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Abstract

For underwater acoustic channels where multipath spread is measured in tens
of symbol intervals at high transmission rates, multichannel equalization required
for bandwidth-efficient communications may become prohibitively complex for real-
time implementation. To reduce computational complexity of signal processing and
improve performance of data detection, receiver structures that are matched to the
physical channel characteristics are investigates. A decision-feedback equalizer is
designed which relies on an adaptive channel estimator to compute its parameters.
The channel estimate is reduced in size by selecting only the significant components,
whose delay span is often much shorter than the multipath spread of the channel.
Optimal coefficient selection (sparsing) is performed by truncation in magnitude.
This estimate is used to cancel the post-cursor ISI prior to linear equalization.
Spatial diversity gain is achieved by a reduced-complexity pre-combining method
which eliminates the need for a separate channel estimator/equalizer for each array
element. The advantages of this approach are reduction in the number of receiver
parameters, optimal implementation of sparse feedback, and efficient parallel im-
plementation of adaptive algorithms for the pre-combiner, the fractionally-spaced
channel estimators and the short feedforward equalizer filters. Receiver algorithm
is applied to real data transmitted at 10 kbps over 3 km in shallow water, showing
excellent results.
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1 Introduction

Underwater wireless (acoustic) communications have traditionally relied on
noncoherent modulation / detection methods to avoid the problems of long
multipath and time-variations encountered in the majority of underwater en-
vironments, especially on the horizontal transmission channels. While nonco-
herent signaling provides robustness to channel distortions, and still represents
the preferred method in commercially available acoustic modems, it lacks the
bandwidth efficiency necessary for achieving high-rate digital communications
over severely band-limited underwater acoustic channels. Bandwidth-efficient
underwater acoustic communications can be achieved by employing spatial
diversity combining and equalization of PSK or QAM signals. The receiver
structure that has been found useful in the majority of present applications
is a multichannel decision-feedback equalizer (DFE)[1]. This receiver consists
of a bank of adaptive feedforwad filters, one per array element, followed by a
decision-feedback filter. It has been implemented in the prototype high-rate
acoustic modem developed at the Woods Hole Oceanographic Institution, and
shown to perform well in a variety of sea trials [2]. Due to the complex nature
of the propagation channel, whose impulse response may extend over several
tens or even a hundred milliseconds, causing severe intersymbol interference
(ISI) at high transmission rates, the signal processing required by this receiver
may become prohibitively complex in certain situations, ultimately limiting
the achievable bit rate, as well the receiver’s applicability to difficult channels.
It is of interest for such situations to develop alternative processing meth-
ods that provide the same or similar performance at a lower computational
complexity.

Reduction in computational complexity can be achieved in two ways: (1) by
using efficient adaptive algorithms, and (2) by altering the conventional re-
ceiver structure to obtain one with fewer elements that need to be adjusted
adaptively. The work in this area to date has focused on using a class of
low-complexity LMS algorithms with improved tracking properties [5] and on
several techniques for reducing the size of adaptive filters. In particular, these
techniques include (1) reducing the size of the spatial combiner [3]; (2) employ-
ing time-reversal to perform adaptive matched filtering prior to equalization
[4], and (3) reducing the size of the adaptive equalizer through sparsing [6,7].
The major focus of the present paper is on the last form of complexity re-
duction. Reduced-complexity spatial combining method of [3] is used with a
decision-feedback equalization method that is based on sparse channel estima-
tion. In doing so, our goal is to consider a receiver structure that is matched
to the physical characteristics of the propagation channel. In particular, by
tracking the channel explicitly, and not implicitly through the coefficients of
a large equalizer, it is possible to design an adaptive processing method that
takes into account only the significant channel components. The composite
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time span of these components is often much shorter than the overall multi-
path spread, leading to the desired reduction in complexity.

Sparse, or tap-selective equalization is a method that has been considered for
communications over horizontal underwater acoustic channels [5,6], for broad-
band wireless radio channels [8,9] and for terrestrial HDTV systems [10]. An
ad hoc sparse DFE used for equalization of underwater acoustic channels [5]
determines the positions of significant equalizer taps by computing the full-
size solution initially, but keeping only those taps whose magnitude exceeds
a pre-determined threshold. The coefficients of the feedforward and the feed-
back filter are updated as a single coefficient vector based on minimization of
the mean-squared error in data symbol estimation. This tap selection method
is not optimal because the input signal to the equalizer is not white. Selec-
tion of optimal tap locations in such conditions is a difficult problem involv-
ing an exhaustive search. This fact serves as a motivation for developing a
channel-estimation based equalizer: the input to the channel estimator is a
data sequence of uncorrelated symbols, and, thus, optimal tap selection can
be accomplished simply by truncation in magnitude [6].

General methods for estimation of sparse communication channels [11] simul-
taneously search for the location of significant channel taps and their magni-
tudes. Casting the channel identification problem into the framework of on-off
keying (a channel tap is either on or off), these methods employ techniques
such as the Viterbi algorithm or sphere decoding to perform either joint or
iterative detection of the channel taps. Their performance was investigated
through simulation and analysis, both in terms of the mean squared chan-
nel estimation error, and in terms of the bit error rate that results when the
channel estimates are used to implement a correlation receiver. The results
quantify the benefits of tap-selective solutions over the conventional, full-size
ones. A method based on the technique of matching pursuits, specifically mod-
ified for identification of sparse underwater acoustic channels, was also recently
proposed [7]. In this method, the iterative search for tap locations and mag-
nitudes is extended to include an unknown frequency offset associated with
each significant tap. It was applied to real data, showing superior performance
in cases of extreme difficulty, at the price of additional computations needed
to identify the significant tap locations.

In this paper, we focus on a method for decision-feedback equalization based
on adaptive sparse channel estimation, targeting reduction in computational
complexity and simplicity of implementation. The equalizer performs a two-
step procedure. First, it uses a channel estimate and previous symbol decisions
to determine the ISI resulting from the post-cursors. The post-cursor ISI term
is subtracted from the input signal, and the so-obtained signal is equalized
by a linear feedforward filter. Symbol decisions are then made, which are also
used for channel estimation in a decision-directed mode. Thus, the feedback
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filter is not implemented explicitly, but through the channel estimation feed-
back. The optimal DFE solution obtained by this method in a stationary case
is identical to the one obtained by solving for the equalizer coefficients directly.
However, in practice this method has several advantages. Decoupling of chan-
nel estimation from equalization allows parallel implementation of efficient
adaptive algorithms for the channel estimator and the feedforward equalizer.
Sparsing of the channel estimate results in the optimal selection of feedback
taps which eliminates the unnecessary noise in data detection, thus improving
the receiver performance.

In the majority of underwater communication scenarios, the SNR observed on
a single channel is not sufficient for reliable equalizer performance. Hence, it
is imperative that some form of multichannel processing be used. Decision-
feedback equalization via channel estimation can readily be extended to the
multichannel case. In a commonly used multichannel implementation, every
element of the receiving array is accompanied by an adaptive feedforward
equalizer filter. To avoid the computational demands of such implementation,
the front section of the receiver is modified. It uses a spatial pre-combiner,
which reduces the number of adaptive filters required per input channel, but
preserves the multichannel processing gain [3].

The paper is divided into three parts. The first part, given in Sec.2, outlines the
concept of equalization via channel estimation. For simplicity, the discussion is
limited to the single-channel case. Adaptive implementations are discussed and
a computationally efficient channel estimator is proposed. The problem of tap
selection is addressed, and illustrated through a numerical example. The sec-
ond part, given in Sec.3, is devoted to the multichannel receiver. This section
includes receiver parameter optimization based on a minimum mean squared
error (MMSE) criterion, and a complete algorithm for adaptive implementa-
tion of the pre-combiner and the equalizer. The algorithm also incorporates a
multichannel decision-directed carrier recovery scheme. The third part, given
in Sec.4, contains the results of experimental data processing. Receiver perfor-
mance is demonstrated on real data transmitted using QPSK at 10 kilobits per
second over 3 km in shallow water, showing excellent results. The conclusions
are summarized in Sec.5.

2 Channel Estimation Based Equalization

The method for determining the equalizer coefficients from a channel estimate
is based on an alternative interpretation of the classical MMSE DFE.
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2.1 DFE: an alternative interpretation

Let the input signal to the equalizer be the phase-synchronous baseband signal,
coarsely aligned in time:

v(t) =
∑
n

d(n)h(t− nT ) + w(t) (1)

where d(n) is an i.i.d. sequence of unit-variance data symbols transmitted
at times nT ; h(t) is the overall channel response, including transmitter and
receiver filtering, and w(t) is the additive noise. This signal is sampled at the
Nyqist or higher rate. Without loss of generality, we assume a sampling rate
of 2/T for a signal band-limited to 1/T . The signal samples are arranged in a
column vector:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v(nT +M1T/2)
...

v(nT + T/2)

v(nT )

v(nT − T/2)
...

v(nT −M2T/2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
∑
k

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h(kT +M1T/2)
...

h(kT + T/2)

h(kT )

h(kT − T/2)
...

h(kT −M2T/2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

d(n− k) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w(nT +M1T/2)
...

w(nT + T/2)

w(nT )

w(nT − T/2)
...

w(nT −M2T/2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

or shortly,

v(n) =
∑
k

h(k)d(n− k) + w(n) (3)

The reference channel vector h(0) has a time span (−M2T/2,M1T/2) which
is chosen to capture all of the channel response h(t). Coarse alignment is
normally performed such that the magnitude of cross-correlation between the
sequences v(nT + lT/2) and d(n) is maximal for l = 0, in which case the
reference element h(0) is the channel coefficient with maximal amplitude.

The DFE with feedforward filter coefficients ak arranged in a vector a, and
feedback coefficients bk, estimates the data symbol as

d̂(n) = a′v(n) − ∑
k>0

b∗kd̃(n− k) (4)
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where d̃(n) is the correct data symbol in the training mode or the symbol
decision in the decision-directed mode. Prime denotes conjugate transpose,
and all the vectors are defined as column vectors. In the absence of decision
errors, the optimal choice of the feedback taps is the one for which post-cursor
ISI is completely canceled:

b∗k = a′h(k), k > 0 (5)

For this choice, the decision variable is expressed as

d̂(n) = a′[
∑
k≤0

h(k)d(n− k) + w(n)] = a′vf(n) (6)

This expression is used to determine the MMSE solution for the feedforward
filter in terms of the channel vector shifts h(k) and the noise covariance N =
E{w(n)w′(n)}. The solution is given by

a = R−1
f h(0) (7)

where Rf is the covariance of the term vf (n), and, for independent data
symbols, it is given by

Rf = E{vf(n)v′
f(n)} =

∑
k≤0

h(k)h′(k) + N (8)

Expressions (8), (7) and (5) define the classical MMSE DFE. They also provide
insight into the needed sizes of equalizer filters.

A usual approach to implementing an adaptive DFE is to group the feedfor-
ward and the feedback filter taps in a composite vector, and apply a least-
squares algorithm to compute this vector recursively from the input signal
vector v(n) and the previous decisions d̃(n − k), k > 0, using the data esti-
mation error e(n) = d(n) − d̂(n). The so-obtained equalizer taps are used to
filter the received signal, and subtract the post-cursors ISI term according to
the expression (4).

An alternative implementation is based on the expression (6). For this imple-
mentation, the equivalent feedforward signal vf (n) has to be obtained first.
However, this signal cannot be measured directly. Instead, it can be recon-
structed. Reconstruction is based on the fact that this signal can be repre-
sented as

vf(n) = v(n) − vb(n) (9)

6



where

vb(n) =
∑
k>0

h(k)d(n− k) (10)

is the equivalent feedback signal that can be obtained from the previous de-
cisions and a channel estimate. Hence, the modified DFE implementation is
defined as follows:

(1) Using a channel estimate ĥ(0), its shifts ĥ(k) for k > 0, and previous
decisions, determine the equivalent feedforward input signal as

v̂f(n) = v(n) − ∑
k>0

ĥ(k)d̃(n− k) = v(n) − v̂b(n) (11)

(2) Apply an adaptive linear equalizer to this signal to obtain the data symbol
estimate

d̂(n) = a′(n)v̂f (n) (12)

Any adaptation algorithm may be considered.

In this approach, the feedback filter taps bk are not computed explicitly at
all. The feedforward filter operates on the equivalent signal, from which the
post-cursor ISI has been removed. In this sense, adaptive feedforward filtering
is different from the original approach in which the filter operates directly on
the received signal.

A feature worth noting is that the estimate of the feedback signal, v̂b(n), obeys
a shifting law:

v̂b(n) =↓ v̂b(n− 1) + ĥ(1)d̃(n− 1) (13)

where ↓ indicates shifting of the vector downward by two elements (in general,
by as many elements as there are samples per one symbol interval) and filling
the top by zeros. This property eliminates the need to carry out the entire
summation for determining the post-cursor ISI every time a new data decision
becomes available. It was shown originally in Ref. [5] for a T-spaced equalizer.

2.2 Adaptive channel estimator and equalizer implementation

There are many possibilities for implementing the channel estimator and the
equalizer adaptively. Each should be chosen according to the channel at hand.
Some scenarios are the following:
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1. Fixed channel estimate / adaptive equalizer.
Channel is estimated from the packet preamble, and this estimate is frozen for
the duration of the packet. Short feedforward equalizer is adapted throughout
the packet. This approach is suitable for high speed radio receivers, where
computational complexity is of paramount importance, but the channel can
safely be assumed constant over the packet duration [8,9].

2. Adaptive channel estimate / adaptive equalizer.
Channel estimator and a short equalizer are updated throughout the packet.
Channel estimation is independent of equalization, except that it relies on sym-
bol decisions in the decision-directed mode. This approach is the first choice
for underwater acoustic communications that use packets long enough to sup-
port significant channel changes. The receiver structure also allows arbitrary
choice of updating intervals.

The equalizer and the channel estimator are updated separately. Thus, they
may use different adaptive algorithms. For channel estimation, a number of
adaptive algorithms can be devised based on the modeling equation (1). For
instance, the estimates of channel coefficients h(nT ) can be obtained from the
coefficients of an adaptive filter that uses the data sequence d(n) as its input
to estimate the signal v(nT ). For a fractional spacing of T/2, two estimators
are needed to generate a T/2 spaced channel response. Since computational
complexity is the focal point of this work, and the channel responses are ex-
pected to be of considerable length as measured in the number of samples
M = M1 + M2 + 1, it is of interest to use a computationally simple adaptive
algorithm for channel estimation. The algorithm proposed below is based on
the fact that the input signal can be modeled as in the expression (3). From
this expression it follows that

h(0) = E{v(n)d∗(n)} (14)

To obtain an estimate of the above vector, a simple stochastic approximation
can be used:

ĥ[n] = (1 − λch)
n∑

i=0

λn−i
ch v(i)d∗(i) (15)

where ĥ[n] denotes the estimate of h(0) obtained in the nth iteration, i.e.,
ĥ[n] = ĥ(0, n), and λch is an exponential forgetting factor. The scaling factor
(1 − λch) ensures an asymptotically unbiased estimate. This expression gives
way to a very simple recursion:

ĥ[n] = λchĥ[n− 1] + (1 − λch)v(n)d∗(n) (16)
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The estimate ĥ[n] is chosen to span all of the significant channel response, but
it suffices to keep only the channel coefficients with significant amplitude. In
this regard, a key feature of the algorithm is that the channel coefficients are
updated independently. While such a method is not optimal if there is corre-
lation between the channel coefficients, it allows fast tracking of the channel
response.

Note that there is a choice when it comes to channel estimation: to update the
entire channel estimate vector, or to update only the selected taps. Updating
the entire vector provides constant on-line monitoring of the time-variations
in the channel (even though all of the taps are not used for post-cursor ISI
suppression). This approach may be useful if tap migration is present due to
residual Doppler effect (note that this may be different for different taps [7]).
Updating only the selected taps provides reduction in computational complex-
ity. The choice should be made based on the properties of a particular channel,
and the desired performance. The simplicity of the algorithm presented above
serves to somewhat reconcile the two requirements.

The adaptive algorithm for the equalizer is commonly chosen from the LMS
or the RLS family. A least-squares algorithm for the equalizer vector a will
operate on the equivalent input signal vf(n), driven by the error e(n). There
is also a possibility that the feedforward equalizer be calculated from the
channel estimate, making use of the relation (7). The matrix inverse in this
case would be computed at the beginning of a data packet, and possibly frozen
for the packet duration on the grounds that the channel covariance changes
more slowly than the channel realization. However, the advantage of updating
the equalizer independently is that it may compensate to some degree for the
channel estimation errors.

2.3 Tap selection

Decomposing the decision-feedback equalization into the channel estimation
part and the feedforward equalization part eases the difficult problem of opti-
mal DFE tap selection. Because the feedback is implemented a priori through
the channel estimate, feedback tap selection is obviously made by choosing
only the significant coefficients of the channel estimate. As long as the input
to the channel estimator is a data sequence of uncorrelated symbols, optimal
feedback tap selection is performed by choosing only the channel estimate co-
efficients whose amplitude is above some threshold. In addition, this choice
can be made adaptively throughout the packet. (Note the difference between
sparsing the channel estimate and sparsing the coefficients of the equalizer.)

Selection of the best feedforward filter taps, however, remains a difficult op-
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timization problem. In general, not all the M coefficients will be updated in
the equalizer vector, as it is desired to use only a short feedforward filter with
N < M non-zero taps. The problem of feedforward equalizer tap selection is
investigated below. Three approaches come to mind:

1. Optimally sparsed filter.
The search is conducted among all the sparsing patterns S to find the one for
which the minimum mean squared data estimation error obtained with the
filter of given size N is minimal:

Emin(N) = min
SM×N

{1 − h′(0)S[S′RfS]−1S′h(0)} (17)

The selection matrix S is of size M × N . Each column contains exactly one
1 among all zeros. Its meaning is that of selecting the elements of the vector
v̂f(n) to form an input signal v

(s)
f (n) = S′v̂f(n) for the sparse feedforward

filter with N ≤M non-zero taps.

Note from the expression (17) that tap selection according to magnitude would
be optimal only if Rf ∼ I, i.e. for uncorrelated input signal. However, this is
not the case in the equalization problem. Finding the optimal sparsing pattern
in general involves an exhaustive search whose complexity may be prohibitive
for a practical implementation.

2. Approximation of the optimization criterion to allow for a more efficient
search.
One such approximation is investigated in Ref.[6]. In this reference, a T-spaced
feedforward filter is considered and the approximation is made by searching
among all the single-tap filters and selecting those N which result in the low-
est MMSEs. In other words, only the M selection vectors s of size M × 1 are
considered. Each vector contains a single 1 at a different location, and results
in the MMSE

E(1) = 1 − h′(0)s[s′Rfs]
−1s′h(0) (18)

The M values of this single-tap MMSE are computed, and the N lowest ones
are identified. The corresponding taps are chosen to form the equalizer vector.
3. An ad hoc method.

For example, a feedforward filter can be chosen with contiguous taps, but of
total length much shorter than the length of the channel estimate. (Ideally, the
number of contiguously spaced feedforward taps will be chosen at least equal
to the number of channel taps.) In reference to the channel vector, the feedfor-
ward filter coefficients of the DFE are arranged as a′ = [0 . . . 0 a(−N1) . . . a(N2)
0 . . . 0]∗. The channels of interest are characterized by large M , and in partic-
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ular by large M1, the part of the response responsible for post-cursor ISI. In
this case, it will be of interest to use a short feedforward filter with N1 < M1

taps. This approximation is justified by the fact that post-cursor ISI has been
canceled from the feedforward filter input. It seems to be effective for chan-
nels with decaying multipath intensity profile as long as N is large enough to
capture sufficient signal energy. Extending the feedforward span N1 improves
on the matched filtering, but increases the irreducible pre-cursor ISI.

Another ad hoc method would be to assign feedforward filter taps to match the
significant taps of the channel estimate ĥ(0). However, its effectiveness is not
obvious except in special cases of distinctly sparse channels with comparable
energy of multipath arrivals.

2.4 Example

To demonstrate the design concepts, and to analyze the various tap selec-
tion methods, a numerical example is constructed. A two-path time-invariant
channel is considered, with path amplitude ratio 2/1 and relative path delay
of 4.25 symbols. The transmitter filter is a spectral raised cosine with roll-off
factor 0.25 and truncation length of ±4 symbol intervals. (This is the actual
filter response used to generate experimental signals of Sec.4.) The channel
introduces additive white Gaussian noise (AWGN). The SNR is 20 dB. The
channel estimator looks 2 symbols to the left (M2=4 taps) and 7 symbols
to the right (M1=14 taps) of the reference tap. The feedforward filter uses
3 taps around the main arrival (N1=1, N2=1) and an RLS algorithm. The
DFE performance is shown in Fig.1. The figure shows the estimated MSE,
the output scatter plot, the tap magnitudes of the feedforward filter, the true
channel response (dotted) and the sparse channel estimate (solid). The re-
ceiver is trained during the first 38 data symbols, and then switched into the
decision-directed mode. There are no decision errors. The channel taps whose
magnitude is less than 1/6 of the main tap magnitude are set to zero. In this
manner, out of the total of 19 taps, 5 are kept to be used for post-cursor ISI
cancellation. An ad hoc choice of few taps around the main arrival works very
well in this type of channel.

The problem of optimal tap allocation is analyzed in Fig.2. This figure shows
the theoretical results for the sparse MMSE DFE. The channel is truly sparse,
as shown in the upper right corner. The total channel length is set to M = 15.
Shown in the upper left corner is the MMSE versus the number of equalizer
taps which are selected optimally (tap selection according to rule 1 of Sec.2.3).
Naturally, the MMSE decreases as the total number of taps increases, and the
improvement obtained after a certain size becomes negligible. It is interesting
to compare the magnitudes of the optimally chosen feedforward filter taps to
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Fig. 1. Performance of the channel-estimation-based DFE.ad hoc sparsing of the
feedforward filter. N = 3, M = 19, Nt = 38, G0 = 1/6, λeq = 0.999, λch = 0.99,
SNR=20 dB.

the channel response magnitude. The feedforward equalizer tap magnitudes
are shown below the channel response for several total equalizer lengthsN . The
equalizer size N = 5 is the first whose optimal selection includes taps outside
of the main arrival region. Although as N increases, the optimally selected
taps tend to include the region of the second arrival, they are not limited to
it. Tap selection according to the approximate rule proposed in Ref. [6] (rule
2 of Sec.2.3) is illustrated in the lower left corner. Interestingly, if this rule
were applied to determine the best 5 taps, those taps would correspond to the
nonzero elements of the channel vector (taps 2, 3, 4, 11 and 12, as numbered in
the figure). Application of the optimal rule, however, gives a different solution
in which more taps are allocated to the region of the main arrival (taps 2,
3, 4, 5, and 12). These observations stress the difficulty of choosing the tap
selection criterion for a practical implementation. However, the fact that both
rules contain taps in the region of the main arrival provides an encouragement
for choosing the taps in an ad hoc manner (criterion 3 of Sec.2.3). This rule,
which requires no computations, is used in the experimental data processing
described in Sec.4.

While the number of feedforward taps is determined in advance and their
location chosen according to one of the rules described, the sparse feedback
is implemented by truncating the channel estimate. The choice of truncation
threshold obviously influences the receiver performance. This effect is illus-
trated in Fig.3 which shows the output SNR as a function of the truncation
threshold. Simulation results demonstrate the existence of an optimal thresh-
old for which the output SNR is maximized. Corresponding to the optimal
threshold is the number of channel coefficients that are kept for evaluating
the post-cursor ISI. As expected, this number is less than the total number
of coefficients used to represent the channel response. At threshold 0, all 19
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Fig. 2. Theoretical performance of the optimally sparsed DFE. “Best selection
MMSE” is the value of Emin(N ), the MMSE obtained with the optimally selected
positions of N feedforward taps. SNR of 20 dB and uncorrelated noise are assumed
for evaluating the MMSE. The channel is truly sparse, and shown in the upper
right corner. The optimal feedforward tap magnitudes for several sizes N are shown
in the lower right corner. Lower left corner shows the MSE obtained by a single
tap equalizer, which is used in tap selection based on an approximation of the
optimal criterion. The best choice in this case is tap # 3 (this choice results in
E(1) = Emin(1)). The second best is tap #2, then 4, 12, 11, etc.

coefficients are used. The number of coefficients kept at threshold 0.1 is 5-6
(exact value depends on the noise realization), and decreases to 2-3 at thresh-
old 0.5. After the threshold increases above 0.6, only the strongest coefficient
is kept in the channel estimate. The value of the optimal threshold obviously
depends on the particular channel response and the input SNR. While this
dependence may be difficult to evaluate analytically, a threshold close to op-
timal can easily be found in practice by tuning the receiver while monitoring
the average squared error during training.

3 Multichannel Receiver

In the previous section, the principles of channel-estimation-based DFE were
described and demonstrated on a simple example generated by computer sim-
ulation. In order to apply these principles to real data, however, a multichannel
processing gain is required in the majority of underwater acoustic communi-
cation scenarios. Hence, the sparse DFE needs to be cast in the framework of
a multichannel receiver.
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Fig. 3. SNR at the equalizer output as a function of the threshold used for sparsing
the channel estimate. The input SNR is determined by the AWGN power. Thresh-
old is given relative to the absolute value of the maximum channel coefficient: a
threshold of 0 indicates that all coefficients are kept in the channel estimate used
for post-cursor ISI calculation, while a threshold of 1 indicates that only one (the
strongest, or the reference coefficient) is kept. The feedforward equalizer uses 3
contiguously spaced taps around the reference tap; the channel estimate has 19
coefficients. The curves are obtained by averaging 500 independent simulation runs.

3.1 Receiver structure

A multichannel receiver in its conventional form consists of a number of input
channels, K, to each of which an adaptive feedforward filter is assigned. This
receiver structure is effective for various types of underwater acoustic channels;
however, for a large number of input channels, its computational complexity
becomes high, because each of the K channels requires an adaptive filter of
length that is often measured in tens of coefficients. To alleviate this problem,
a computationally efficient LMS algorithm was considered in Ref. [2] as an
alternative to a fast RLS, but the inevitable trade-off in convergence rate was
found to limit its usefulness.

Further reduction in complexity is possible by reducing the size of the front
spatio-temporal processor [3]. In this approach, the K spatially distributed
input channels are first combined into a smaller number of channels, P . No
temporal processing (filtering) is used in doing so, but only weighted combin-
ing using adaptively determined weights. The resulting P channels are then
equalized. The approach of pre-combining, or reduced-complexity combining
has proven to be very effective in processing different types of real data. What
is interesting to bear in mind is that a small value of P , usually only two or
three channels (but rarely one) is sufficient for extracting the multichannel
processing gain. This property stems from the broad-band nature of under-
water acoustic communication signals. The reduced-complexity multichannel
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structure is found to be appropriate for use with sparse, channel estimation
aided DFE, for reasons that will become apparent shortly. The resulting re-
ceiver structure is shown in Fig.4.
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Fig. 4. Reduced complexity multichannel DFE incorporates a K to P pre-combiner
and a P -channel DFE. The DFE is based on channel estimation and sparsing.

In addition to multichannel combining, a practical receiver must incorporate
phase tracking. Specifically, let the input signals be given by

vk(t) =
∑
n

d(n)hk(t− nT )ejφk(t) + wk(t), k = 1, . . . K (19)

where, as before, d(n) denotes the transmitted data sequence and wk(t) is the
additive noise observed at the kth receiving element, but the phase deviation is
included explicitly as φk(t), rather than being incorporated into the (complex-
valued) channel response hk(t). This is done so as to separate the rapid time-
variation of the phase from that of the channel which usually varies much
more slowly. While the rapid variation must be tracked by a phase-locked
loop (PLL), the slow one can be handled by the channel estimator. There are
several choices for implementing a decision-directed PLL. Phase tracking can
be performed before combining, i.e., individually for all K channels; after pre-
combining, i.e., using only P phase estimates, or after linear equalization using
a single phase estimate. In what follows, the second choice will be used, on
the grounds that the K phases φk(t) are usually correlated, but the P signals
obtained after pre-combining may contain independently varying components.
If this is not the case, and there is strong correlation between the P phase
estimates, modification of the phase locked loop from P channels to a single
channel is straightforward. Since P is usually chosen to be small, there is not
much to be gained in complexity reduction by eliminating these additional
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phase estimates.

The question that arises in the multichannel receiver design is how many
channel estimates are needed, or, equivalently, at which point in the receiver
should the post-cursor ISI be removed. If the channel responses hk(t) from
the transmitter to each of the receiving elements were known, this could be
done directly on the K input signals vk(t). However, we already know that
a single input signal does not yield sufficient SNR for data detection (hence
multichannel processing), and consequently, it is not suitable for individual
channel estimation either. Thus, a processing gain must be extracted before
channel estimation is attempted. The approach of pre-combining is precisely
suited for this purpose. As shown in Fig.4, the channel estimates are formed
after extracting the pre-combining gain.

3.2 Parameter optimization

Receiver parameters that need to be determined include the K × P pre-
combiner weights, arranged in a matrix C; the feedforward filter coefficients
arranged in P vectors denoted by ap; the P phase estimates θ̂p, and the P

channel estimates denoted by f̂p, p = 1, . . . P . These parameters are optimized
jointly in a manner that minimizes the MSE in data detection.

The signals obtained after pre-combining are given by

xp(t) =
K∑

k=1

c∗p,kvk(t) = c′pv(t), p = 1, . . . P (20)

where cp is the pth column of the pre-combining matrix C. The signals are
sampled once every Ts seconds. (As before, we may assume Ts = T/2.) Let
V(n) denote the matrix of all signal samples used for processing at time instant
nT , associated with detection of the nth data symbol d(n):

V(n) =

⎡
⎢⎢⎢⎢⎢⎣

v1(nT +M1Ts) · · · v1(nT ) · · · v1(nT −M2Ts)
...

...
...

vK(nT +M1Ts) · · · vK(nT ) · · · vK(nT −M2Ts)

⎤
⎥⎥⎥⎥⎥⎦

(21)

The signals at the output of the pre-combiner can now be arranged in a matrix
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X(n)=C′V(n) =

⎡
⎢⎢⎢⎢⎢⎣

x1(nT +M1Ts) · · · x1(nT ) · · · x1(nT −M2Ts)
...

...
...

xP (nT +M1Ts) · · · xP (nT ) · · · xP (nT −M2Ts)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

xT
1 (n)

· · ·
xT

P (n)

⎤
⎥⎥⎥⎥⎥⎦

(22)

The signal xp(n) is modeled as

xp(n) =
∑

i

fp(i)d(n− i)ejθp(n) + zp(n) (23)

where

fp(i) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fp(iT +M1Ts)
...

fp(iT )
...

fp(iT −M2Ts)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

represents the i-shift of the vector fp(0) which is centered so as to capture all
of the channel response (as seen at this point in the receiver); θp(n) represents
the phase deviation, and zp(n) represents the additive noise. It is the set of
channel responses fp(0), p = 1, . . . P that will be estimated and used for post-
cursor ISI suppression, which is thus performed after pre-combining.

Phase correction is performed using the estimates θ̂p of the phases θp. This
operation yields the signals

xpθ(n) = xp(n)e−jθ̂p(n), p = 1, . . . P (25)

which are the inputs to the P -channel DFE.

The analysis of the multichannel DFE that uses channel estimates f̂p(i) closely
follows that of a single channel DFE given in Sec.2.1 In a conventional multi-
channel DFE representation, with feedback taps {bi}, i > 0, the data symbol
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estimate is obtained as

d̂(n) =
P∑

p=1

a′
pxpθ(n) − ∑

i>0

b∗i d̃(n− i) (26)

Substituting for the signals xpθ(n), and assuming for the moment that the
phase estimates are correct, one obtains the condition for perfect post-cursor
ISI cancellation:

b∗i =
P∑

p=1

a′
pfp(i), i > 0 (27)

Using the channel estimates for lack of true values in the above expressions,
the data symbol estimate is computed as

d̂(n) =
P∑

p=1

a′
p[xpθ(n) − ∑

i>0

f̂p(i)d̃(n− i)] (28)

In the last expression, we recognize the backward signal

xpb(n) =
∑
i>0

f̂p(i)d̃(n− i) (29)

and the forward signal, i.e., the input to the pth feedforward filter

xpf(n) = xpθ(n) − xpb(n) (30)

The estimation error is given by

e(n) = d(n) − d̂(n) (31)

This error is used to obtain the MMSE solution for the receiver parameters.
In a practical implementation, the MMSE solution is computed recursively to
suit the time-varying nature of the channel. The resulting adaptive algorithms
for the pre-combiner, the equalizers, the PLL and the channel estimates are
given below.

The pre-combiner. To arrive at the solution for the pre-combiner weights,
we use the fact that

xp(n) = VT (n)c∗pe
−jθ̂p(n) (32)
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The data estimate d̂(n) is then written as

d̂(n)= [c′1 . . . c
′
P ]

⎡
⎢⎢⎢⎢⎢⎣

V(n)a∗
1e

−jθ̂1(n)

...

V(n)a∗
Pe

−jθ̂P (n)

⎤
⎥⎥⎥⎥⎥⎦
− [a′

1 . . . a
′
P ]

⎡
⎢⎢⎢⎢⎢⎣

x1b(n)
...

xPb(n)

⎤
⎥⎥⎥⎥⎥⎦

= c′y(n) − a′xb(n) (33)

where we have defined the composite vectors c and a of the pre-combiner
and the equalizers, respectively, as well as the equivalent pre-combiner input
signal y(n). Having expressed the estimated quantity as an inner product of
the coefficient vector to be determined and the equivalent input signal (plus
a fixed term that does not influence the optimization), the MMSE solution
for the pre-combiner coefficients is obtained as the usual Wiener filter. The
coefficients can be obtained recursively as

c(n+ 1) = c(n) + A1[y(n), e(n)] (34)

where A1[u(n), e(n)] denotes an adaptive algorithm A1, such as LMS or RLS,
that operates on the input signal vector y(n) and the estimation error e(n).
For example, for K = 8 and P = 2, which are the values that will be used in
the following section when real data processing is described, there is a total of
16 pre-combiner coefficients. This is a value small enough to permit even the
use of a standard RLS algorithm.

The equalizer. To obtain a recursion for updating the equalizer coefficients,
the data estimate is expressed as

d̂(n) = [a′
1 . . . a

′
P ]

⎡
⎢⎢⎢⎢⎢⎣

x1f(n)
...

xPf (n)

⎤
⎥⎥⎥⎥⎥⎦

= a′xf (n) (35)

The composite feedforward filter vector is updated as

a(n+ 1) = a(n) + A2[xf(n), e(n)] (36)

where A2 is an adaptive algorithm not necessarily the same as A1. Regarding
the equalizer size, a word of caution is in order. Although the vectors ap in
our treatment so far have been assumed to be of size M , only N ≤M of these
elements are actually used. The others are set to zero, and, thus, do not need
to be updated. The choice of the N elements has been addressed in Sec.2.3 for
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the single channel case. In the multichannel case, of course, all the channels do
not need to have the same selection of N taps, but the same general principles
apply. In the experimental data processing described in the following section,
all the equalizers will use an ad hoc method, with the same N contiguous taps
selected around the reference channel tap.

The PLL. To obtain the algorithm for updating the phase estimates θ̂p, the
data symbol estimate is written as

d̂(n) =
P∑

p=1

αp(n)e−jθ̂p(n) −
P∑

p=1

αpb(n) (37)

where

αp(n) = a′
pxp(n) (38)

αpb(n) = a′
pxpb(n) (39)

The phase estimate is chosen to minimize the MSE in data estimation, and is
computed recursively using a second order stochastic gradient approximation.
The instantaneous gradient of the MSE with respect to the pth phase estimate
is given by

∂|e2(n)|
∂θ̂p

= 2Re{∂e(n)

∂θ̂p

e∗(n)} = −2Im{αp(n)e−jθ̂pe∗(n)} (40)

From this expression follows the second order update:

ψp(n)= Im{αp(n)e−jθ̂p(n)e∗(n)}
θ̂p(n+ 1) = θ̂p(n) +Kf1ψp(n) +Kf2

n∑
i=0

ψp(i) (41)

where Kf1 is the proportional tracking constant, and Kf2 is the integral track-
ing constant, often chosen as Kf2 = Kf1/10.

The channel estimator. At last, it remains to specify the channel estimation
algorithm. The estimate of fp(0), generated at the nth iteration is denoted as

f̂p(0, n) = f̂p[n]. The estimates of vectors f̂p(1, n), needed to determine the

post-cursor ISI, are computed by shifting the vectors f̂p[n]. Since the model
(23) implies that

fp(0) = E{xp(n)e−jθp(n)d∗(n)}, p = 1, . . . P (42)
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the channel estimation algorithm described in Sec.2.2 is applicable to the
multichannel case as well. The only difference is that the phase correction
needs to be taken into account. Thus, the phase-corrected signals are used for
channel estimation:

f̂p[n] = λch f̂p[n− 1] + (1 − λch)xpθ(n)d∗(n), p = 1 . . . P (43)

Each of the estimated vectors f̂p[n] is of length M , which may be large if it
is to span all of the channel response. However, not all of the M coefficients
are used for post-cursor ISI estimation. Sparsing of the channel estimates is
performed in an optimal manner by truncation.

A rapidly varying channel necessitates tracking of more than just the selected
taps. An underwater channel with a moving transmitter/receiver is such an
example. Changes in the propagation path length cause drifting of the channel
taps which can be captured by constant monitoring of all the taps. Alterna-
tively, the position of the strongest channel tap could be controlled by per-
forming explicit bit synchronization, i.e., by incorporating a delay-locked loop
(DLL) into the receiver. Once the locations of significant taps do not change
with time, adaptive channel estimation can be confined to those taps only. For
the present application, fractional spacing of the equalizer suffices to extract
the correct bit timing.

Finally, it has to be emphasized that the post-cursor ISI term xpb(n) is given
by (29) in terms of a sum that involves all the positive shifts of the esti-
mated channel vector. However, the summation does not need to be carried
out explicitly, because the shifting property still holds in the multichannel
case. Computation of the post-cursor ISI term is greatly simplified by using
the following recursion:

xpb(n+ 1) =↓ xpb(n) + f̂p(1, n)d(n), p = 1, . . . P (44)

where ↓ means shifting downwards by the oversampling factor (2, for a T/2
fractional spacing), and f̂p(1, n) =↓ f̂p[n] is the shifted version of the current
channel vector estimate. We note again that not all of theM elements of xpb(n)
are actually computed, but only those N that are needed for equalization.

In summary, the K input channels are pre-combined into P ≤ K, which are
used for channel estimation and equalization. A total of M signal samples
per channel are used to obtain the M channel coefficients, but a number of
those coefficients, say Moff , are set to zero when evaluating the post-cursor
ISI. At the same time, only N ≤ M signal samples are used for equalization.
The positions of the Moff taps are determined on-line, by thresholding. The
positions of the N equalizer taps could theoretically be calculated on-line
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from the channel estimate; however, this calculation is extremely complex,
and, thus, the N taps will be selected a priori in a practical implementation.

3.3 Algorithm summary

The algorithm for adaptive multichannel DFE, based on spatial pre-combining,
channel estimation and sparsing, is defined by the following steps carried out
at each iteration n:

(1) Form the matrix of input signals V(n). This matrix is of full size K×M .
(2) Compute the pre-combiner output X(n) = C′(n)V(n). This matrix is of

size P ×M .
(P ≤ K, i.e., size of spatial processing is reduced.)

(3) Compute the phase-corrected signals:

Xθ(n) =

⎡
⎢⎢⎢⎢⎢⎣

e−jθ̂1(n) · · · 0

0 · · · 0

0 · · · e−jθ̂P (n)

⎤
⎥⎥⎥⎥⎥⎦
X(n) =

⎡
⎢⎢⎢⎢⎢⎣

xT
1 (n)e−jθ̂1(n)

...

xT
P (n)e−jθ̂P (n)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

xT
1θ(n)
...

xT
Pθ(n)

⎤
⎥⎥⎥⎥⎥⎦
(45)

This matrix is of size P ×M .
(4) According to a tap selection rule for equalization, take N elements from

each row of Xθ(n) , and arrange them in a matrix X
(s)
θ (n) of size P ×N .

(N ≤ M , i.e., size of temporal processing is reduced.)

(5) Compute X
(s)
b (n) by selecting the elements of Xb(n), the matrix whose

rows are the post-cursor ISI terms xT
pb(n).

(6) Compute X
(s)
f (n) = X

(s)
θ (n)−X

(s)
b (n), the input signals to the feedforwad

equalizer filters.
(7) Form the K × N matrix V(s)(n) of selected signal components, and de-

termine the equivalent pre-combiner input

y(n) =

⎡
⎢⎢⎢⎢⎢⎣

V(s)(n)a
(s)∗
1 (n)e−jθ̂1(n)

...

V(s)(n)a
(s)∗
P (n)e−jθ̂P (n)

⎤
⎥⎥⎥⎥⎥⎦

(46)

(8) Compute αp(n) = a(s)′
p (n)x

(s)
pθ (n), and αpb(n) = a(s)′

p (n)x
(s)
pb (n). The quan-

tities with superscript (s) are of length N .
(9) Compute the data symbol estimate as in (37).

(10) After training (n > Nt), compute the data symbol decision d̃(n) from the
estimate d̂(n), using the decision regions appropriate to the modulation
method used. Any linear modulation applies.
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(11) Compute the error as in (31).
(12) Update the phase estimates as in (41).
(13) Update the pre-combiner weight vector

c(n+ 1) = c(n) + A1[y(n), e(n)] (47)

(14) Update the equalizer vectors

a(s)(n+ 1) = a(s)(n) + A2[x
(s)
f (n), e(n)] (48)

where x
(s)
f (n) is formed by arranging the rows of X

(s)
f (n) into a vector.

(15) Update the matrix of channel estimates

F[n] = λchF[n− 1] + (1 − λch)Xθ(n)d∗(n) (49)

(16) Truncate the channel estimates

F(t)[n] = F[n]|elements less than threshold set to 0 (50)

(17) Compute the post-cursor ISI term

XT
b (n + 1) =↓ XT

b (n)+ ↓ F(t)T [n]d̃∗(n) (51)

Initially, the values of the equalizers, the channel estimates, the phase esti-
mates and the post-cursor ISI terms are all set to zero, and the pre-combiner
weights are initialized such that arbitrarily chosen P input channels are passed
to the equalizers unchanged, while the remaining channels are cut off. Updat-
ing of the pre-combiner is delayed with respect to the equalizer by a certain
number of iterations Ntc. In the examples to follow, both the pre-combiner
and the equalizers use the form II RLS [12]. This algorithm is of quadratic
complexity; however, the two algorithms A1 and A2 are run in parallel, which
increases the overall speed of computations. At the same time, it allows the
pre-combiner and the equalizer to use different forgetting factors.

4 Experimental Results

The algorithm described in the previous section was implemented in Matlab
and used for off-line processing of experimental data. The experimental data,
provided by the Woods Hole Oceanographic Institution, were collected in the
Continental Shelf region near the coast of New England. The water depth
was between 100 m and 200 m. The signals were transmitted using a carrier
frequency of 25 kHz, over the range of 3 km. The modulation format was
QPSK, and the signals were transmitted at 10 kilobits per second. The verti-
cal receiver array consisted of eight omni-directional hydrophones, spaced by
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0.03 m. In this section, results of signal processing are demonstrated using an
average quality data set.

The channel responses, recorded at four of the input sensors, are shown in
Fig.5. These responses represent snapshots obtained from the channel probe
transmitted before the actual data. They can be used to determine roughly
the extent of multipath; however, they do not provide information about the
time-variability of the channel. The channel response consists of the principal
cluster of arrivals whose delay spread is on the order of 15 symbol intervals.
In addition, there is a distant cluster of arrivals, approximately 225 symbol
intervals away (the distant cluster is quite apparent in the response of the
second sensor). Within each cluster, there are several distinct peaks of the
response magnitude. The relative energy of multipath arrivals varies with the
sensor location.
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Fig. 5. Recorded channel responses.

As a reference, Fig.6 shows the results of signal processing using a conventional
multichannel equalizer in a full-complexity configuration. The input to the
receiver is the raw received signal, brought to baseband using the nominal
carrier frequency, sampled at 2/T , and frame-synchronized using a 13 element
Barker code. No phase synchronization or bit-timing adjustment is performed
on this signal. The receiver uses eight feedforward filters, each of size 16. The
feedback filter is implemented explicitly, using 25 taps. The total of 8·16+25 =
153 equalizer parameters are updated as a single vector using the a numerically
stable fast RLS [13] with a forgetting factor 0.99. There are 2000 symbols in
a data packet, 300 of which are used for training. A single phase estimate is
used for all eight channels. The details of tracking parameters are given in the
figure. The performance of this receiver is of moderate quality, as seen by the
output scatter plot and the estimated error probability (fraction of erroneous

24



bits in the data packet). Note that if it were desired to extend the feedback
section to take into account more distant arrivals, the size of the feedback
filter would become a limiting factor in the efficiency of the algorithm that
updates all the equalizer coefficients as a single parameter vector.
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Fig. 6. Results of full-complexity multichannel processing. DFE is implemented
explicitly. Figure shows the MSE, the phase estimate and the output scatter plot of
the estimated data symbols. Equalizer coefficients are updated using the fast RLS
algorithm [8].

In the absence of noise and time-variability of the channel, the performance
of the full complexity receiver represents a bound on the performance of the
reduced-complexity receiver. However, in a practical implementation this may
not be the case. Fig.7 shows the results of data processing using the reduced-
complexity channel-estimation-based DFE. The eight input channels are pre-
combined into two channels, which are then equalized, i.e., processed by the
two channel estimators that accompany the two feedforward filters. The chan-
nels are estimated over a total length of M = 25 taps. The truncation thresh-
old for channel estimate sparsing is set to G0 = 1/6, i.e., all the channel taps
whose magnitude falls below 1/6 of the strongest tap magnitude (computed
individually for each of the two estimators) are set to zero. This procedure
results in Moff = 18 taps being turned off in each of the channel estimators.
The remaining 7 taps are used in post-cursor ISI cancelation. The feedforward
filters have N = 17 taps per channel. The forgetting factors of the equalizer,
the pre-combiner and the channel estimators are indicated in the figure to-
gether with the PLL tracking constants. The pre-combiner (16 taps) and the
two-channel equalizer (34 taps) each use a standard RLS algorithm, while the
channel estimators are updated using the algorithm (43). Adaptation is carried
out continuously throughout the data packet. The two-channel PLL tracks a
Doppler shift of approximately -15 Hz with good accuracy. The MSE indicates
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steady convergence, and the scatter plot shows no errors in the detection of
the data block.
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Fig. 7. Results of reduced-complexity multichannel processing. DFE is implemented
via channel estimation. Figure shows the MSE, the phase estimates and the output
scatter plot of the estimated data symbols. The pre-combiner and the equalizer
coefficients are updated using standard RLS algorithms; the channel estimates are
updated using the algorithm (43).

Increasing the number of equalizers (pre-combiner outputs) to more than two
does not result in performance improvement on this channel. This fact il-
lustrates the power of reduced-complexity multichannel combining. The pre-
combiner succeeds in suppressing the distant multipath arrivals (more than
200 symbols away), as evidenced by the fact that only a short feedback is
needed for suppression of ISI from within the first cluster. The small num-
ber of feedforward coefficients allows efficient processing without unnecessary
noise enhancement.

The channel estimates obtained during data processing are shown in Fig.8.
Recall that these estimates represent the channel responses as seen after pre-
combining. Shown in the figure are both the complete channel estimates and
their values after truncation. The ISI extends over 10 to 15 symbols. The
channels exhibit a fair degree of time-variability. The variation occurs in both
the amplitudes and arrival times of signals propagating over different paths.
The latter is evident from the variation in position of the selected channel co-
efficients: the position of the strongest coefficient changes from the reference
value 0 at the beginning of the data block to a lag of 4 (2 symbol inter-
vals) at the end of the data block. For this reason, all the coefficients in the
channel estimates need to be continuously monitored and updated. The adap-
tive fractionally spaced equalizers can then successfully compensate for the
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motion-induced drifting of the channel taps, as long as the resulting Doppler
spread is relatively low.
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Fig. 8. Channel estimates after pre-combining. Shown on the left are the full channel
estimates. Shown on the right are their truncated values which contain only the
significant coefficients used for equalization.

As it was pointed out earlier, one advantage of the channel-estimation-aided
DFE is that the channel estimator operates separately from the rest of the
receiver, and thus provides the possibility to monitor the channel response
without affecting the equalizer size. This point is illustrated in Fig.9, which
shows the results of processing the same data packet with the span of channel
estimators extended to include the distant multipath arrivals. The receiver
performance in this case is again very good, with no detection errors. (The
increase in the MSE occurs at the time when the late arrival becomes vis-
ible to the equalizer.) The channel estimators capture the distant arrivals,
225 symbols away from the main arrival. This example demonstrates a pow-
erful advantage of sparse channel estimation: the overall performance is not
affected by the large extent of the feedback, because only the significant taps
are used for ISI suppression. It is thus possible to constantly monitor the
channel changes without affecting the equalizer size (the feedforward filters
in this example have 9 taps only). If the feedback section of a conventional
DFE were extended to cover 225 post-cursors, this would significantly slow the
convergence, and also restrict the tracking speed (by constraining the choice
of the LMS step size or the fast RLS forgetting factor). Because different
channel taps are updated independently in the algorithm proposed, conver-
gence remains fast, channel estimation is not overly sensitive to the choice of
forgetting factor λch, and this factor is not restricted by the estimator size.
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Fig. 9. Results of reduced-complexity multichannel processing. DFE is implemented
via channel estimation. Figure shows the estimated mean squared error, the channel
estimates and truncation thresholds (approximately same for the two estimates) at
the end of the data packet, and the output scatter plot. In this case, the distant
arrivals are taken into account.

5 Conclusions

Reduction of computational complexity is a problem of paramount impor-
tance for real-time implementation of high-speed underwater acoustic receivers
which require sophisticated multichannel equalizers. This problem was ad-
dressed from the viewpoint of reducing the size of adaptive filters needed to
perform spatial and temporal signal processing. In particular, the method
of channel-estimation-aided decision-feedback equalization was used in con-
junction with multichannel spatial diversity pre-combining. By reducing the
number of channels that are equalized, and by selecting only the significant
components of the channel estimates, not only is the efficiency of signal pro-
cessing increased, but its performance is improved by eliminating the unnec-
essary noise from the detection process.

The ideas that govern the receiver implementation are:

(1) Pre-combining of a larger number of input channels into a few that will
be equalized.

(2) Adaptive channel estimation and sparsing.
(3) Subtraction of post-cursor ISI using the channel estimate feedback prior

to adaptive feedforward equalization.

The advantages of this method are the following:
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(1) Preservation of full multichannel processing gain without temporal pro-
cessing in each channel.

(2) Optimal selection of the channel taps by simple truncation in magnitude
(rather than direct selection of the equalizer taps).

(3) Efficient post-cursor ISI calculation using the shifting property (44).
(4) Use of a short feedforward equalizer (possibly much shorter than the

multipath spread).
(5) Computationally efficient estimation of the fractionally-spaced channel

response using the recursion (43).
(6) Continuous channel monitoring.
(7) Flexibility to increase the feedback length on demand without affecting

feedforward equalization.
(8) Parallel implementation of adaptive algorithms for channel estimation,

equalization and pre-combining.

The algorithm that incorporates the above principles, together with a method
for data-directed phase tracking, was successfully demonstrated on real data.

Further research in this area will likely concentrate on highly-mobile under-
water acoustic communications, with relative transmitter/receiver velocities
on the order of tens of meters per second. Because the speed of acoustic sig-
nal propagation underwater (1500 m/s) is very low, Doppler effects become
a major limitation in mobile underwater channels. Signal processing based
on channel estimation provides a natural framework for the development of
algorithms capable of dealing with extreme motion-induced signal distortions.

References

[1] M.Stojanovic, J.Catipovic and J.Proakis, Adaptive multichannel combining and
equalization for underwater acoustic communications, Journal of the Acoustical
Society of America, vol.94 (3), Pt.1, pp.1621-1631, Sept. 1993.

[2] L. Freitag, M. Grund, S. Singh, J. Partan, P. Koski and K. Ball, The WHOI
micro-modem: An acoustic communications and navigation system for multiple
platforms, in Proc. IEEE Oceans Conf., 2005.

[3] M.Stojanovic, J.Catipovic and J.Proakis, Reduced-complexity multichannel
processing of underwater acoustic communication signals, Journal of the
Acoustical Society of America, vol.98 (2), Pt. 1, pp.961-972, Aug. 1995.

[4] H.C.Song, W.Hodgkiss, W.Kuperman, M.Stevenson and T.Akal, Improvement
of time-reversal communications using adaptive channel equalizers, IEEE
J.Oceanic Eng., vol.31, No.2, April 2006, pp.487-496.

[5] M.Johnson, L.Freitag and M.Stojanovic, Efficient equalizer update algorithms
for acoustic communication channels of varying complexity, in Proc. IEEE

29



Oceans Conf., 1997.

[6] M.Stojanovic, L.Freitag and M.Johnson, Channel-estimation-based adaptive
equalization of underwater acoustic signals, in Proc. IEEE Oceans Conf., Sept.
1999.

[7] W.Li and J.Preisig, “Estimation of rapidly time-varying sparse channels,” IEEE
J.Oceanic Eng., in press.

[8] S.Ariyavisitakul and L.Greenstein, Reduced-complexity equalization techniques
for broad-band wireless channels, IEEE Trans. Commun., pp.5-15, Jan. 1997.

[9] S.Ariyavisitakul, N.Sollenberger and L.Greenstein, Tap-selectable decision
feedback equalization, IEEE Trans. Commun., pp.1497-1500, Dec. 1997.

[10] I.Fevrier, S.Gelfand and M.Fitz, ‘Reduced complexity decision feedback
equalization for multipath channels with large delay spreads, IEEE Trans.
Commun., pp.927-937, June 1999.

[11] C.Carbonelli, S.Vedantam and U.Mitra, Sparse channel estimation with zero
tap detection, IEEE Trans. Wireless Commun., vol.6, No.5, May 2007, pp.1743-
1753.

[12] S.Haykin, Adaptive Filter Theory, second ed., Prentice Hall, 1991.

[13] D.Slock and T.Kailath, Numerically stable fast transversal filters for recursive
least squares adaptive filtering, IEEE Trans. Sig. Proc., pp.92-114, Jan. 1991.

30



List of Figures

1 Performance of the channel-estimation-based DFE.ad hoc
sparsing of the feedforward filter. N = 3,M = 19, Nt =
38, G0 = 1/6, λeq = 0.999, λch = 0.99, SNR=20 dB. 12

2 Theoretical performance of the optimally sparsed DFE. “Best
selection MMSE” is the value of Emin(N), the MMSE obtained
with the optimally selected positions of N feedforward
taps. SNR of 20 dB and uncorrelated noise are assumed
for evaluating the MMSE. The channel is truly sparse, and
shown in the upper right corner. The optimal feedforward
tap magnitudes for several sizes N are shown in the lower
right corner. Lower left corner shows the MSE obtained by a
single tap equalizer, which is used in tap selection based on an
approximation of the optimal criterion. The best choice in this
case is tap # 3 (this choice results in E(1) = Emin(1)). The
second best is tap #2, then 4, 12, 11, etc. 13

3 SNR at the equalizer output as a function of the threshold
used for sparsing the channel estimate. The input SNR is
determined by the AWGN power. Threshold is given relative
to the absolute value of the maximum channel coefficient: a
threshold of 0 indicates that all coefficients are kept in the
channel estimate used for post-cursor ISI calculation, while
a threshold of 1 indicates that only one (the strongest, or
the reference coefficient) is kept. The feedforward equalizer
uses 3 contiguously spaced taps around the reference tap; the
channel estimate has 19 coefficients. The curves are obtained
by averaging 500 independent simulation runs. 14

4 Reduced complexity multichannel DFE incorporates a K to
P pre-combiner and a P -channel DFE. The DFE is based on
channel estimation and sparsing. 15

5 Recorded channel responses. 24

6 Results of full-complexity multichannel processing. DFE is
implemented explicitly. Figure shows the MSE, the phase
estimate and the output scatter plot of the estimated data
symbols. Equalizer coefficients are updated using the fast RLS
algorithm [8]. 25

31



7 Results of reduced-complexity multichannel processing. DFE
is implemented via channel estimation. Figure shows the
MSE, the phase estimates and the output scatter plot of the
estimated data symbols. The pre-combiner and the equalizer
coefficients are updated using standard RLS algorithms; the
channel estimates are updated using the algorithm (43). 26

8 Channel estimates after pre-combining. Shown on the left
are the full channel estimates. Shown on the right are their
truncated values which contain only the significant coefficients
used for equalization. 27

9 Results of reduced-complexity multichannel processing.
DFE is implemented via channel estimation. Figure shows
the estimated mean squared error, the channel estimates
and truncation thresholds (approximately same for the two
estimates) at the end of the data packet, and the output
scatter plot. In this case, the distant arrivals are taken into
account. 28

32


