
 1

Initialization and Routing Optimization for Ad Hoc Underwater Acoustic Networks
Ethem M. Sözer, Milica Stojanovic & John G. Proakis

Northeastern University, Communications and Digital Signal Processing Center
409 Dana Research Building, Boston, MA, 02115

esozer@cdsp.neu.edu / http://www.cdsp.neu.edu

ABSTRACT
In this paper, we discuss the design and testing
of an underwater acoustic ad hoc network using
OPNET Modeler/Radio. The network is intended
for the long-term monitoring of a selected ocean
area. The data flow of the network is mainly
towards a master node, which is responsible for
collecting data generated by sensor nodes. When
the network is first deployed, an initialization
algorithm is executed and preliminary routes are
determined. Since the network nodes are battery
powered, an important measure of effectiveness
is power efficiency. Therefore, in addition to the
initialization algorithm, a genetic algorithm
based routing optimization that maximizes the
network’s lifetime is employed. Simulation
results are presented.

I. INTRODUCTION
With the advances in acoustic modem
technology that enabled high data rates and thus
reliable communications, current research
focuses on communication between various
remote instruments within a network
environment. Underwater acoustic (UWA)
networks are generally formed by acoustically-
connected ocean-bottom sensors, autonomous
underwater vehicles (AUVs) and a surface
station, which provides a link to an on-shore
control center. While many applications require
long-term monitoring of the deployment area, the
battery-powered network nodes limit the lifetime
of UWA networks. In addition, shallow water
acoustic channel characteristics, such as low
available bandwidth, a highly varied multipath
and large propagation delays, restrict the
efficiency of UWA networks. Within such an
environment, designing an UWA network that
maximizes throughput and reliability while
minimizing the power consumption is a very
difficult task.

A packet transfer protocol that provides reliable
transmission of information through an
underwater acoustic network was presented in
[1]. In this paper, we investigated a dynamic
routing algorithm, which consists of an
initialization algorithm and a genetic algorithm
based routing optimization. In Section II, we
give a brief description of the network model.

Section III presents the network initialization
algorithm. Routing optimization algorithm is
discussed in Section IV. Section V gives the
OPNET implementation of the initialization
algorithm. Section VI and VII present the results
and conclusions, respectively.

II. NETWORK MODEL
The network consists of two types of nodes:

• Sensor Nodes: These nodes collect data

using their sensors. The collected data is
then passed to the master nodes through the
network. There may be as many sensor
nodes as needed depending on the area to be
covered.

• Master Nodes: Master nodes are
responsible for collecting data from sensor
nodes. The collected data is then passed to a
gateway node that connects the acoustic
network to the user on shore.

The sensor nodes are connected to the master
node in a hierarchical manner. The number of
hops that is required for a sensor node to
communicate with the master node determines
the level of the node.

III. INITIALIZATION ALGORITHM
Since the network in consideration is an ad hoc
network, an initialization algorithm is needed to
establish preliminary connections autonomously.
The algorithm is based on polling and as such it
guarantees connectivity to all the nodes that are
acoustically reachable by at least one of their
nearest neighbors. During initialization, the
nodes create neighbor tables. These tables
contain a list of each node's neighbors and a
quality measure of their link, which can be the
minimum required output power level for
reliable communications with the corresponding
neighbor. The master node then collects the
neighbor tables, and form a routing tree. We
assume that ID numbers of all the sensor nodes
in the network is entered to the master node
before deployment. The initialization steps can
be listed as follows:

 2

1. The master node sends a polling packet to
the first node on the list. The packet contains
the unique wakeup sequence and ID of the
node that is polled. The master makes the first
attempt to send the packet using the minimum
output power level. If it cannot get an answer,
the output power is increased in steps up to the
maximum output power level.
2. If the polled node receives the polling
packet, it replies to the master, and is registered
as a first level node by the master. In case the
master cannot get an answer even with the
maximum output power, it is assumed that this
node is not a neighbor. The polling for the first
level continues for all the nodes and the master
node generates a list of the first level nodes.
3. The master node then sends the list of all
nodes to one of the first level nodes. The first
level node polls the nodes in the list as in steps
1 and 2, and generates a neighbor list. After
completion of polling of the last node in the
list, the first level node sends its neighbor list
to the master node. Instead of sending a list
that contains all the nodes in the network to the
first level nodes, the master can eliminate the
already registered nodes and send a reduced
list. We prefer to poll all the nodes at each step
to get a complete picture of the network, which
will ensure more accurate and efficient
operation of the routing optimization.
4. The master now asks the remaining first
level nodes to poll their neighbors. After
gathering all the neighbor tables from the first
level nodes, the master generates a connectivity
tree that represents the packet routes. The
master also fills the matrices needed for the
routing optimization algorithm. During polling,
master tries to get the link qualities in both
direction, out of and into a node, since the
acoustic channel can be asymmetric.
5. The master notifies the registered nodes
about the routing tree it has generated and
sends the node list to the second level nodes
one-by-one for the polling of the remaining
nodes. The procedure continues until all the
nodes are polled and a complete connectivity
matrix with required power levels is generated.

IV. ROUTING OPTIMIZATION
A genetic algorithm based optimization is used
to obtain a routing tree that results in minimum
energy consumption. The algorithm needs the
connectivity graph of the network and the
average energy consumption of each node in the
network. The connectivity graph, minimum
required power for successful packet

transmission (Pm) for each link, and the physical
length of links are obtained during initialization
by polling all the nodes in the network. The
master node calculates another required output
power (Pc) for each link using the physical length
of the links assuming that the channel is an
additive white Gaussian noise. Since the
underwater channel is time varying, Pm is not a
reliable estimate. Therefore, the estimate of
average required output power (Pout) for each
link is obtained as the mean of Pm and Pc. By
multiplying Pout and average number of
transaction, a cost value based on the average
energy consumption is calculated for each link.
During simulations, offered load is used as the
estimate of the average number of sessions per
node. The details of the algorithm can be found
in [2].

V. IMPLEMENTATION OF THE
INITIALIZATION ALGORITHM
The network layer, which is called Layer 3, is
responsible for the initialization process. Since
the tasks of the master node and the sensor nodes
during the initialization stage are different, we
created two different Layer 3 processes. The
finite state machine (FSM) representations of
these processes are given in Figure 1. The Layer
3 process of the sensor nodes can be viewed as a
subset of the master node's Layer 3 process.

Figure 1. The finite state machine (FSM)
representation of Layer 3 processes. The one on the
top is the FSM used by the master node, while the one
on bottom is used by sensor nodes.

 3

The states of the Layer 3 process and their main
functions are listed in the following:

1. INI_ROUTE: This is a forced state that
controls the initialization process.
2. PING: This state is used to model the
polling of the neighboring nodes. For the
master node, neighboring nodes are initially the
first level nodes. (After the initialization stage,
the dynamic routing algorithm can change the
network configuration.)
3. POLL: This state is used to model the
polling of the second and higher level nodes.
4. TREE: This state is used to send the
routing trees to a newly registered node level
after collecting all the neighbor tables from the
corresponding level.
5. START: This state is used to send the
optimized routing tree and start operation
command to all the nodes in the network.
6. COMPOSE: This state is responsible for
creating a packet when data becomes available.
7. PROCESS: This state receives data
packets from other network nodes and
processes them according to the type of the
data received.

We also introduced Layer 3 commands that will
be passed to Layer 2 together with the Layer 3
packets. During the initialization stage, the
packet may have different purposes than carrying
data, and Layer 3 needs to notify Layer 2 about
the type of the data. In this way, Layer 2 can
decide on the transmission scheme. The Layer 3
commands are as follows:

1. DATA
2. PNG (ping)
3. ECH (echo)
4. POLL
5. NEIGHBORS
6. NODE_TREE
7. START

The Layer 2 process implements a data link
control protocol that ensures error-free
communication between a source and a
destination to transport the Layer 3 information
sequence [3]. The protocol is based on the
MACA protocol [4], which uses RTS-CTS-
DATA exchange [1]. However, during the
polling stage, we don't need multiple
transmissions (like RTS-CTS exchange) to
determine if a node is within the transmission
range. Such an approach would cause
unnecessary energy consumption. Therefore, we

established a communication link between Layer
2 and 3 through the Layer 3 commands. For
polling purposes, we use two Layer 2
commands:

1. PNG_XMT
2. ECH_XMT

It is assumed that the master node knows the ID
numbers of the sensor nodes present in the
network. The list of the node IDs is kept in a
variable called NodePollList. Also, the neighbor
tables of each node are initialized as empty lists
called MyNeighborTable. Layer 3 handles the
neighbor tables and, when needed, sends a copy
of the MyNeighborTable to Layer 2. When the
network is activated, Layer 3 of the master node
issues a PNG command for the first node in the
NodePollList and switches to the PING state.
The PNG command and an empty neighbor table
are passed to Layer 2. Since the neighbor table is
empty, Layer 2 starts the transmissions using the
minimum output power level and creates a
temporary neighbor table to store the last output
power level used. Layer 2 creates a packet that
contains the PNG_XMT command and the ID of
the node to be polled as the destination ID, and
the packet is sent to the acoustic channel. Then
Layer 2 switches to the INFO state. If the master
node times out, the packet is sent again with 3
dB more output power. This process is continued
until the sensor node answers or the maximum
output power level is reached.

If the destination node (the node that is being
polled) receives the PNG packet, it immediately
responds with an ECH packet. The output power
level is determined by checking the number of
PNG trials that have been sent with the PNG
packet. Since the minimum output power level is
known to all nodes, the successful output power
level can be calculated by using the formula:

Pout=2k*Pmin

where k is the number of PNG trials. The
destination node then returns to its IDLE state.
When the master node receives the ECH
command, it passes the last used output power
level to Layer 3, destroys the temporary neighbor
table, and returns to the IDLE state. If the master
cannot get a response from the destination, it
generates a remote interrupt to notify Layer 3
and returns to the IDLE state. The process is
repeated until all nodes in the NodePollList are
polled. At this point, Layer 3 switches to the

 4

INI_ROUTE state, where first level nodes are
determined, the connectivity graph is filled,
average power consumption levels are
determined, and neighbor tables are updated.

In addition to determining the minimum power
required for successful packet exchange, the
range of the sensor nodes are also measured and
stored in the neighbor tables. As discussed in
Section 4, the instantaneous power levels may
not represent the average required power level. A
more reliable average can be obtained by using
the range information together with the average
attenuation in the water as shown in the
following formula:

Pest = (Pmax*L(r)+Plast)/2

where Pmax is the maximum output power of the
nodes, r is the range between two nodes, and L(r)
is the path loss due to propagation through the
water at range r [1].

The next phase of the initialization is the POLL
state for the master node. At this state, the master
node sends the POLL command and the
NodePollList to the first level nodes one-by-one,
and passes the updated neighbor table to Layer 2.
When Layer 2 receives the POLL command, it
concludes that the polling of the first level is
complete, and fixes its neighbor table until a new
routing update. The POLL command is sent
using the usual data transmission protocol, which
includes an RTS-CTS exchange. Since the first
level nodes are not yet initialized, they do not
have neighbor tables where the output power
levels are registered. To complete the data
exchange, the first level nodes need to send back
a CTS packet. The output power level for the
CTS cannot be determined without a neighbor
table. Therefore, the number of trials is sent with
the RTS of the POLL command to ensure a
minimum number of CTS transmissions.

When an uninitialized sensor node receives an
RTS packet, it responds with CTS using the
power level determined with the number of trials
included in the PNG packet. The destination
node creates a temporary neighbor table during
the data transmission. The Layer 3 packet that
contains the POLL command and the
NodePollList is passed to Layer 3 of the sensor
node. Since Layer 2 protocol requires
acknowledgment and the first sent ACK packet
may not be received by the source node, the
polling is started with the source node of the

POLL command. This also reduces the number
of PNG trials, since the destination node already
knows the required power level. The source node
of the POLL command can also use the PNG
packet as an acknowledgment and return to the
IDLE state.

Upon receiving the POLL command, Layer 3 of
the destination node switches to the PING state,
which handles the polling of the nodes as in the
case of the master node. The sensor node creates
a neighbor table, which contains the IDs and
required power levels of its neighbors. The
neighbor table is sent to the master node using
the NEIGHBOR command.

The correct transmission of the POLL and
NEIGHBOR commands is imperative for the
proper operation of the initialization algorithm.
The reliability of these commands is ensured by
setting the maximum number of RTS and DATA
transmissions to infinity. During the simulations
we saw that for some nodes, seven retries were
needed for the correct transmission of these
commands, as opposed to a maximum of five
retransmissions used for DATA transmission.
Another possible approach is to discard the node
that did not get the POLL command, or did not
respond with a NEIGHBOR command from the
level list. The node is set as not registered and
the routing tree is updated accordingly.

The master node gathers all the neighbor tables
from the first level nodes. The neighbor tables
are used to fill the GA matrices and to create the
initial routes. The master node then switches to
the TREE state and waits for the network to
settle before sending any packets. The resulting
routing trees are sent to the first level nodes
using the NODE_TREE command. The first
level node that receives its node tree finishes its
initialization and switches to the data
communication mode. However, no sensor data
is generated and sent to the master node until the
master notifies all the nodes that initialization is
complete. The master node determines an
average delivery time for each NODE_TREE
packet depending on the number of hops, and
pauses before sending the next NODE_TREE
command. This ensures that NODE_TREE
packets will not collide with other packets on the
channel.

The initialization process continues until all the
nodes are polled. When the GA matrices are
completed, they are passed to the dynamic

 5

routing algorithm and an optimized routing tree
is generated. The final optimized routing tree is
sent to the sensor nodes with the START
command. This process in carried in the START
state. Since the START command carries node
tree information, the master node does not send
the NODE_TREE command to the last nodes
that are registered, but only sends it the START
command. Each START command also carries a
global start time for the sensor nodes to start data
transmission. This global start time is calculated
by the master node, as in the case of the
NODE_TREE command. The master node sends
unique START commands only to the first level
nodes. Then, the first level nodes send START
commands to their immediate children. This
way, the master node does not need to send
unique START commands to each node in the
network, but uses a flooding type approach
instead. The network starts data transmissions
only after the global start time is reached. This
may happen before all the nodes receive a
START command. However, it is enough to
prevent excessive packet collisions.

Interested readers can contact the author for the
models used in the simulations.

VI. SIMULATION RESULTS
The OPNET simulation program is first run
without employing routing optimization. Instead,
the network is initialized using the initialization
algorithm discussed in Section 5, and the routing
tree that is obtained during initialization is used
for data transmissions. Figure 2 shows the
routing tree for the network for this test case.

Figure 2. The routing tree obtained after initialization
without optimization.

This routing tree is tested for two different
offered load values, 0.1e-3 and 1e-3

packets/sec/node, which correspond to
approximately 120 and 1200 packets per day,
respectively. More than 200 packets per day is
unlikely for the network in consideration. The
battery levels as a function of time for some
typical sensor nodes are shown in Figure 3. The
first node fails at 1906414 sec (22 days, 1 hrs, 33
min, 35 sec) for offered load 0.1pk/sec/node, and
309023 sec (3 days, 13 hrs, 50 min, 23 sec) for
1pk/sec/node.

Figure 3. Battery levels of some typical sensor nodes
without GA routing optimization for offered load
0.1e-3 packets/sec/node.

Then, the routing optimization is turned on and
the simulation is repeated. The optimized trees
are given in Figure 4 and 5. The battery
efficiency of this configuration is also tested.
Figure 6 and 7 shows the battery consumption
curves obtained with optimized routing tree. In
this case, the first node fails at 3355426 sec (38
days, 20 hrs, 03 min, 46 sec) and 272312 sec (3
days, 03 hrs, 38 min, 32 sec), respectively.

Figure 4. The optimized routing trees for offered load
values of 0.1e-3 pk/sec/node.

 6

Figure 5. The optimized routing trees for offered load
values of 1e-3 pk/sec/node.

Figure 6. Battery consumption curves of some typical
sensor nodes with GA routing optimization for offered
load value 0.1e-3 pk/sec/node.

Figure 7. Battery consumption curves of some typical
sensor nodes with GA routing optimization for offered
load value 1e-3 pk/sec/node.

The failure time of the first nodes as a function
of offered load is given in Figure 8. The curve
for the optimized case remains above the
unoptimized case up to 0.5e-3 pk/sec/node. After
this point, the network becomes congested and
the assumptions of the expected value of power
consumption fail. For lower offered load values,
the optimization algorithm extends the lifetime
of the network considerably.

Figure 8. Failure time of the first node as a function of
offered load.

We also obtained the throughput as a function of
offered load for both cases. The throughput
curves are given in Figure 9. As in the case of
node failure times, with increasing offered load,
the performance of the optimization algorithm
degrades. We can also observe that after
0.05e-3pk/sec/node, the network becomes
congested and throughput decreases due to
excessive packet loss.

Figure 9. Throughput as a function of offered load for
both optimized and unoptimized cases.

Figure 10 shows the end-to-end packet delay as a
function of offered load. For offered load values

 7

smaller than 0.6e-3 pk/sec/node, the optimized
case results in longer end-to-end delay with
respect to the unoptimized case. This is because
of the fact that the optimization algorithm favors
multiple hops for minimizing energy
consumption [5], while for the unoptimized case
most of the sensor nodes are directly connected
to the master node.

 Figure 10. End-to-end packet delay as a function of
offered load for both optimized and unoptimized
cases.

VII. CONCLUSIONS
An initialization and routing optimization
algorithm for an ad hoc underwater acoustic
network was tested using OPNET
Modeler/Radio. The simulation results show that
the initialization algorithm can produce enough
information for the routing optimization
algorithm. For offered load values that do not
result in network congestion, the routing
optimization effectively increases the lifetime of
the network and throughput. As the network
becomes congested, the estimates used by the
optimization algorithm fail and the performance
degrades. We also showed that to minimize the
battery consumption of the network, we need to
use multi-hop routes, which results in increased
end-to-end packet delay.

VIII. REFERENCES
[1] E. M. Sözer, M. Stojanovic, and John G.

Proakis, “Design and simulation of an
underwater acoustic local area network,”
Proc. Opnetwork’99, Washington, D.C.,
August, 1999.

[2] “Underwater acoustic networks and channel
optimization: phase II progress report 6,”
Technical Report, Delphi Communication
Systems, October 1, 1999.

[3] D.Bertsekas and R.Gallager, Data Networks,

N.J: Prentice Hall, 1992.
[4] P. Karn, “MACA – A new channel access

method for packet radio,” ARRL/CRRL
Amateur Radio 9th Computer Network
Conf., Sep. 1990.

[5] E.M. Sözer, M. Stojanovic, and J.G. Proakis,
“Underwater acoustic networks,” IEEE J.
Oceanic Eng., vol. 25, pp. 72-83, Jan. 2000.

