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Efficient Channel-Estimation-Based Multiuser
Detection for Underwater CDMA Systems

Eduard Calvo, Student Member, IEEE, and Milica Stojanovic, Senior Member, IEEE

Abstract—Motivated by finding reduced complexity versions of
the maximum-likelihood (ML) detector for highly distorted under-
water channels, a multiuser detection (MUD) algorithm for joint
data detection and channel estimation based on the cyclic coor-
dinate descent method is proposed. Assuming that the data sym-
bols are available, they are used to estimate the channel responses,
which, in turn, are used to refine the symbol estimates. Adaptive
estimation is performed using minimum mean square error as the
overall optimization criterion. The receiver is implemented in a
multichannel configuration, which provides the array processing
gain necessary for many of the underwater acoustic channels. The
complexity of the detection algorithm is linear in the number of re-
ceive elements and it does not depend on the modulation level of the
transmitted signals. The algorithm has been tested using real data
obtained over a 2-km shallow-water channel in a 20-kHz band,
demonstrating good results.

Index Terms—Adaptive algorithms, code-division multiple
access, direct-sequence (DS) spread spectrum, multichannel
combining, space-time processing, underwater acoustic communi-
cations.

I. INTRODUCTION

E MERGING systems for ocean observation call for deploy-
ment of multiple autonomous underwater units. To enable

their collaborative operation in a shared physical channel, mul-
tiple-access communications must be established. To this ex-
tent, while frequency-division multiple access (FDMA) is ruled
out because of its inefficient use of the available bandwidth, the
capacity of time-division multiple access (TDMA), which al-
lows for simpler data detection mechanisms, is fundamentally
limited by the underwater channel latency [1]. These facts mo-
tivate consideration of code-division multiple access (CDMA)
as the multiple-access technique for use in underwater acoustic
systems. A particular application of interest to this study is a
network of several users operating within a footprint of a few
kilometers around a base station.

In particular, we deal with the problem of multiuser data
detection where the autonomous users transmit asynchronously
to a common receiver equipped with a hydrophone array.
Multiuser detection (MUD) techniques, instead of treating the
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interfering users as background noise, exploit the structure of
their signals to perform joint detection of all the data streams
[2]. As a result, the efficiency of the underwater channel re-
source utilization is increased with respect to nonautonomous
network configurations (i.e., with transmissions scheduled by a
centralized entity to avoid multiuser interference). Underwater
acoustic channels are characterized by extended multipath
propagation, fast variation of the channel impulse response, se-
vere Doppler distortion, asynchronism, and bandwidth scarcity.
To implement MUD on these channels, simplicity and perfor-
mance need to be realized simultaneously.

The simplest among all MUD strategies is the matched-filter
(MF) detector, which consists of a bank of filters each matched
to the waveform corresponding to the spreading sequence and
channel impulse response of a different user. Not exploiting any
information available about the structure of the interference, the
MF detector is extremely vulnerable to the near–far problem,
which occurs when there is disparity in the received power of the
users. On the other hand, Verdú [3] showed that optimal error
probability performance (and near–far resistance) is achieved by
a maximum-likelihood (ML) detector consisting of a Viterbi al-
gorithm for maximum-likelihood sequence estimation (MLSE)
operating on the outputs of the MFs, but the price to pay is a
complexity scaling that is exponential in the number of users
and becomes unaffordable in many practical situations.

These facts motivate the interest in finding reduced com-
plexity detectors with good performance. For instance, in the
decorrelator detector [4], the Viterbi MLSE is replaced by a
linear transformation. Alternative structures that do not suffer
from the near–far problem are the minimum mean square error
(MMSE) linear [5], and decision feedback equalization (DFE)
detectors [6]–[8], which are based on the adaptation of finite
impulse response filters to track the instantaneous changes of
the channel conditions. Another popular family of strategies
for MUD are multistage (parallel or successive interference
cancellation) techniques [2], [9]–[11], which are based on using
tentative symbol decisions to remove interference from the
signal of interest. They employ a bank of single-user receivers
that exchange timing, power, and symbol estimates to recon-
struct and subtract interference before demodulation of the
desired data stream. The major disadvantage of these detectors
is that they suffer from error propagation.

This paper tries to bridge the gap between affordable com-
putational load and acceptable performance by proposing a
reduced complexity multiuser detector for highly distorted
underwater channels. It is based on a cyclic coordinate descent
(CCD) strategy that avoids estimating the channel for each
possible combination of transmitted symbols of the users, thus
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Fig. 1. Block diagram of the system.

reducing the computational complexity. Instead, the detector
cycles through the symbol estimates, the channel estimates, and
the carrier phase estimates, adjusting each one in turn while
holding the other two constant. By continuously refining the
three sets of parameters, channel and phase estimation only
needs to be maintained for a single hypothesis on the value
of the transmitted data symbols of the users, hence providing
significant complexity savings.

This paper is organized as follows. Section II provides the
system model. Section III describes the proposed CCD detector.
Performance results of the CCD detector obtained using exper-
imental data are given in Section IV. Finally, Section V con-
cludes this paper.

II. SYSTEM MODEL

We consider a direct sequence CDMA system of users,
each with the same spreading factor (we do not consider mul-
tirate transmissions in the network). Then

(1)

denotes one period of the code of the th user, where
is the spreading sequence of the th user, stands for the chip
duration, and the chip shaping pulse is taken as a squared
root raised cosine pulse. In the simplest case, the overall channel
as seen by the th user is assumed to have a delay spread less
than the symbol interval (this assumption can be re-
laxed). Its impulse response is defined as , where de-
notes a conjugate, and it is used for later convenience of nota-
tion. The sampling rate at the receiver is twice the chip rate, i.e.,

samples per chip are used. It is useful to define the
indices of symbols, chips, and samples to ease the notation for
further analysis:

• current symbol index: is the
total number of transmitted data symbols per user;

• chip index within the current symbol: ;

Fig. 2. Structure of the vectors � � � ���.

• sample index within the current chip of the current symbol:
;

• current sample index: .
The relation between these indices is .
To transmit the data sequence , the th user forms
the signal

(2)

which, together with the signals of the other users, is received
at the base station as

(3)

where are the phase distortion terms and is
noise. An equivalent discrete-time model under a sampling rate
of samples per chip is

(4)

where denotes conjugate transpose. The block diagram of
the system is shown in Fig. 1.

The set of channel vectors and transmitted sig-
nals have a time span of seconds ( sam-
ples).1 Let us define , a vector containing the samples
of one period of the code of the th user. Then, represents
a causal window of one symbol interval containing the periodic
extension of the code sequence of the th user starting at the
current ( th) sample. As illustrated in Fig. 2, it is obtained by
circularly shifting the vector , where the first component of

1In scenarios where the delay spread of the channels does not guarantee that
the impulse responses are limited to one symbol interval, the definition of the
vectors �� ���� can be extended to include multiple symbol intervals.
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Fig. 3. Block diagram of the ML detector.

points to the th component of

(5)

Thus, can be split into the contribution of the current
and the past code period, which allows

to be expressed as

(6)

III. DATA DETECTION

The CCD detector finds its origin in the principle of ML
detection. Although it uses the same channel estimation and
phase-tracking strategies as the ML detector, the way in which
symbol detection is performed is very different. While the ML
detector provides an upper bound on the performance of the
CCD detector, it suffers from a prohibitively high computational
load, which renders it infeasible for practical values of and .
Nonetheless, we begin by describing this important algorithm as
it provides the basis for the proposed CCD detector.

A. The ML Detector

Upon observing the received signal during one symbol pe-
riod, the ML detector considers all the possible combinations of
transmitted symbols of all the users, and decides in favor of the
most likely one. That is, if denotes the signal space of one
user and is a hypothesis made on the
transmitted symbols, the decision on the th transmitted symbol
vector made by the ML detector is

(7)

where denoted probability. The dependence of on the
transmitted symbols is through the vectors given in
the expression (4). Assuming that the last transmitted symbol of
the th user is known,2 (6) can be constructed

2More than one past symbol is required if the delay spread of the channel is
longer than � .

up to the value of the current data symbol , using the
knowledge of as

(8)

For each symbol , a different vector can be con-
structed, and for each hypothesis , the conditional mean
of the received signal is given by

(9)

where we have used the fact that the noise is zero mean. Be-
cause the noise is also complex Gaussian ,
this implies that , which allows us to
simplify (7) as

(10)

(11)

where denotes the mean squared error associated with
the hypothesized data sequence . Since depends on both
the channel vectors and the carrier phase offsets, which are not
available, an estimate will be used instead. This estimate
will rely on the estimates of the channel and the carrier phases as
shown in Fig. 3. Note that channel estimation and carrier phase
tracking need to be carried out for each possible hypothesis, sim-
ilarly as in hypothesis feedback direct sequence spread spectrum
(DSSS) equalization [13], [14].
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Let be the current hypothesis under test for the th trans-
mitted symbol vector. The estimated conditional mean is then
given by

... (12)

The composite channel estimate is updated using the normal-
ized least mean squares (NLMS) algorithm [12], with the error
signal

(13)

The phase terms are estimated using a multichannel
digital phase-locked loop (DPLL) [8]. Due to its robustness and
simplicity, a second-order DPLL is used to estimate the phase
vector using the recursive adapta-
tion equation

(14)

where are tracking constants to be tuned (it is
usual to adopt the heuristic relation ) and

is the driving signal of the
DPLL, which is related to the estimation error as

(15)

or, analogously

(16)

By stacking the contributions of all the users to the estimated
mean of the received signal , a
simple closed form can be obtained for as

(17)

A different filter bank and estimated phase vector is maintained
for each hypothesis until the end of the current symbol period is
reached, when the best hypothesis is chosen according
to (11) and the channel and phase estimates of the remaining hy-
potheses are then discarded. This estimator relies on the abrupt
changes in the apparent channel phase that are caused by in-
correct symbol assumptions. Boosting the instantaneous signal
estimation error at the beginning of the symbol period, these
transients result in a larger cumulated sum of errors (11) by the
end of it. This trend is shown in Fig. 4. A summarized descrip-
tion of the overall detection process is provided in Algorithm 1,

Fig. 4. Typical behavior of the transient in ML metric (sum of signal estimation
errors) of an incorrect symbol assumption. The curves show the sum of errors
normalized by the correct hypothesis ML metric (each curve corresponds to a
different sensor).

where and designate the estimates associated with hy-
pothesis .

Algorithm 1: ML symbol detection

1: Initialize:
.

2: for do

3: for each do
4: for do
5: Get the current sample .

6: Update the inputs (8) assuming
.

7: From the estimates (12) obtain
(13), , and (17).

8: Update the channel

and phase (14) estimates.
9: end for
10: end for

11: Decide on the symbol vector (4).

12: Reset the filters:
.

13: end for

B. The CCD Detector

As either the number of users or the size of their signal space
is increased, the number of hypotheses for which the ML de-
tector needs to maintain updated channel and phase estimates
grows dramatically as , and it may become technically not
affordable to explore all of them. The need for a simpler de-
tector with looser complexity scalings motivates the CCD de-
tector presented below.
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Fig. 5. Block diagram of the CCD detector.

We propose an MMSE MUD algorithm based on the CCD
method [15], [16], which is an instance of Gauss–Seidel opti-
mization. Given the problem of minimizing a multivariate cost
function, the CCD method performs a descent towards a local
minimum of the function by optimizing in a given (cyclic) order
each of the variables (coordinates) holding the remaining ones
constant. Whenever the cost function is jointly convex [17] in
all the variables, this method converges to the global minimum
of the function. CCD methods, however, have shown good per-
formance in many situations that do not conform to the con-
vexity constraint. Some applications of CCD are in tomography
[18], inverse kinematics [19], bioinformatics [20], magnetic res-
onance imaging [21], and MUD for synchronous CDMA [22],
[23].

For the problem of MMSE MUD, we identify three different
variables (coordinates): the channel estimates , the carrier
phase offset estimates , and the transmitted symbol estimates

. At the beginning of each symbol epoch, the CCD detector
assumes an all-zeros initial value for , while reliable estimates
of channels and phases are assumed due to the existence of
a training period at the beginning of the data packet of each
user. For each sample of the received signal within the current
symbol interval, the detector cycles through the following
steps: the symbol estimates are refined using the recursive
least squares (RLS) algorithm [12]; the channel estimates are
updated using the NLMS algorithm; and the phase estimates
are updated using a second-order DPLL. Whenever the last
sample of a given symbol interval has been processed, symbol
decision is performed by applying a regular slicer to the final
symbol estimates. The structure of the CCD detector is shown
in Fig. 5.

Let us denote by
the estimate of the th symbols at the th sample. The
vectors play the same role as
in (8), but differ in that they are built using the current
symbol estimates and the previous decisions

, i.e.,

(18)
Using analogous notation to denote the vertical stacking of vec-
tors as in the previous section, the dependence of the error signal

on the channel and phase estimates amounts to

(19)

which resembles that of the ML detector (13). Therefore,
channel estimation and phase tracking can be carried out as
before, using the NLMS algorithm and a second-order DPLL,
respectively. A closer look at (19) shows the dependence of the
error on the symbol estimates
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...

(20)

This expression gives an insight into the way in which the
current and past symbol estimates affect the final estimation
error: contains the intersymbol interference (ISI)
from the previous symbols, and it is constructed relying on the
correctness of . After subtracting this term, the re-
ceived signal only contains information about the current
symbol vector . Symbol estimation can thus be performed
by viewing the vector as a filter with input defined
in (20). This filter has to be adapted to minimize the squared
error . Minimization of the estimation error through
refinement of the symbol estimates is depicted in Fig. 6.

Since for the application at hand the number of users is not
large, we use the RLS algorithm [12] to adapt the symbol es-
timates, because it has lower misadjustment and faster conver-
gence than the least mean squares (LMS) algorithm. At the end
of the symbol duration, the final estimate of the transmitted sym-
bols is

(21)

over which a regular slicer can be applied to obtain the final
decision, which we denote as

decision (22)

A summary of the detection process of the CCD detector is pro-
vided in Algorithm 2, where represent the channel and
phase estimates obtained after the end of the training period.

Algorithm 2: CCD symbol detection

1: Initialize: .
2: for do

3: Initialization: .
4: for do
5: Get the current sample .

6: Form , and .

7: Update the symbol estimates:
RLS .

8: Update the channel estimates:
NLMS .

9: Update the phase estimates: .
10: end for

11: Symbol estimate: .

12: Symbol decision: slicer .
13: end for

Fig. 6. Adaptive symbol estimation scheme of the CCD detector.

There are several refinements that can be added to the basic
algorithm to improve its performance. These steps are listed
below.

After the training period, the estimate of the received signal
is computed using truncated versions of the channel esti-

mates to reduce the estimation noise. All the taps of
with an amplitude below times the amplitude of its largest

tap are set to zero. Thus, only the most significant taps (corre-
sponding to the main arrivals of the signals) are taken into ac-
count when constructing the signal estimate. In this manner, the
fact that the actual response can be sparse (which may be the
case in underwater acoustic channels) is taken into account.

The forgetting factor of the RLS algorithm used to update
the symbol estimates plays an important role in determining the
final performance of the detector. While a small value of guar-
antees fast convergence, it results in large misadjustment. On
the other hand, a high value of (a value close to 1) ensures
small misadjustment at the price of slow convergence. Because
the number of iterations available to the symbol estimates to
converge is severely constrained (they should be accurate after
adaptation during one symbol interval, which contains
samples), it can happen so that by the time the end of the symbol
period is reached, the symbol estimates still have low ampli-
tudes. To solve this problem, an iterative symbol estimation rou-
tine can be implemented, in which several sweeps are made over
the same symbol interval. At the end of each sweep, the symbol
estimates and channel parameters are saved and used to initialize
the next sweep starting at the beginning of the same symbol
interval. In this manner, the distance from the initial guess for
the symbol estimate to its desired value is made progressively
shorter, and the problem of low-amplitude symbol estimates is
overcome. The price to pay is a linear increase of the computa-
tional load in the number of sweeps .

Last, after all the sweeps corresponding to one symbol in-
terval have been performed and the final symbol decision has
been made, an extra sweep over the same symbol interval is
performed using the symbol decisions instead of the symbol es-
timates. Thus, channel estimation and phase tracking are per-
formed using the discrete, admissible value for the
symbols, resulting in improved quality of estimates, and ulti-
mately a better performance after the training period.
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Fig. 7. Structure of the multichannel CCD detector.

C. Extension to Multichannel Receivers

If the receiver has more than one element, spatial diversity
combining can offer further processing gains. In wideband un-
derwater applications, temporal processing is needed for each
of the elements, and for this reason, as many CCD detectors as
there are receive array elements are used in the multichannel
configuration, as shown in Fig. 7. The outputs of the detectors
are MMSE combined at the end of each symbol interval. In this
manner, the information from all the temporal processors is used
to make symbol decisions that are then fed back to the detectors
(dashed line of Fig. 7). Each of the CCD detectors thus uses the
improved decisions made after spatial diversity combining to
perform the last sweep over the symbol interval, and to update
the vectors .

To analyze the design of the combiner, we will drop the
symbol index for the sake of brevity. Let us denote by

the current symbol estimates ob-
tained by processing the signal of the th receive element.
By using the set of estimates grouped on a per-user basis

, the final symbol estimate and the
symbol decision of the th user are, respectively

decision (23)

where is the th column of the combiner ,
which is designed according to the MMSE criterion as

(24)

To obtain the optimal combining vectors , we model the
symbol estimates as

(25)

where is the true transmitted symbol, and
is the estimation noise that is independent of

. Assuming that , the optimal (24) is given by the
well-known Wiener’s solution

(26)

Fig. 8. Structure of a data packet.

where

(27)

(28)

Note that for the assumed unit-power constant amplitude mod-
ulation, the squared modulus of a symbol does not depend on its
index . To simplify the matrix inversion in (26), Woodbury’s
identity3 is used, resulting in

(29)

Further simplification is obtained from the assumption that
the estimation noise from different receive elements is un-
correlated, and hence , where

. Although the exact values of
cannot be computed due to the expectation operator, they

can be estimated as

decision (30)

3��� ��� � � � � �� ���� � � � � ��� �� � .
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Fig. 9. (a) Normalized mse and (b) estimated carrier phase offsets for data set 1 (corresponding estimated Doppler shifts are indicated in the figure).

Thus, , and the final solution ex-

hibits dependence only on the set of error metrics

(31)

(32)

Note that the weights assigned to each component of depend
on the quality of their associated estimates, measured in terms
of . The positive scaling that normalizes the right-hand side
of (32) acts as an adaptive gain control that keeps the consis-
tency of the channel estimates. The symbol decisions, made on
the estimates (32), are fed back to the bank of CCD detectors
and used to perform the last sweep over the symbol interval, as
explained in Section III-B.

IV. RESULTS

The performance of the multichannel multiuser detection al-
gorithm proposed in Sections III-B and III-C has been assessed
using real data.

A. Description of the Experiment

The experimental data were recorded by the Acoustic Com-
munications group of the Woods Hole Oceanographic Institu-
tion (Woods Hole, MA) near the island of Elba, Italy, in fall
2003. Transmission in shallow water (100-m depth) was per-
formed over a range of 2.3 km (1.4 miles). The transmitter and
the receiver were submerged at a depth of 20 and 30 m, respec-
tively. The receiver was equipped with a vertical linear array of
12 hydrophones with a uniform spacing of 15 cm between ele-
ments. More details about the experimental deployment can be
found in [14].

The signals corresponding to four users were transmitted in
sequence, and the recordings were added later to simulate the
multiuser effect. Due to the constraints of the deployment, the

Fig. 10. Normalized channel estimates for data set 1. The delay axis spans one
symbol interval.

signals were transmitted from approximately the same location.
Consequently, there is less channel diversity between the users
than there would be in an actual system. This makes the mul-
tiuser detection more difficult, as the natural channel diversity
can greatly help the receiver in distinguishing between the users
[24]. Also, by adding the signals after-the-fact, more noise is
introduced into the detection process. Nonetheless, recording
the signals individually allows one to experiment with a varying
number of users, i.e., varying levels of multiple-access interfer-
ence.

The transmission of each user consisted of a single data
packet up to 8 s long. Each data packet (Fig. 8) contained
a training sequence followed by an information block. The
training sequence was a burst of all-one symbols producing
an overhead of roughly 4%. These symbols are intended for the
acquisition of initial channel and phase estimates before data
detection begins.
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Fig. 11. (a) Normalized mse and (b) estimated carrier phase offsets for data set 1 (corresponding estimated Doppler shifts are indicated in the figure).

TABLE I
PACKET STRUCTURE AND ACHIEVABLE DATA RATES

FOR THE REPORTED CONFIGURATIONS

TABLE II
PARAMETERS OF THE CCD DETECTOR

The received signals were added in an asynchronous manner,
i.e., each signal was delayed randomly within an interval
before addition. The modulation used by all the users was
quaternary phase-shift keying (QPSK) and the chip rate was
16 000 chips/s. DSSS modulation was implemented using the
Kasami sequences [25] of length 255, 63, and 15, resulting in
three different data sets (labeled 1, 2, and 3, respectively). The
received signals were digitally down-converted to baseband and
sampled at twice the chip rate . The carrier frequency
was 35 kHz, and raised cosine pulses with roll-off factor 0.25
were used for chip shaping within the transmission bandwidth
25 and 45 kHz. The achieved data rates and other relevant
system parameters are listed in Table I. The parameters of the
multichannel CCD detector used to process the different data
sets are summarized in Table II, where denotes the step size of
the NLMS algorithm employed to adapt the channel estimates
and denotes the forgetting factor of the RLS algorithm used
to adapt the symbol estimates.

B. Performance Evaluation

Results of data processing using all the receive elements
of the array are shown in Figs. 9–13. Shown are

the following performance measures: the mean square error

Fig. 12. Normalized channel estimates for data set 2. The delay axis spans one
symbol interval.

between the true and estimated (32) data symbols of
each user, i.e.,

(33)

the estimated carrier phase offsets, and the estimated channel
impulse responses at each receive element at the end of the
training period. The normalized values were lowpass fil-
tered with a moving average of length ten symbols. The tracked
phase offsets are shown together with a linear fit whose slope is
indicated in the plots as the estimated Doppler shift.

Four users are combined in the data set 1, where the spreading
factor was , and the aggregate throughput was 480 b/s.
This is the configuration with maximal interference rejection
capabilities due to the long period of the spreading codes. The

stayed below 10 dB throughout detection [Fig. 9(a)] and
the data packets of all four users were detected without errors.
Doppler shifts of a few hertz were measured from the estimated
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Fig. 13. (a) Normalized mse and (b, top row) estimated carrier phase offsets for data set 3 (corresponding estimated Doppler shifts are indicated in the figure).
The delay axis of the (b, bottom row) normalized channel estimate plots spans one symbol interval.

carrier phase offsets as shown in the Fig. 9(b). The estimated
channel responses, shown in Fig. 10, concentrate most of their
energy in a time span of about 7 ms, which fits well within one
symbol interval ( 16 ms for this data set). Although we only
report on the results obtained when all the receive elements were
processed, we have observed that as few as four array elements
(when chosen maximally spaced) suffice to provide error-free
performance for this packet transmission.

The scenario under study in data set 2, where the spreading
factor was , is that of three simultaneous users resulting
in an aggregate throughput of 1.46 kb/s. The data packets of
the three users were decoded with no errors, which required

sweeps to compensate for the reduction in the length
of the period of the spreading codes as compared to the data
set 1. Fig. 11(a) shows the ’s, and, although no detection er-
rors were produced, performance degradation with respect to the
case can be appreciated. The computed Doppler shifts
and tracked carrier phase offsets are shown in Fig. 11(b). The
estimated channel responses, shown in Fig. 12, fit tightly within
one symbol period. This may explain the fact that error-free de-
tection of four users could not be supported in this setup. Error-
free performance with three simultaneous users is achieved with
four receive elements (chosen maximally spaced).

The processing of the signals of data set 3, where the
spreading factor was , was the most difficult because
there is the least interference rejection capability in this case.
The reduction of the spreading factor has a direct impact on
the symbol estimates, which need to become reliable with a
few updates. The necessary number of sweeps in this case
was . Using all 12 receive elements, an acceptable
probability of error was achieved for two users transmitting
at an aggregate rate of 4 kb/s (3.8 10 and 0.13, respec-
tively). Fig. 13(a) shows the , which suffers from increasing
degradation. This figure suggests that performance could be
boosted by refreshing the training period after the first half of
the packet. While the tracked carrier phase offset shows good
performance, the channel estimates of Fig. 13(b) (bottom row)
show that we are only able to capture the main arrival within

one symbol period. This is an additional factor that limits the
performance at .

MF at symbol rate was also explored as a benchmark. In par-
ticular, we considered matching the filter of each user to its
overall signature (after convolution with the channel impulse re-
sponse) and phase tracking in the form of a second-order DPLL.
In any of the data sets, the performance of symbol-rate adap-
tive detection was not acceptable, yielding for instance a 10-dB
loss in output signal-to-noise ratio (SNR) as compared to the
CCD detector when processing one user of data set 1. While
with small values of the spreading factor performance is ham-
pered by large ISI, with large values of the spreading factor, the
main impairment is fast channel variation over a symbol period.
In essence, the CCD detector deals with these issues by going
down to chip-rate adaptation and considering the interference
created by the previous symbol.

V. CONCLUSION

Simultaneous transmission by multiple users is of interest for
underwater sensor networks, where slowly time-varying param-
eters are monitored, and also for event detection in fixed net-
works with loose rate requirements. Multiple access based on
code division is considered as a candidate technique for such
a system, and an adaptive MUD for DS-CDMA has been pro-
posed. The detector is based on the computationally affordable
CCD method to optimize the detection performance under the
MMSE criterion.

The proposed multichannel CCD detector has been success-
fully tested using real data from the recordings of underwater
DS-CDMA signals. Three different data sets have been pro-
cessed, each corresponding to a different value of the period
of the spreading codes. Not surprisingly, the best results are
achieved with the longest codes. This is because the longer
codes provide greater interference cancellation capability but
they also imply a longer symbol period (assuming that the chip
duration is kept constant so as to utilize all of the available
bandwidth), which loosens the constraints on the time given to
the symbol estimates to be reliable. Finally, because we have
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chosen to estimate the channel out to one symbol duration,
the underlying assumption that the delay spread is limited to
one symbol interval becomes violated as the symbol dura-
tion decreases at low spreading factor, eventually causing a
degradation in performance. However, this degradation is not
inherent to the CCD detector, and it can be overcome simply
by designing the channel estimator to include as many symbol
intervals as necessary.
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