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Abstract— We study the effect of the field size on the per-
formance of random linear network coding for time division
duplexing channels proposed in [1]. In particular, we study the
case of a node broadcasting to several receivers. We show that
the effect of the field size can be included in the transition
probabilities of the Markov chain model of the system. Also, an
improved upper bound on the mean number of coded packets
required to decode M original data packets using random linear
network coding is presented. This bound shows that even if the
field size is 2, i.e. we perform XORs amongst randomly selected
packets from the pool of M original ones, we will need on average
at most M +2 coded packets in order to decode. Thus, there will
be only a very small degradation in performance if M is large.
We present numerical results showing that the mean completion
time of our scheme with a field size of 2 is close in performance
to our scheme when we use larger field sizes. We also show that
as M increases, the difference between using a field size of 2
and larger field sizes decreases. Finally, we show that we can get
very close to the optimal performance with small field sizes, e.g.
a field size of 4 or 8, even when M is not very large.

I. INTRODUCTION

Network coding was introduced by Ahlswede et al [2]. This

concept is also known as coded packet networks. Network

coding considers the nodes to have a set of functions that

operate upon received or generated data packets. Today’s

networks constitute a subset of the coded packet networks, in

which each node performs two main functions: forwarding and

replicating a packet. A classical network’s task is to transport

packets provided by the source nodes unmodified. In contrast,

network coding considers information as an algebraic entity,

on which one can operate.

The use of network coding in time division duplexing

channels, i.e. when a node can transmit and receive, but not

both at the same time [1]. The main insight provided by

Reference [1] is that the transmitter should vary the amount of

time allocated to transmit data and receive acknowledgements,

based on the propagation time of the packets, the transmission

time of the data and ACK packets, and the probability of

erasures of the packets.

In particular, Reference [1] studied the case of a node that

has to transmit a block of M data packets through a link

to another node using random linear network coding. This

reference showed that there is an optimal number of coded

data packets to be transmitted back-to-back before stopping

to wait for an ACK, in terms of the mean time to complete
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Fig. 1. [4] Broadcast network.

transmission of the block of packets. Reference [3] extended

this analysis to the problem of energy consumption of the

scheme, showing that an optimal number of coded packets

to be transmitted exists, under the minimum energy criterion.

This reference also showed that choosing the number of coded

data packets to optimize mean completion time, as in [1],

provides a very good trade-off between energy consumption

and completion time.

Reference [4] extended this work further to the case of

broadcast. In this setting, a transmitter with M data packets has

the objective to broadcast those packets reliably to N receivers.

This reference assumes that the receivers are not allowed to

cooperate to share their received coded packets in order to

decode, i.e. each receiver must decode the information from

the coded packets sent directly from the transmitter.

These previous references have considered that the field

size is large enough so that any random linear coded packet

received was independent from previously received packets

with very high probability. These references used field sizes of

1048576, which translates into using coefficients of 20 bits. We

analyze the effect of the field size on our scheme, in the case

of a node broadcasting to several receivers, as in Figure 1. The

link case studied in [1] is a subset of the broadcast problem.

Also, we improve the upper bound on the mean number of

coded packets required to decode M original data packets us-

ing random linear network coding presented in Reference [5].

We prove that even if the field size is 2, i.e. the transmitter

is performing XORs amongst randomly selected packets from

the pool of M original packets, each receiver will need on

the average not more than M + 2 coded packets in order to
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Fig. 2. Markov Chain of the degrees of freedom required to decode.
Transitions occur when a new coded packet is successfully received by a
node.

decode. Thus, there will be only a very small degradation in

performance if M is large. This bound is valid for random

linear network coding and independent on the TDD problem.

Numerical results compare the performance of our scheme

when using the smallest possible field size q = 2 and when

using much larger field sizes. We also illustrate that the

difference in performance between a field size of 2 and larger

field sizes decreases as M increases, as our bound suggested.

Finally, if M is not very large, we show that 1) q = 2 has

only a small degradation in performance, and 2) it is possible

reduce considerably the gap to the optimal performance with

very small field sizes, e.g. a field size of 4 or 8.

The paper is organized as follows. In Section II, we discuss

the effect of the field size on the mean number of coded

packets required to successfully decode the original M data

packets. In Section III, we outline the set up of the problem and

we study the mean completion time of our scheme considering

the effect of the field size. Section IV provides numerical

results for different link and broadcast scenarios. Conclusions

are summarized in Section V.

II. MEAN NUMBER OF CODED PACKETS REQUIRED FOR

SUCCESSFUL DECODING

We can model the process of decoding M packets from the

random linear coded packets received at a node as a Markov

chain, as in Figure 2. A transition occurs when a new coded

packet is successfully received at a node. This process repeats

at every receiver.

The transition probability matrix for this problem is

Pq =⎡
⎢⎢⎢⎢⎣

q−M 1 − q−M 0 · · · 0 0
0 q−M+1 1 − q−M+1 · · · 0 0
: : : : :
0 0 0 · · · q−1 1 − q−1

0 0 0 ·· 0 1

⎤
⎥⎥⎥⎥⎦ .

Let us bound the average number of coded packets that need

to be received before successfully decoding the M packets.

Clearly, at least M coded packets must be received before

being able to decode. Thus, a trivial lower bound is M . The

upper bound is given by the following lemma.

Lemma 1: If M data packets are encoded using random

linear network coding with a field size q, then the mean

number of coded packets that have to be received before
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Fig. 3. Upper and Lower bounds on the mean number of coded packets
needed at the receiver in order to decode versus the field size q.

completely decoding the original packets is upper bounded

by

min

{
M

q

q − 1
,M + 1 +

1 − q−M+1

q − 1

}
(1)

Proof: Let us define the minimum number of coded

packets received to decode as Nc. Then

E[Nc] =
M∑

k=1

1
1 − q−k

. (2)

Since q−k ≤ q for q ≥ 2 and k ≥ 1, then

E[Nc] ≤
M∑

k=1

q

q − 1
= M

q

q − 1
. (3)

which shows the first bound, proved in Reference [5].

The second bound comes from

E[Nc] =
M∑

k=1

[
1 +

1
qk − 1

]
= M +

M∑
k=1

1
qk − 1

(4)

≤ M +
M∑

k=1

1
qk−1

= M +
M−1∑
k=0

q−k (5)

= M +
1 − q−M

1 − q−1
= M + 1 +

1 − q−M+1

q − 1
(6)

where we have used the fact that qk − 1 ≥ qk−1 for k ≥ 1
and q ≥ 2.

Figure 3 illustrates the upper and lower bounds for a wide

range of field sizes. It also shows that the upper bound

E[Nc] ≤ M q
q−1 becomes the dominant bound for large q,

while the E[Nc] ≤ M +1+ 1−q−M+1

q−1 is the dominant bound

for small q.



…CP (1,i) CP (2,i) CP (Ni,i)…

Tp

ACK-1

Tw

j  i  dofs needed to decode in Rx 1

ACK-N

Fig. 4. [4] Network coding TDD scheme for broadcast.

One important conclusion of this lemma is that E[Nc] ≤
M + 2,∀q ≥ 2, i.e. on average the number of coded packets

needed to decode the M original packets will be between M
and M +2 for any field size. Note that if M >> 2 we expect

that a scheme using q = 2 and one using larger q will have a

small difference in performance.

III. RANDOM NETWORK CODING FOR BROADCAST IN

TDD CHANNELS

We study the case of one node broadcasting information

to N receivers. We consider independent erasure channels for

each receiver, as in [4], and follow a similar analysis. Our

main contribution is to include the effect of the field size into

the transition probabilities. These transition probabilities are

considerably different from those used in [4], [1] and [3]. We

present an overview of the scheme before starting our study

of the transition probabilities.

We consider that a sender wants to broadcast M data

packets at a given data rate R [bps] to N receivers as in

Figure 1. We assume that receivers cannot cooperate or

share information, which means that they can only obtain their

information from the sender. Since we have a TDD constraint,

nodes can transmit and receive, but not both at the same time.

We assume that the sender uses random linear network coding

[6] to generate coded data packets. Each coded data packet

has three parts: 1) an information header of size h bits, 2)

data section which contains a random linear combination of

the M data packets of n bits each, and 3) the random coding

coefficients used in the linear combination of the data packets.

If we are encoding over a field size q, then each coefficient

is represented by g bits, where g = log2 q. Thus, the total

number of bits per packet is h + n + gM [4]. Figure 2 in [1]

shows the structure of each coded packet.

Similarly as in[4], the sender can transmit coded packets

back-to-back before stopping to wait for an ACK packet

from each receiver. Every ACK packet returns the number of

degrees of freedom (dof) that a particular receiver still requires

to decode successfully the M original data packets.

The transmission process starts with M data packets being

encoded into NM ≥ M random linear coded packets, and

broadcasted to the N receivers. If all M packets are decoded

successfully by all receivers, the process is completed. Oth-

erwise, each receiver sends an ACK packet that informs the

transmitter how many dofs are missing, say i1, i2, ..., iN for

receivers 1, 2, ..., N , respectively. At this point, the transmitter

sends Ni coded packets, where i = maxj=1,2,...,N ij , as in

[4]. The process is repeated until the M data packets are

successfully decoded by all receivers. As in previous work,

we are interested in the optimal number Ni of coded packets

to be transmitted back-to-back in order to minimize a specific

metric, e.g. mean completion time.

Figure 4, illustrates the time window allocated to the system

to transmit Ni coded packets. Note that each coded packet

CP (1, i), CP (2, i), etc. takes Tp time units to be transmitted.

The waiting time Tw is chosen so as to accommodate the

propagation delay and time to receive the ACKs from each

receiver [4].

We showed in [4] that this process can be modelled as a

Markov chain, where each state (s1, s2, ..., sN ) is defined by

the number of dofs required, sk at receiver k, to decode suc-

cessfully the M packets. The states range from (M,M, ..., M)
to (0, 0, ..., 0). This is a Markov chain with (M + 1)N − 1
transient states and one recurrent state (state (0, 0, ..., 0)) [4].

Let us compute the transition probabilities considering the

effect of the field size. The transition probabilities from state

(s1, s2, ..., sN ) to state (s′1, s′2, ..., s′N ) are

P(s1,s2,...,sN )→(s′1,s′2,...,s′N ) =

P
(
X1(n)=s′1,...,XN (n)=s′N |X1(n−1)=s1,...,XN (n−1)=sN

)
where Xi(n) is the number of dof required at receiver i at the

end of transmission n. For simplicity of notation, let us say that

P
(
X1(n)=s′1,...,XN (n)=s′N |X1(n−1)=s1,...,XN (n−1)=sN

)
=

P
(
s′1,...,s′N |s1,...,sN

)
. Similarly, we consider that

P
(
Xi(n)=s′i|X1(n−1)=s1,...,XN (n−1)=sN

)
= P

(
s′i|s1,...,sN

)
and P

(
Xi(n)=s′i|Xi(n−1)=si,maxj=1,2,...,N sj

)
=

P
(
s′i|si,maxj=1,2,...,N sj

)
.

If we consider independent packet erasure channels for each

of the receivers,

P(s1,...,sN )→(s′1,...,s′N ) = P
(
s′1|s1,...,sN

)
...P

(
s′N |s1,...,sN

)
.

The dependence on the previous state (s1, s2, ..., sN ) can

be translated into a dependence on the state with maximum

dofs required to transmit, i.e. i = maxj=1,2,...,N sj , because i
determines Ni, the number of coded data packets sent by the

transmitter. Thus,

P(s1,s2,...,sN )→(s′1,s′2,...,s′N ) =

P
(
s′1|s1,maxj=1,2,...,N sj

)
...P

(
s′N |sN ,maxj=1,2,...,N sj

)
=

P
(
s′1|s1,Ni

)
...P

(
s′N |sN ,Ni

)
.

Let us study in detail the probabilities P
(

s′j |sj ,Ni

)
. We

assume that Ni ≥ sj , which means that there is some

probability of transitioning from any sj to s′j = 0. For sj > s′j
we have that

P
[
s′j |sj ,Ni

]
=

= (1 − Peack−j)
∑Ni

k=max{1,sj−s′j}
P

[
s′j |sj ,Ni,k

]
P [k|Ni]

= (1 − Peack−j)
∑Ni

k=max{1,sj−s′j}
P

[
s′j |sj ,k

]
P [k|Ni]

where we have used the fact that regardless of what combi-

nations the transmitter sent Ni, the transition at each receiver



will only depend on the number of coded packets that have

been received k, i.e. P
[
s′j |sj ,Ni,k

]
= P

[
s′j |sj ,k

]
.

Note that P
[
s′j |sj ,k

]
represents the probability of starting

at state sj and transitioning to state s′j in k transitions or

hops. But this can be found by computing P k
q , using the

Pq computed in the previous section, and searching in the

appropriate column and row corresponding to starting state sj

and end state s′j .

For the case of sj = s′j > 0,

P
(
sj |s1,Ni

)
=

(1 − Peack−j)
[∑Ni

k=1 P
[
sj |sj ,k

]
P [k|Ni]

]
+ Peack−j

and that P (0|0,Ni) = 1. Finally, note that

P [k|Ni] =
(

Ni

k

)
(1 − Pej)

kPej
Ni−k (7)

which completes the characterization of the problem.

A. Mean Completion Time

The mean time for completing the transmission of the M
data packets to all receivers constitutes the expected time of

absorption, i.e. the time to reach state (0, ..., 0) for the first

time, given that the initial state is (M, ..., M). Reference [4]

studies this problem in more detail.

We can define T i as the time it takes to transmit Ni coded

data packets and receive the ACK packets from the different

receivers. It is easy to show that T i = NiTp + Tw, where Tw

is described in [4].

The mean completion time when the system is in state

(s1, ..., sN ) is given by

T(s1,...,sN ) = T i +∑
(s1,...,sN ),(s′1,...,s′N ) P(s1,...,sN )→(s′1,...,s′N )T(s′1,...,s′N )

where i = maxj=1,...,N sj . We can express this in vector form

as

T̄ = [I − P ]−1μ̄. (8)

where T̄ = [T(s1,...,sN )], μ̄ = [T i] and P is the corresponding

transition probability.

Since we are interested in the mean completion time when

we start at state (M, ..., M), we can use Cramer’s rule as in

Reference [4] to determine

T(M,...,M) =
det

(
Γ ←(M,...,M) μ̄

)
det (Γ)

(9)

where Γ = I−P , and the notation Γ ←(M,...,M) μ̄ represents

a matrix that has all columns as the Γ matrix except the

column corresponding to state (M, ..., M) which is substituted

by the vector μ̄. Due to characteristics of the Markov chain,

Γ is a triangular matrix. Thus, computing det (Γ) reduces to

multiplying the elements in the main diagonal of the Γ matrix.

B. Minimizing Mean Completion Time: Single Receiver

Our objective is to minimize the value of the expected

transmission time TM .

min
NM ,..,N1

TM =

= min
NM

TM +
∑M−1

i=1 PM→i minNi,..,N1
Ti

1 − PM→M
(10)

where T i = NiTp+Tw. Similar to the result in [1], regardless

of the assumption on Ni, the problem of minimizing TM in

terms of the variables NM , .., N1 can be solved iteratively.

First, we compute minN1
T1, then use this results in the com-

putation of minN2,N1
T2, and so on. Thus, we can preserve the

search method proposed in [1] to find the optimal value of the

Ni’s. This search method exploited the recursive characteristic

of the problem, to transform a M -dimensional integer search

to M one-dimensional integer searches.

C. Minimizing Mean Completion Time: Multiple Receivers

The problem of optimizing the Ni’s for the multiple receiver

case is more complicated than the single receiver case. As ex-

plained in [4], there are (M + 1)N states in our Markov chain.

This means that for each iteration of a full search algorithm

we would have to compute the transition probabilities to fill a(
(M + 1)N − 1

)
x

(
(M + 1)N − 1

)
matrix, and then solve

the determinants of matrices of the same dimensions. Thus,

the computational demands increase significantly, specially as

the number of receivers increases.

For this reason, Reference [4] considered some heuristics

to estimate the values of Ni,∀i = 1, ...,M . These heuristics

relied on solving the link case considering as packet era-

sure probability of the link a function of the packet erasure

probabilities of the different channels in broadcast. The best

heuristic was called the ’Worst Link Channel’ heuristic. In this

heuristic we approximated the system as a link to the receiver

with the worst channel, i.e. Pe = maxj Pej . Then, we

computed Ni,∀i = 1, ...,M to minimize the mean completion

time using the values of Tp, Tw for the broadcast problem, and

Peack = maxj Peack−j . Note that for the choice of the Ni’s

we must use the transition probabilities studied in this paper,

in order to consider the effect of the field size.

IV. NUMERICAL RESULTS

This section provides numerical results that compare the

performance of our network coding scheme in TDD channels,

considering the effect of different field size. We consider

a GEO satellite setting with a propagation time Tprop =
125 ms [1], and data packets of size n = 10, 000 bits.

We compare performance of the scheme in terms of mean

completion time under different packet erasure probabilities.

We show that using q = 2 shows a small degradation in

performance with respect to higher field sizes. Also, the gap

in performance between q = 2 and higher q reduces as M
increases, as expected. Finally, if the performance of q = 2 is

not sufficiently good for small M , we can get very close to
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the performance of high field sizes with small increases of the

field size, e.g. q = 4 or q = 8.

Figure 5 shows the mean completion time for the TDD

scheme for a single receiver for q = 2 and q = 220 for

various block sizes M and a wide range of packet erasure

probabilities.

Figure 5 illustrates that the gap between field sizes q = 2
and q = 220 is very small. For M = 5 the gap is smaller

than 0.6 dB for the range of packet erasure probabilities

considered, which ranges from 10−4 to 0.8. This means that

the completion time is increased by at most 15 % on average

for M = 5. For M = 20 and M = 30 we observe that the

gap reduces to less than 0.4 dB and 0.28 dB, respectively. In

other words, the completion time is increased on average by

at most 10 % and 6.6 %, respectively. The importance of this

result is two-fold. First, the degradation in performance due

to the use of q = 2 is very small, even for small values of M
where the effect of small field size is more noticeable. Also,

the degradation in performance reduces as M , the number of

data packets that are being randomly combined, increases. This

effect was predicted by the result in Lemma 1. Since we expect

to need between M and M + 2 coded packets on average in

order to decode, then the effect of the additional coded packets

is clearly reduced if M increases because proportionally more

resources are being used to transmit the first M coded packets

than the additional coded packets needed to finally decode.

Second, we can rely on considerably simpler coders and

decoders. Note that for q = 2, random linear network coding

is basically performing an XOR of those packets that were

chosen from the pool of M original packets. Note that each
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Fig. 6. Mean completion time for the TDD scheme with a single receiver with
different field sizes q = 2g . We use the following parameters R = 1.5 Mbps,
h = 80 bits, nack = 100 bits, M = 10.

packet has a probability of 1/2 to be chosen to be XORed in

each coded packet that is being generated. Also, the overhead

on the coded packet is reduced because the coefficient size g =
1 bit. For large enough M and n fixed, q = 2 could outperform

cases where q is larger than 2 because larger q and larger M
involve an increased overhead in the coded packet, i.e. cases in

which we are using more resources sending information about

coefficients than sending the actual information.

Figure 6 illustrates that if M is small, e.g. M = 10 in the

figure, and the performance of q = 2 is insufficient, we can

get considerable improvements with small field sizes. Figure 6

considers a single receiver and the cases of q = 4 and q = 8,

which correspond to g = 2 and g = 3 bits, and compares

it to the performance of q = 230, i.e. coefficients of g =
30 bits. Note that q = 8 is extremely close to the performance

of q = 230, especially for Pe > 0.01 which is a range of

common Pe values for wireless systems. We observe that for

Pe > 0.1, the performance of q = 4 is essentially the same

to that of our scheme using a field size of q = 230. Note that

for a GEO satellite example the range of Pe > 0.1 are typical

values. Thus, for wireless systems we could expect similar

performance if we use small or large field sizes, even if M is

not too large.

Figure 7 illustrates the case of a system with two receivers

at the same distance from the transmitter, which is a good

approximation in some satellite applications. We consider

different small values of M and compute the Ni’s using the

’Worst Link Channel’ heuristic. We consider that the each

receiver has an independent channel but that the packet erasure

probability for each channel is the same, i.e. Pe1 = Pe2 =
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Pe, and that there are no erasures for the ACK packets. We

observe that the gap between using a field size of q = 2 and

q = 220 is again small, even for very small values of M . Note

that for M = 3 the gap is always smaller than 0.74 dB or,

equivalently, an increase of 18 % in the completion time when

we use q = 2 with respect to q = 220. For M = 10 the gap is

of 0.42 dB or, close to a 10 % increase when we use q = 2.

Thus, we observe that the gap between q = 2 and q = 220

decreases as M increases.

V. CONCLUSION

This paper considers the effect of field size in random linear

network coding over time division duplexing channels. We

show that we can maintain the Markov chain models proposed

in previous work, e.g. [1], [4], including the effect of the field

size in the transition probabilities. We also showed that the

search algorithm proposed in Reference [1] for a link is still

valid when we consider the effect of the field size.

We provided bounds on E[Nc],the mean number of coded

packets that a receiver needs to receive successfully in or-

der to decode the information. This bounds are valid for

random linear network coding in general, i.e. without any

assumption on the channel characteristics or the TDD con-

straint. A trivial lower bound is that E[Nc] ≥ M . We

prove an insightful upper bound, which states that E[Nc] ≤
min

{
M q

q−1 ,M + 1 + 1−q−M+1

q−1

}
. This bound implies that

E[Nc] can become arbitrarily close to M as q increases, but

more importantly, we showed that E[Nc] ≤ M + 2 for any

q ≥ 2. This means that as M increases, the effect of the

additional coded packets that have to be sent due to a “bad”

random selection of the coefficients, will be negligible. A

“bad” random selection is a choice of coefficients that does

not provide innovative information.

We present numerical results that illustrate that the gap

between using q = 2 and larger values of q is small, specially

when M is large. Note that we can rely on considerably

simpler coders and decoders. For q = 2, random linear

network coding is basically performing an XOR of those

packets that were chosen from the pool of M original packets,

each packet is chosen to be combined with probability 1/2.

Finally, if the performance of q = 2 is not sufficiently good

for small M , we can get very close to the performance of high

field sizes with small increases of the field size, e.g. q = 4 or

q = 8.
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