. More than 200 packets per day is 
unlikely for the network in consideration. The 
battery levels as a function of time for some 
typical sensor nodes are shown in Figure 3. The 
first node fails at 1906414 sec (22 days, 1 hrs, 33 
min, 35 sec) for offered load 0.1pk/sec/node, and 
309023 sec (3 days, 13 hrs, 50 min, 23 sec) for 
1pk/sec/node. 
 

Figure 3. Battery levels of some typical sensor nodes 
without GA routing optimization for offered load  
0.1e-3 packets/sec/node. 
 
Then, the routing optimization is turned on and 
the simulation is repeated. The optimized trees 
are given in Figure 4 and 5. The battery 
efficiency of this configuration is also tested. 
Figure 6 and 7 shows the battery consumption 
curves obtained with optimized routing tree. In 
this case, the first node fails at 3355426 sec (38 
days, 20 hrs, 03 min, 46 sec) and 272312 sec (3 
days, 03 hrs, 38 min, 32 sec), respectively.  
 

Figure 4. The optimized routing trees for offered load 
values of 0.1e-3 pk/sec/node. 



 6 

 

 
Figure 5. The optimized routing trees for offered load 
values of 1e-3 pk/sec/node. 
 

Figure 6. Battery consumption curves of some typical 
sensor nodes with GA routing optimization for offered 
load value 0.1e-3 pk/sec/node. 
 

 
Figure 7. Battery consumption curves of some typical 
sensor nodes with GA routing optimization for offered 
load value 1e-3 pk/sec/node. 
 

 
The failure time of the first nodes as a function 
of offered load is given in Figure 8. The curve 
for the optimized case remains above the 
unoptimized case up to 0.5e-3 pk/sec/node. After 
this point, the network becomes congested and 
the assumptions of the expected value of power 
consumption fail. For lower offered load values, 
the optimization algorithm extends the lifetime 
of the network considerably. 
 

Figure 8. Failure time of the first node as a function of 
offered load. 
 
We also obtained the throughput as a function of 
offered load for both cases. The throughput 
curves are given in Figure 9. As in the case of 
node failure times, with increasing offered load, 
the performance of the optimization algorithm 
degrades. We can also observe that after     
0.05e-3pk/sec/node, the network becomes 
congested and throughput decreases due to 
excessive packet loss. 
 

Figure 9. Throughput as a function of offered load for 
both optimized and unoptimized cases. 
 
 
Figure 10 shows the end-to-end packet delay as a 
function of offered load. For offered load values 



 7 

smaller than 0.6e-3 pk/sec/node, the optimized 
case results in longer end-to-end delay with 
respect to the unoptimized case. This is because 
of the fact that the optimization algorithm favors 
multiple hops for minimizing energy 
consumption [5], while for the unoptimized case 
most of the sensor nodes are directly connected 
to the master node. 
 

 Figure 10. End-to-end packet delay as a function of 
offered load for both optimized and unoptimized 
cases. 
 
 
VII. CONCLUSIONS 
An initialization and routing optimization 
algorithm for an ad hoc underwater acoustic 
network was tested using OPNET 
Modeler/Radio. The simulation results show that 
the initialization algorithm can produce enough 
information for the routing optimization 
algorithm. For offered load values that do not 
result in network congestion, the routing 
optimization effectively increases the lifetime of 
the network and throughput. As the network 
becomes congested, the estimates used by the 
optimization algorithm fail and the performance 
degrades. We also showed that to minimize the 
battery consumption of the network, we need to 
use multi-hop routes, which results in increased  
end-to-end packet delay. 
 
VIII. REFERENCES 
[1] E. M. Sözer, M. Stojanovic, and John G. 

Proakis, “Design and simulation of an 
underwater acoustic local area network,” 
Proc. Opnetwork’99, Washington, D.C., 
August, 1999. 

[2] “Underwater acoustic networks and channel 
optimization: phase II progress report 6,” 
Technical Report, Delphi Communication 
Systems, October 1, 1999. 

[3] D.Bertsekas and R.Gallager, Data Networks, 

N.J: Prentice Hall, 1992. 
[4] P. Karn, “MACA – A new channel access 

method for packet radio,” ARRL/CRRL 
Amateur Radio 9th Computer Network 
Conf., Sep. 1990. 

[5] E.M. Sözer, M. Stojanovic, and J.G. Proakis, 
“Underwater acoustic networks,” IEEE J. 
Oceanic Eng., vol. 25, pp. 72-83, Jan. 2000. 


