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Abstract— The underwater acoustic channel is characterized
by a path loss that depends not only on the transmission distance,
but also on the signal frequency. As a consequence, transmission
bandwidth depends on the transmission distance, a feature that
distinguishes an underwater acoustic system from a terrestrial
radio system. The exact relationship between power, transmission
band, distance and capacity for the Gaussian noise scenario is a
complicated one. This work provides a closed-form approximate
model for 1) power consumption, 2) band-edge frequency and
3) bandwidth as functions of distance and capacity required for
a data link. This approximate model is obtained by numerical
evaluation of analytical results which takes into account physical
models of acoustic propagation loss and ambient noise. The
closed-form approximations may become useful tools in the
design and analysis of underwater acoustic networks.

I. INTRODUCTION

With the advances in acoustic communication technology,
the interest in study and experimental deployment of under-
water networks has been growing [1]. However, underwater
acoustic channels impose many constraints that affect the
design of wireless networks. They are characterized by a path
loss that depends on both the transmission distance and the
signal frequency, a feature that distinguishes an underwater
acoustic system from a terrestrial radio system. Thus, not only
the power consumption, but also the useful bandwidth depend
on the transmission distance [2].

From an information theoretic perspective, both the distance
between two nodes and the required capacity determine the
power consumption for that link and the optimal transmission
band. It is thus of interest to have a simple, closed-form
expression that relates the transmission power to the desired
capacity. This would enable an efficient design of both point
to point links and underwater networks, eventually leading to
a minimum cost overall network optimization. Thus, these
expressions may be useful from both a theoretic and an
engineering standpoint.

In this paper, simple closed-form approximations for the
power consumption and operating frequency band as functions
of distance and capacity are presented. This approximate
model stems from an information theoretic analysis that takes
into account a physical model of acoustic propagation loss,

and colored Gaussian ambient noise. It was shown in [2] that
the transmission power as a function of the distance could be
well approximated by P (l) = plγ . A similar relationship was
shown to exist for the operating bandwidth. The coefficients
in this model were determined as functions of the required
signal to noise ratio.

The present work extends this idea of modeling the power
and bandwidth as functions of distance, but the problem is
cast into a slightly different framework. Namely, instead of
using the SNR as a constraint, i.e. a fixed design parameter, the
desired link capacity is used as a figure of merit. In few words,
this work proposes approximate models for the parameters as
functions of the capacity. This resulting model is useful for a
broad range of capacities and distances.

The paper is organized as follows. In Section 2, a model
of an underwater channel is outlined. In Section 3, a brief
description of the numerical evaluation procedure is described.
In Section 4, closed-form expressions for the parameters of
interest are presented. Section 5 gives numerical results for
different ranges of distance and capacity. Conclusions are
summarized in the last section.

II. CHANNEL MODEL

An underwater acoustic channel is characterized by a path
loss that depends on both distance l and signal frequency f as

A(l, f) = lka(f)l (1)

where k is the spreading factor and a(f) is the absorption
coefficient [2]. The spreading factor describes the geometry
of propagation, e.g. k = 2 corresponds to spherical spreading,
k = 1 to cylindrical spreading, and k = 1.5 to practical
spreading. The absorption coefficient can be expressed in
dB/km using Thorp’s empirical formula for f in kHz:

10 log a(f) = 0.11
f2

1 + f2
+ 44

f2

4100 + f2

+ 2.75 · 10−4f2 + 0.003 (2)



 

A(l,f)N(f) 

f 

K(n)(l,C) 

K(n+1)(l,C) 

fo 

ε 

f (n)
end f (n)

ini 

( )ˆ nB  

^ ^ 

Fig. 1. Numerical procedure for computation of P (l, C), f̂end(l, C) and
B̂(l, C), by incrementing K(l, C) at each step by ε until a stopping condition
is fulfilled

for frequencies above a few hundred Hz. For lower frequen-
cies, the model is:

10 log a(f) = 0.11
f2

1 + f2
+ 0.011f2 + 0.002 (3)

The noise in an acoustic channel can be modeled through
four basic sources: turbulence, shipping, waves, and thermal
noise[2]. The following formulas give the power spectral
density (psd) of these noise components in dB re µ Pa per
Hz as a function of frequency in kHz:

logNt(f) = 1.7− 3 log f (4)

logNs(f) = 4 + 2(s− 1
2
) + 2.6 log f − 6 log(f + 0.03)

(5)

logNw(f) = 5 + 0.75w1/2 + 2 log f − 4 log(f + 0.4) (6)
logNth(f) = −1.5 + 2 log f (7)

where the shipping activity s ranges from 0 to 1, for low
and high activity, respectively, and w corresponds to the wind
speed measured in m/s. The overall psd of the ambient noise
is given by

N(f) = Nt(f) +Ns(f) +Nw(f) +Nth(f) (8)

Let us assume that this is a Gaussian channel. Then, the
capacity of this channel can be obtained using the waterfilling
principle [2]. Also, assume that the power and band of
operation can be adjusted to reach a certain capacity level.
Thus, the capacity of a point-to-point link is

C =
∫

B(l,C)

log2

(
K(l, C)

A(l, f)N(f)

)
df (9)
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Fig. 2. Parameters a1 and a2 for P (l, C) and approximate model.l ∈
[0, 10km], C ∈ [0, 2kbps],k = 1.5,s = 0.5 and w = 0m/s

where B(l, C) is the optimum band of operation. This
band could be thought of as a union of non-overlapping
intervals, B(l, C) = ∪i[f i

ini(l, C), f i
end(l, C)], where each

non-overlapping band i has the lower-end frequency f i
ini(l, C)

and the higher-end frequency f i
end(l, C) associated to it. In its

simplest form B(l, C) = [fini(l, C), fend(l, C)].
The power consumption associated with a particular choice

of (l, C) is given by

P (l, C) =
∫

B(l,C)

S(l, C, f)df (10)

where S(l, C, f) = K(l, C)−A(l, f)N(f), f ∈ B(l, C).
Evidently, these expressions are quite complicated to be

used in a computational network analysis. Also, they provide
little insight into the relationship between power consumption,
f̂ini and f̂end , in terms of the pair (l, C). This motivates
the need for an approximate model that will represent these
relations for ranges of C and l that are of interest to acous-
tic communication systems. The model should also provide
flexibility to changing other parameters, such as the spreading
factor k, wind speed w and shipping activity s.

The dependence on the spreading factor k is quite simple.
Let us assume that a model for P (l, C) has been developed
for a particular value of k = ki, i.e. P (l, C, ki). To determine
P (l, C, kj) for kj 6= ki, let us note that for a change in k, the
product A(l, f)N(f) = lka(f)lN(f) constitutes a constant
scaling factor with respect to f . Therefore, for a link of
distance l the term B(l, C) will remain unchanged. Thus,
if the same capacity C is required for ki and kj , equation
(9) shows that the only other term that can vary is K(l, C),
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Fig. 3. Parameters a1 and a2 for f̂end(l, C) and approximate model.l ∈
[0, 10km], C ∈ [0, 2kbps],k = 1.5,s = 0.5 and w = 0m/s

i.e. K(l, C, k). Then, K(l, C, kj) = lkj−kiK(l, C, ki). Finally,
let us use the equation (10) to determine the relationship
between P (l, C, ki) and P (l, C, kj). The dependence on the
spreading factor k is quite simple. Let us assume that a
model for P (l, C) has been developed for a particular value of
k = ki, i.e. P (l, C, ki). To determine P (l, C, kj) for kj 6= ki.
Note that for a change in k, the product A(l, f)N(f) =
lka(f)lN(f) constitutes a constant scaling factor with respect
to f . Therefore, for a link of distance l the term B(l, C) will
remain unchanged. Thus, if the same capacity C is required
for ki and kj , equation (9), shows that the only other term
that can vary is K(l, C), i.e. K(l, C, k). Then, K(l, C, kj) =
lkj−kiK(l, C, ki). Finally, let us use equation (10) to deter-
mine the relation between P (l, C, ki) and P (l, C, kj).

P (l, C, kj) =
∫

B(l,C)

(
K(l, C, kj)− lkja(f)lN(f)

)
df (11)

= lkj−ki

∫
B(l,C)

(
K(l, C, ki)− lkia(f)lN(f)

)
df

(12)

= lkj−kiP (l, C, ki) (13)

Thus, any model for the transmission generated for some
parameter k has a simple extension. Also, note that the
transmission bandwidth remains the same for any value of
k.

III. NUMERICAL EVALUATION PROCEDURE

A numerical evaluation procedure similar to that in [2]
is used to compute the value of P (l, C), f̂ini(l, C) and
f̂end(l, C), for a region of values of (l, C). The procedure
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Fig. 4. Parameters a1 and a2 for B̂(l, C) and approximate model.l ∈
[0, 10km], C ∈ [0, 2kbps], k = 1.5,s = 0.5 and w = 0m/s

starts by fixing a target value of the capacity C. Then, for
each distance l, the initial value of K(l, C) is set to the
minimum value of the product A(l, f)N(f), i.e. K(l, C) =
minf A(l, f)N(f). The frequency at which this occurs, i.e.
f0 = arg minf A(l, f)N(f), is called the optimal frequency.

After this, K(l, C) is increased iteratively by a small amount
(Figure 1), until the target capacity value C is met. Finally,
this procedure is repeated for each value of C in a range of
interest.

At the n-th step of the procedure, when K(n)(l, C) is in-
creased by a small amount, the band B(n)(l, C) is determined
for that iteration. This band is defined as the range of fre-
quencies for which the condition A(l, f)N(f) ≤ K(n)(l, C).
Then, the capacity C(n) is numerically determined for the
current K(n)(l, C) and B(n)(l, C), using the equation (9).
If C(n) < C, a new iteration is performed. Otherwise, the
procedure stops.

IV. APPROXIMATE MODELS

By applying the above procedure for varying l and C, one
arrived at the complete model for the power consumption

P (l, C) = 10
a1(C)

10 la2(C) (14)

where

a1(C) = β3 + β210log10C + β1(10log10(C + 1))2 (15)

a2(C) = α3 + α2C + α1C
2 (16)

Below, two ranges of operation were studied. The first one
is for l ∈ [0, 10]km, C ∈ [0, 2]kbps, and propagation factor
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Fig. 5. Parameters a1 and a2 for P (l, C) and approximate model.l ∈
[0, 100km], C ∈ [0, 100kbps], k = 1.5,s = 0.5 and w = 0m/s

of k = 1.5, which will be called case 1 from here on. The
second one is for l ∈ [0, 100]Kms, C ∈ [0, 100]kbps, and
propagation factor of k = 1.5, which will be called case 2.
For both regions and different ranges of s and w, the power
consumption P (l, C) can be approximated by equations (14),
(15) and (16).

Similar model are found to provide a good fit for
the high/end frequency f̂end(l, C) and for the bandwidth
B̂(l, C) = f̂end(l, C) − f̂ini(l, C). These models are given
by

f̂end(l, C) = 10
a1(C)

10 la2(C) (17)

where

a1(C) = β3 + β210log10C + β1(10log10C)2 (18)

a2(C) = α3 + α210log10C + α1(10log10C)2 (19)

B̂(l, C) = 10
a1(C)

10 la2(C) (20)

where

a1(C) = β3 + β210log10C + β1(10log10C)2 (21)

a2(C) = α4 + α310log10C + α2(10log10C)2 + α1(10log10C)3

(22)

V. NUMERICAL RESULTS

The transmission power, highest frequency and bandwidth
of transmission band were computed for a variety of values
of s, w and two ranges of interest of the pair (l, C), i.e.
l ∈ [0, 10]Kms, C ∈ [0, 2]kbps, and l ∈ [0, 100]Kms,
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Fig. 6. Parameters a1 and a2 for f̂end(l, C) and approximate model.l ∈
[0, 100km], C ∈ [0, 100kbps],k = 1.5,s = 0.5 and w = 0m/s

TABLE I
a1 APPROXIMATION PARAMETER VALUES FOR P (l, C), f̂end(l, C) AND

B̂(l, C), WITH l ∈ [0, 10km], C ∈ [0, 2kbps],k = 1.5,s = 0.5 AND

w = 0m/s

α1 α2 α3 α4 MSE
P (l, C) 0 -0.00432 0.02873 2.46560 2.532e-7

f̂end(l, C) 0 4.795e-5 0.00246 -0.44149 3.930e-9
B̂(l, C) -5.958e-7 -2.563e-5 -0.000305 -0.30694 6.599e-9

C ∈ [0, 100]kbps. The models proposed fitted these cases quite
well. Results are presented for the case of k = 1.5, w = 0
and s = 0.5, for both cases. Also for case 1, it will be seen
that the α and β parameters show almost no dependence on
the shipping activity factor s, especially if the wind speed is
w > 0. Thus, the approximate model for this case could be
simplified to only consider w as part of the model, instead of
the pair (s, w).

Figures 2, 3 and 4 show parameters a1 and a2 for
P (l, C),f̂end(l, C), and B̂(l, C), respectively. This approxi-
mation was carried out for the first case with a propagation
factor of k = 1.5, a shipping activity of s = 0.5 and a wind
speed of w = 0m/s. The values of α’s and β’s are shown
in Table I and II, for parameters a1 and a2, respectively.
These tables also show the mean square error (MSE) of the
approximation with respect to the actual parameters. In Figure
4, there is a considerable variation in the values of parameter
a1(C). However, note that the y-axis of the plot shows very
little variation.

Figures 5, 6 and 7 show parameters a1 and a2 for
P (l, C),f̂end(l, C), and B̂(l, C), respectively. This approxi-
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TABLE II
a2 APPROXIMATION PARAMETER VALUES FOR P (l, C), f̂end(l, C) AND

B̂(l, C), WITH l ∈ [0, 10km], C ∈ [0, 2kbps],k = 1.5,s = 0.5 AND

w = 0m/s

β1 β2 β3 MSE
P (l, C) 0.01166 1.0117 72.043 5.8979e-5

f̂end(l, C) 0.00171 0.07153 13.738 3.4706e-5
B̂(l, C) -5.163e-6 0.33427 9.6752 2.9233e-7

mation was carried out for the second case with a propagation
factor of k = 1.5, a shipping activity of s = 0.5 and a wind
speed of w = 0. The values of α’s and β’s are shown in
Table III and IV, for parameters a1 and a2, respectively.
These tables also show the mean square error (MSE) of the
approximation with respect to the actual parameters.

For both ranges, the proposed models give a very good
approximation to the actual numerical values. Also note that
for the a2(C) parameter of P (l, C), it is possible to use a
linear approximation, instead of a quadratic model.

Let us analyze the low range low rate for different values
of s and w. Table V shows the values for α and β parameters

TABLE III
a1 APPROXIMATION PARAMETER VALUES FOR P (l, C), f̂end(l, C) AND

B̂(l, C), WITH l ∈ [0, 100km], C ∈ [0, 100kbps],k = 1.5,s = 0.5 AND

w = 0m/s

α1 α2 α3 α4 MSE
P (l, C) 0 -5.617e-5 0.02855 2.9305 0.00011

f̂end(l, C) 0 -0.00019 0.01186 -0.55076 1.32e-7
B̂(l, C) 1.696e-6 4.252e-5 -0.00249 -0.36397 7.29e-7
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TABLE IV
a2 APPROXIMATION PARAMETER VALUES FOR P (l, C), f̂end(l, C) AND

B̂(l, C), WITH l ∈ [0, 100km], C ∈ [0, 100kbps],k = 1.5,s = 0.5 AND

w = 0m/s

β1 β2 β3 MSE
P (l, C) -0.032936 1.4104 67.946 0.04493

f̂end(l, C) 0.0065157 -0.032693 14.739 7.3024e-5
B̂(l, C) -0.0018252 0.34788 10.328 0.00019414

in the approximate P (l, C) model for variations of s and w.
It is interesting that the parameters change very little with
respect to the shipping activity s while they show greater
dependency on the wind speed factor. This is not unexpected.
For low data rates and low ranges, the transmission band is
at a high frequency (between 5 and 40 KHz) and from the
noise equations of the model the shipping activity depends on
the frequency as O(f−3.4) while the wind speed factor has
a dependency as O(f−2). Thus, w should have much more
effect upon the parameters.

Therefore, a further approximation is to discard s an
consider parameters α and β to be functions of w only.
Figure 9 shows these relations when computed for this
region a k = 1.5 and s = 0.5, which have a very simple
approximation. For example, the model in equation 23 gives
a good approximation.
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ψi(w) = γ3 + γ210log10(w + 1) + γ1(10log10(w + 1))2

(23)

where ψi(w) = βi,∀i and ψi(w) = αi,∀i. Table VI shows
γ parameters for the different alpha’s and β’s.

VI. CONCLUSION

This paper offers an insight into the dependence of the
transmission power, bandwidth, and the band-edge frequency
of an underwater acoustic link on the capacity and distance.
It provides closed-form approximate models for the time-
invariant acoustic channel, taking into account a physical
model of acoustic path loss and the ambient noise, assuming
that the channel is Gaussian. These approximate models where
shown to provide a good fit to the actual empirical values
by numerical evaluation for different ranges of distance l and
capacity C, as well as noise profiles corresponding to different
shipping activity factor and wind speed.

The band-edge frequency f̂end(l, C) and the bandwidth
B̂(l, C) were also shown to be invariant to the spreading factor
k, while the power scales as P (l, C, k′) = lk

′−kP (l, C, k).
For a certain range of values (l,C), the approximate model of

P (l, C) was shown to be almost independent of the shipping
activity factor s while having a marked dependency on the
wind speed w. This dependence, however, is quite smooth and
could be approximated by a simple model, thus resulting in a

TABLE V
DEPENDENCY ON s AND w OF α AND β PARAMETERS, WITH

l ∈ [0, 10km], C ∈ [0, 2kbps],k = 1.5

w s α1 α2 α3 β1 β2 β3

0 -0.0050 0.0299 2.444 0.01237 1.0118 72.182
0 0.5 -0.0046 0.0292 2.447 0.01239 1.0118 72.190

1 -0.0049 0.0304 2.469 0.01236 1.0119 72.271
0 -0.0053 0.0328 2.5572 0.01117 1.0109 81.960

2 0.5 -0.0052 0.0327 2.5574 0.01120 1.0109 81.961
1 -0.0056 0.0336 2.5594 0.01133 1.0108 81.966
0 -0.0056 0.0342 2.6065 0.01083 1.0106 87.777

5 0.5 -0.0055 0.0342 2.6066 0.01085 1.0106 87.777
1 -0.0053 0.0339 2.6071 0.01088 1.0105 87.778
0 -0.0057 0.0351 2.6588 0.01061 1.0103 94.360

10 0.5 -0.0057 0.0352 2.6588 0.01061 1.0104 94.360
1 -0.0056 0.0351 2.6589 0.01059 1.0104 94.360
0 -0.0083 0.0420 2.7245 0.01079 1.0094 103.69

20 0.5 -0.0057 0.0355 2.7295 0.01047 1.0102 103.70
1 -0.0057 0.0355 2.7294 0.01046 1.0102 103.70

TABLE VI
APPROXIMATION PARAMETERS OF α AND β FOR P (l, C), WITH

l ∈ [0, 10km], C ∈ [0, 2kbp], k = 1.5,s = 0.5

γ1 γ2 γ3

α1 5.2669e-6 -0.000157 -0.004575
α2 -2.971e-5 0.000865 0.029306
α3 0.000152 0.01809 2.4586
β1 9.924e-6 -0.00027 0.012288
β2 7.799e-6 -0.000219 1.0118
β3 0.068091 1.3659 73.144

complete model for the P (l, C) for a range of values (l,C) that
is of interest to a typical underwater communciation system.
Hence, these models can be used in network optimization
problems to determine the optimal power consumption for
some required data rate.

Future work will focus on studying convexity properties
of the P (l, C) model and using it in network optimization
problems.
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