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Abstract— We consider the issue of protection in very large
networks displaying randomness in topology. We employ random
graph models to describe such networks, and obtain probabilistic
bounds on several parameters related to reliability. In particular,
we take the case of random regular networks for simplicity and
consider the length of primary and backup paths in terms of
the number of hops. First, for a randomly picked pair of nodes,
we derive a lower bound on the average distance between the
pair and discuss the tightness of the bound. In addition, noting
that primary and protection paths form cycles, we obtain a
lower bound on the average length of the shortest cycle around
the pair. Finally, we show that the protected connections of a
given maximum finite length are rare. We then generalize our
network model so that different degrees are allowed according to
some arbitrary distribution, and show that the second moment
of degree over the first moment is an important shorthand
for behavior of a network. Notably, we show that most of the
results in regular networks carry over with minor modifications,
which significantly broadens the scope of networks to which our
approach applies. We present as an example the case of networks
with a power-law degree distribution.

Index Terms— Graph theory, combinatorics, network robust-
ness, random graph

I. I NTRODUCTION

Providing resilient service against failures is a crucial issue
for high-speed networks since a single failure may cause a
severe loss of data. Today’s high-speed networks are becoming
increasingly complex and also dynamic in response to growing
and shifting communication demands [11]. In such networks,
the issue of reliability also becomes increasingly complex.

Restoration has been extensively researched for general
mesh topologies, but very few analytical results are available.
The typical approach is to give linear programming formula-
tions or heuristic algorithms and to rely on simulations based
on some standard networks for evaluating their performance
(e.g., [15], [8]). While this type of method can provide
numerical results for each network with a specific topology,
it is often difficult to extrapolate these results to give an
analytical view of how parameters scale as networks grow.
Also, it may fail to provide concise rules to relate important
network parameters, such as size and degree, to robustness.

Networks evolve over time, that is, nodes and links are
added and deleted, or different networks can be interconnected.
Furthermore, as networks become very large and change
rapidly, they may grow in an increasingly uncontrolled fashion
since they tend to no longer remain under the control of a
single entity.

Our goal is to investigate the relation between reliability
metrics and basic network parameters for very large networks
that display randomness in topology. We use a random graph
method to capture this phenomenon, where we compute reli-
ability metrics in a probabilistic sense for a randomly chosen
network from the set of networks with given size and degree
constraints. In particular, for a randomly picked pair of nodes
in a network, we consider

• length of the shortest path between the pair
• length of the shortest cycle including the pair, which

represents the sum of the lengths of primary and backup
paths

• probability that we can establish protected connections
within a finite length bound using path or link protection

in terms of the size and the degree distribution of the network.
To this end, we first employ a random regular graph model,

where the degree of each node is the same, for simplicity of
exposition. Then we extend the graph model so as to deal
with networks of arbitrary degree distributions and obtain
generalized results applicable to a much wider family of
networks.

Most work on the robustness of networks is concerned with
the bandwidth efficiency of protection schemes in terms of the
capacity devoted solely to backup purposes (e.g., [15]). The
speed of restoration is also considered [16], sometimes jointly
with capacity [8]. Some other considerations are transparency,
flexibility, and vulnerability [11].

In this paper, we are concerned with the length of paths
in terms of the number of hops. While this parameter is less
widely considered than bandwidth efficiency, it is important
in several contexts. For instance, in optical networks, backup
paths must remain within a moderate range for optical signal
quality reasons. Also, path length indirectly affects efficiency
and speed, i.e., a longer protection path requires a larger
amount of resources, time and management complexity.

If we use path protection to protect the network against link
(node) failure, then we have to establish a backup path which
is link (node)-disjoint from source to destination. By Menger’s
theorem, the existence of such path between any two nodes
is guaranteed in any edge (vertex)-redundant graph [17]. We
see that the primary and backup paths form a cycle along the
source and the destination. Also in link protection, the backup
path around the failed link, together with the failed link itself,
form a cycle. In light of these observations, the distribution
and length of cycles in the graph are of natural interest.



By studying these parameters, we can obtain an analytical
sense of how networks will measure if they grow in the way
described by such random graph models, which may be an
interesting problem in its own. Also, we can use the knowledge
of those parameters to choose or evaluate which protection
schemes are more appropriate in such large-scale networks.
This study can further contribute to designing protection
mechanisms that take advantage of the topological properties
of networks [6].

This paper is organized as follows: Section II considers the
case of random regular networks, Section III generalizes the
results to the case of networks of arbitrary degree distributions,
Section IV presents as an example the case of networks with a
power-law degree distribution, and Section V concludes with
a summary of the results and a discussion of further work.

II. REGULAR NETWORKS

In this section, we consider random regular networks, where
each node has the same degree. This model, though seemingly
too restrictive, can provide simplicity to our exposition,but
also enough insight for results applicable to general networks.
In the next section, we will find that many of the results
can carry over, with minor modifications, to networks with
arbitrary degree distributions.

A. Random Regular Graph Model

We represent each network by a graph, where each vertex
corresponds to a node in the network and each edge to a link.
By n we denote the number of vertices and byd the common
degree of every vertex, where3 ≤ d ≤ n− 1, and we assume
that dn is even. Then we can think of the set of all possible
d-regular graphs on thosen vertices. We turn this set into a
probability space by assigning the same probability to each
element of the set. In other words, we get ad-random graph
G(n, d) by picking an element uniformly at random among
all possibled-regular graphs.

We here present theconfiguration model, which is a stan-
dard method for constructing random regular graphs uniformly
[9], [20]. Let V be the set of vertices[n] corresponding to
n places along the horizontal axis. For each place inV , we
introduced vertices and call this two-dimensional set ofdn
verticesW , W = [n] × [d]. A configurationis a partition of
W into (dn/2) pairs. If we project the setW ontoV = [n] by
simply ignoring the second coordinate, we obtain a multigraph
π(F ) where each pair in the configuration is considered an
edge (see Fig. 1). However, this is not an ordinary graph
because it allows loops around the same vertex and multiple
edges between two vertices, which, in other words, are cycles
of length 1 and 2, respectively. In particular, ifπ(F ) lacks
those loops and multiple edges, it is a simple graph which is
d-regular. Note that each simpled-regular graph corresponds
to precisely (d!)n configurations. Hence, if we choose a
configuration uniformly at random, conditioned on it being
a simple graph, we getG(n, d) as desired.

Connectivity of graphs is a critical issue. If a graph is not
connected initially, then it breaks into several subgraphs, each

...

edge between vertices

[d]

[n]

Fig. 1. Two-Dimensional SetW for Configuration Model

of which is disconnected from the other parts and can be dealt
with as a separate problem. Moreover, if removal of a single
edge or vertex would cause a certain set of source-destination
pairs to be disconnected, then in the corresponding networkwe
have no viable option to restore the connections but to recover
the failed link or node itself. Therefore, there is no need to
consider protection for such pairs. However, in random regular
graphs constructed by the configuration model, it is known that
such a phenomenon does not happen asn grows large.

For an eventEn, we say thatEn holdsasymptotically almost
surely (a.a.s.) if Pr(En) → 1 asn tends to infinity. Then, we
have the following result regarding connectivity [19]:

Theorem 2.1:If d ≥ 3 and fixed, thenG(n, d) is a.a.s.
d-connected.
Note that we say a graph isd-connectedif, for any pair of
verticesi and j, there is a path connectingi and j in every
subgraph obtained by deleting(d−1) vertices other thani and
j together with their adjacent edges from the graph. Therefore,
for sufficiently largen, we still get a connected graph after
removing(d − 1) vertices fromG(n, d) for d ≥ 3.

Now, let us consider the distribution of cycles in a graph.
Define a random variableZk to be the number of cycles of
length k in G(n, d). It is known that, for any set ofk’s that
are fixed andk ≥ 3, Zk ’s are asymptotically distributed as
independent Poisson random variables [3]. More precisely,

Theorem 2.2:For each fixed j, a sequence of
random variables (Z3, Z4, ..., Zj) converges a.a.s. to
(Z3∞, Z4∞, ..., Zj∞), where {Zk∞}j

k=3 is a sequence of
independent Poisson distributed random variables with
E(Zk∞) = (d−1)k

2k .
Note, however, that the previous theorem applies only for

cycles of fixed length, that is, where the length of cycle does
not grow withn. The case of long cycles of which lengthk is
defined as a function ofn, i.e., k = k(n), is considered more
recently by Garmo [7]. By counting the number of cycles on
the two-dimensional setW = [n] × [d] and using Stirling’s
formula, Garmo calculates E(Zk), k = 3, ..., n, as follows:

Lemma 2.3:Let k be an integer,3 ≤ k ≤ n, andλ = k/n.
Then,

E(Zk) =
(d − 1)k

2k

1

exp{ 1
2 (d−2

d k − 1)λ + O(kλ2)} + O( 1
n )

.
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In the above lemma, ifk is fixed, thenλ → 0 as n tends
to infinity, and thus E(Zk) → (d−1)k

2k as shown in Theorem
2.2. On the other hand, ifk grows withn, the exponent terms
in the denominator,12 (d−2

d k − 1)λ + O(kλ2), are no longer

negligible, which leads E(Zk) to become smaller than(d−1)k

2k .

Therefore, we see that(d−1)k

2k is an upper bound on E(Zk)
valid for all k, 3 ≤ k ≤ n.

We will use these asymptotic results in the following discus-
sion to quantify the reliability issues of networks represented
by the configuration model.

B. Shortest Path

Throughout the remainder of this section, we assume that
our network is a large random network which isd-regular
graph generated by the configuration model. Supposen, the
number of nodes, is large enough so that all the asymptotic
properties in the previous section are assumed to hold, i.e., the
deviation from the asymptotic behavior is assumed negligible.

Before proceeding, we present an important property of the
model that we will use in further analysis. If we pick a pair of
nodes randomly and define a random variableX representing
some parameter related to the pair, e.g., the distance between
the pair, then there are two sources of randomness: one is the
random selection of a graph and the other is the random pair
selection. However, note that, by the symmetric structure of
the configuration model, the value ofX has no dependence
on a specific pair. Hence, calculating the expectation ofX
which is over the probability space of the selection of a graph
is not affected by averagingX again over the selection of a
pair. Furthermore, by interchanging the order of calculation,
we obtain a more convenient way to compute the expectation
of X – that is, first conditioning on some graphs to get the
expected value ofX over the pair selection and then averaging
the expectation over all graphs.

Let us fix a randomly chosen pair of nodes,s and t, and
define a random variableL to be the length of the shortest
path betweens andt. Then, as argued above, assume that we
have a certaind-regular graph and consider the value ofL
over the possible selections of a pair.

It is clear that there ared nodes adjacent tos. If we consider
the nodes two hops away froms, there can be at mostd(d−
1) such nodes, but some of them may overlap and therefore
d(d − 1) is an upper bound on the number of such nodes.
Now if we count the total number of nodes within two hops

of s, some nodes adjacent tos and some nodes two hops
away froms may again overlap, but still there can be at most
d+d(d−1) = d2 such nodes if all of them are distinct. If we
continue this counting, the number of nodes withink hops of
s is at mostd + d(d − 1) + d(d − 1)2 + · · · + d(d − 1)k−1 =
d{(d−1)k−1}/(d−2) (see Fig. 2). Note that, in the probability
space of the pair selection,Pr(L ≤ k) is the probability that
we pick another nodet among those nodes withink hops of
s. Hence,

Pr(L ≤ k) ≤ min[1,

(

d{(d − 1)k − 1}

d − 2
·

1

n − 1

)

].

Note that this argument is independent of the selection of a
graph and thus the above inequality holds for everyd-regular
graph. Therefore,

E(L) =

n−1
∑

k=1

(1 − Pr(L ≤ k))

≥

⌈log
d−1

n⌉
∑

k=1

(1 −
d{(d − 1)k − 1}

d − 2
·

1

n − 1
)

∼ logd−1 n, (1)

where we assume thatn is large.
For comparison, let us consider a related result by Newman

et al. [14]. They give an asymptotic heuristic estimate of the
typical lengthL̂ of the shortest path between two randomly
chosen nodes as follows:

L̂ =
log[(n − 1)(d2 − 2d) + d2] − log d2

log(d − 1)

∼ logd−1 n.

They also note that this approximation may not be correct if all
the vertices are not reachable from a randomly chosen vertex.
However, ifd ≥ 3, we know thatG(n, d) is a.a.s.d-connected,
and hence, we can expect that the above approximation
becomes tight asn tends to infinity.

Comparing this to the lower bound (1), we find that our
lower bound matches the existing estimate for largen, and
this may be viewed as an indication of its tightness.

C. Shortest Cycle

Recall that cycles are of our interest because primary and
backup paths together form a cycle in a graph. In this section,
we also consider a randomly picked pair of nodes, and now
we define the random variableX as the length of the shortest
cycle including the pair.

Now we define an eventYk that the pair is on ak-cycle
(cycle of lengthk), i.e., there exists ak-cycle through the
two nodes. Then, by the definition ofX, X ≤ k implies the
pair is on a certain cycle no longer thank and we obtain the
following inequality:

Pr(Yk) ≤ Pr(X ≤ k) ≤

k
∑

i=3

Pr(Yi), (2)



where we used the union bound for an upper bound. Therefore,
we can lowerbound E(X) as follows:

E(X) =

n
∑

k=3

k Pr(X = k)

≥

m−1
∑

k=3

k{Pr(X ≤ k) − Pr(X ≤ k − 1)}

+ m(1 − Pr(X ≤ m − 1)) (3)

≥

m−1
∑

k=3

k{Pr(Yk) −

k−1
∑

j=3

Pr(Yj)}

+ m(1 −

m−1
∑

j=3

Pr(Yj)) (4)

= m −
m−1
∑

k=3

Pr(Yk){
m

∑

j=k+1

j − k}, (5)

wherem is an integer,4 ≤ m ≤ n. Note in (3) that, for eachk
larger thanm, we replacedk Pr(X = k) by mPr(X = k) to
get a lower bound, and that (4) follows from (2). Since in (5)
eachPr(Yk) is multiplied by a negative number, if we obtain
a lower bound onPr(Yk), we can further bound E(X) from
below.

Now define an indicator random variableIk taking 1 if the
pair is on ak-cycle, and0, otherwise. To calculate E(Ik), as
mentioned above, we first condition on a certain graph and
consider a pair selection on the graph, and then average the
result over all graphs. More specifically, if we defineZk to
be the number ofk-cycles in a graph, conditioned onZk = j,
we calculate conditional expectation ofIk by considering a
random selection of a pair of nodes, which we average over
all possible values ofZk. Identifying E(Ik) as equivalent to
Pr(Yk), we can write this calculation as follows:

Pr(Yk) =
∑

j

E(Ik|Zk = j) Pr(Zk = j)

=
∑

j

Pr(Yk|Zk = j) Pr(Zk = j), (6)

where the expectation and probability conditioned onZk are
over the probability space of pair selection.

Let us consider how we can maximize the conditional
probability Pr(Yk|Zk = j), i.e., the probability that the pair
is on ak-cycle given that the graph has a certain number of
k-cycles. If we assume there is a total ofn nodes,

Pr(Yk|Zk = j) =
(number of pair selections onk-cycle)

(

n
2

) .

(7)
In order to calculate the maximum number of pair selections
on ak-cycle, we first take the case of two cycles. If the two
cycles are disjoint, i.e. they share no vertex, the number of
such selections is2

(

k
2

)

. We obtain the same result when there
is only one vertex shared by the two cycles. However, if the
two cycles sharej vertices, where2 ≤ j ≤ k − 1, then the
number of pair selections on ak-cycle is2

(

k
2

)

−
(

j
2

)

, which is
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Fig. 3. Lower Bound on E(X) with respect tom for n = 10, 000

strictly less than that of the previous case. Hence, we get the
maximum number of pair selections when the two cycles share
no or only one vertex. Note that by repeating this argument, the
result easily extends to the case of more than two cycles. That
is, if we havej cycles of lengthk, by assuming all the cycles
are disjoint, we can maximize the number of pair selections
on ak-cycle, which is given byj

(

k
2

)

. Hence, it follows from
(6) and (7) that

Pr(Yk) ≤
∑

j

j
(

k
2

)

(

n
2

) Pr(Zk = j)

=
k(k − 1)

n(n − 1)
E(Zk). (8)

Now, recall that, as discussed in Section II-A, we have an
upper bound onE(Zk) for any k, 3 ≤ k ≤ n, such that

E(Zk) ≤
(d − 1)k

2k
.

Therefore,

Pr(Yk) ≤
(k − 1)

2n(n − 1)
(d − 1)k. (9)

Combining (5) and (9), we obtain

E(X) ≥ m −

m−1
∑

k=3

(k − 1)(d − 1)k

2n(n − 1)
{

m
∑

j=k+1

j − k}, (10)

which is valid for anym, 4 ≤ m ≤ n. We can calculate this
lower bound numerically for variousm. In Fig. 3, we notice
that the bound grows until some value ofm, where we obtain
the tightest lower bound, and then it starts to decrease asm
further grows.

We can collect these lower bounds for eachn, which Fig.
4 plots with respect tolog n, for n up to 1030. Interestingly,
those bounds are shown to grow almost linearly withlog n,
which is in turn congruent to the lower bound (Eq. (1)) on the
path length in the previous section.
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This can be explained analytically as well. For fixedd and
m = m(n) that grows withn, let B be the terms on the
right-hand side in (10). Then, by using manipulation of series,

B = m −

m−1
∑

k=3

(k − 1)(d − 1)k

2n(n − 1)
{

m
∑

j=k+1

j − k}

= m −
1

n2
· Θ

( m−1
∑

k=3

m2k(d − 1)k − k3(d − 1)k

)

= m −
1

n2
· Θ(m3(d − 1)m). (11)

Let us suppose thatm = c log n for a constantc > 0, where
we can infer, by examining the value ofm that gives the
tightest lower bound for eachn in Fig. 3, that the maximum
may occur whenm is approximately order oflog n. Then,
Θ(m3(d − 1)m) = Θ((c log n)3 · nc log(d−1)). Hence, ifc <

2
log(d−1) , then B ∼ c log n since Θ(m3(d − 1)m)/n2 → 0.
Otherwise, ifc ≥ 2

log(d−1) , thenB tends to below zero since
the termΘ(m3(d − 1)m)/n2 with a minus sign dominates
in B. Also, we can show that if m

log n → 0 or m
log n → ∞,

then B = Θ(m) or B → −∞, respectively. Therefore, we
conclude that the best case is whenB = Θ(log n), which is
the tightest lower bound on E(X).

We also notice that, since the tightest lower bound occurs
when c ≈ 2

log(d−1) , the resulting bound is approximately
2 logd−1 n. Therefore, the lower bound on the shortest cycle
turns out to be roughly twice the lower bound on the shortest
path we obtained for regular graphs.

D. Probability of Short Cycle

Suppose we want to maintain the path lengths below a
certain level in terms of the number of hops, for the reasons
mentioned in Section I. Let a finite numberlmax denote the
maximum length of the paths allowed, and we want to compute
the probability that we can protect the traffic using only such
paths.

source destination

primary length    lmax 

backup length    lmax 

Fig. 5. Protection Cycle for Path Protection

Let us consider a path froms to t and keep it recoverable
by the path protection scheme. To this end, there must exist
a primary and a backup path, each of which does not exceed
lmax but which together form a cycle (see Fig. 5). Let us call
a cycle with this property aprotection cycle.

Let C denote the set of all possible protection cycles
including the pair and consider E(|C|), i.e., the expected
number of protection cycles. If, for any cyclec, we define
an indicator random variableIc taking 1 if c exists, and 0,
otherwise, then

E(|C|) = E[
∑

c∈C

Ic] =
∑

c∈C

Pr[∃c]. (12)

Note that any cycle of lengthk arises from a set ofk edges
in the corresponding configuration. Then we call such a set of
k edges ak-cycle on the two-dimensional setW = [n] × [d].
It is easy to see from the construction procedures ofG(n, d)
that, for anyk-cycle onW , the probability that it is contained
in a random configuration is given by the same expression,
which we denote bypk ∼ (dn)−k [9], i.e., it depends only on
the number of edges. Therefore, we can calculate E(|C|) by
calculatingpk and the number of protection cycles of length
k, and summing their product over all possible lengthk’s.

Now consider the number of protection cycles of length
k ≤ (lmax + 1) on W . Since we need(k − 2) intermediate
nodes and allow any possible ordering ofk nodes on the cycle,
the number of possible protection cycles onW is

ak =

(

n − 2

k − 2

)

(k − 1)!

2
(d(d − 1))k

∼ nk−2 (k − 1)

2
(d(d − 1))k, (13)

where k = 3, ..., (lmax + 1). However, if k ≥ (lmax + 2),
there exist some orderings on the cycle wheres and t are
located farther thanlmax from each other, which we don’t
count because it needs a path longer thanlmax. Hence,

ak =

(

n − 2

k − 2

)

(k − 2)!(2lmax − k + 1)

2
(d(d − 1))k

∼ nk−2 (2lmax − k + 1)

2
(d(d − 1))k, (14)

wherek = (lmax + 2), ..., 2lmax. Therefore, using (13) and



(14), we obtain

E(|C|) =

2lmax
∑

k=3

akpk

∼

lmax+1
∑

k=3

(k − 1)(d − 1)k

2n2

+

2lmax
∑

k=lmax+2

(2lmax − k + 1)(d − 1)k

2n2

=

2lmax
∑

k=3

(d − 1)k

2n2
min[k − 1, 2lmax − k + 1].

If we consider the probability that there exists at least a
protection cycle along the pair of nodes, it is bounded from
above by E(|C|), which is a union bound including all possible
protection cycles, and from below by the probability that there
exists a cycle of length 3 onW . Hence,

1

(dn)3
≤Pr(∃protection cycle)

≤

2lmax
∑

k=3

(d − 1)k

2n2
min[k − 1, 2lmax − k + 1].

In the case of link protection, if we assume that there is a
link betweens and t, in order to ensure that traffic between
the pair is recoverable by the link protection scheme, there
must exist a cycle not exceeding(lmax + 1) around the pair.
In exactly the same manner, we can calculate the expected
number of such cycles around the pair. Hence, in the link
protection case, we can bound the probability that there exists
at least one protection cycle of length within a finite bound as
follows:

1

(dn)3
≤ Pr(∃protection cycle) ≤

lmax+1
∑

k=3

(d − 1)k

2n2
.

Note from the results above that, for both path and link
protection schemes, the probability that we find a backup path
of finite length decays in the order of1n2 . In other words, in
the random networks described by the configuration model, it
is highly unlikely to find a backup path within a finite range
as the size of network grows very large.

III. G ENERAL NETWORKS

In this section, we present an extended version of the
configuration model, by which we can overcome the limitation
that the degree must be the same over all nodes. Then we show
that most of our results for regular graphs carry over to more
general networks based on the extended model.

A. Extended Graph Model

Molloy and Reed [12] and Newmanet al. [14] present a
random graph model with a given degree sequence, but they
do not consider explicitly the randomization of degrees with a
given degree distribution. Aielloet al. [1] use the same model
as that we discuss here, however their analyses are limited to a

...
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Fig. 6. 2-Dimensional SetW for Extended Model

specific degree distribution: the power-law distribution,which
we will take as an example in the next section. We address
our graph model in detail to demonstrate the extendability of
our previous results for regular graphs.

In the configuration model, we consider a two-dimensional
setW = [d]× [n] and partition the set into(dn/2) pairs, then
project onto the horizontal axis. A natural extension is to allow
the degrees to vary over a finite range and keep the remaining
procedure the same as before. Below we describe in detail the
whole procedure of the extended model.

Suppose first that we are given a degree distribution for the
graph, i.e.,ith vertex has degreeDi, i = 1, 2, ..., n, each of
which is defined to be anidentically independently distributed
(i.i.d.) random variableD such that

Pr(D = dj) = pj j = 1, 2, ..., jmax, (15)

where we assume3 ≤ d1 < d2 < · · · < djmax
< ∞. Our

goal is to construct a random graph whose degree follows the
given distribution. Then, we proceed as follows:

• Determine a priori the degree of each node,Di for
i = 1, 2, ..., n, according to the given degree distribution.
More specifically, we generate a random variablen times
so that eachDi is i.i.d. with the given probability mass
function. If m =

∑n
i=1 Di is not even, we regenerateDn

until the sum becomes even. (Note that this regeneration
causesDn to be no longer i.i.d. with respect to other
Di’s, but the effect of this regeneration is negligible.)

• Consider a two-dimensional setW = [Di]×[n] consisting
of m =

∑n
i=1 Di vertices (see Fig. 6).

• Choose two vertices randomly fromW to make a pair.
Continue this until we exhaust all the vertices, which
is guaranteed becausem is even. Hence, we obtain a
random perfect matching, which we again name a random
configuration.

• Project the two-dimensional set onto the horizontal axis
by simply ignoring the vertical coordinate.

Again, the resulting graph may have self-loops around the
same vertex or multiple edges between two vertices. Hence,
we say the graph we constructed is a random multigraph with
the given degree distribution, and if we condition that there
are no self-loops or multiple edges, then we obtain a random
(simple) graph as desired.



Note that in this model, by setting the minimum degree to be
at least three, we can restrict ourselves to considering vertices
of degree no less than three. Let us justify this exclusion inthe
context of protection in communication networks. For a node
of degree one, there is only one link connecting the node to
the network. Hence, if the link fails, there is no way but to
simply fix the failed link to recover the connection. Also, it
is easy to see that we cannot establish two link-disjoint paths
starting or ending at a node of degree one. Hence, we do not
need to consider nodes of degree one explicitly in both link
and path protection.

For nodes of degree two, any such node should fall in the
middle of links between a different pair of nodes. Hence, even
if we ignore a node of degree two and merge its two links into
one, there will be no changes in the topological structure of
the network. Hence, in considering the asymptotic behavior
of the length of paths, we can ignore nodes of degree two
and later, if needed, we can add such nodes according to an
appropriate distribution, which can be handled in a separate
problem.

Regarding connectivity, [19] shows that a graph with any
given collection of degrees lying betweenr and R, 3 ≤
r ≤ R ≤ ∞, is a.a.s. r-connected. Hence, ifdmin ≥ 3
is the minimum degree that each node can take, graphs
constructed by the extended configuration model area.a.s.
dmin-connected.

B. Distribution of the Number of Cycles

We recall that the number ofk-cycles in random regular
graphs is asymptotically Poisson distributed. Interestingly, this
property carries over to the case of general networks based on
the extended model. Let the distribution of degreeD be given
as in (15) and denote the resulting graph byGe(n,D). Then
we obtain the following theorem:

Theorem 3.1:Let Zk be the number of cycles of lengthk
in Ge(n,D). For each fixedj, a sequence of random variables
(Z3, Z4, ..., Zj) converges a.a.s. to (Z3∞, Z4∞, ..., Zj∞),
where{Zk∞}j

k=3 is a sequence of independent Poisson dis-

tributed random variables with E(Zk∞) = 1
2k (E(D2)

E(D) − 1)k.

Proof outline: Details of the proof are omitted for lack of space
but can be found in [10]. This is an extension of the proof
of the distribution of short cycles in random regular graphs
[9]. First, consider a random multigraph with the given degree
distribution. By conditioning on the number of nodes with
degreedi and using the strong law of large numbers, we can
calculate each factorial moment. Averaging the results based
on the degree distribution, we can show that each factorial
moment convergesa.a.s. to that of the desired joint Poisson
random variables. SinceZi’s are independent, the distributions
remain unchanged after conditioningZ1 = Z2 = 0. Hence, the
result for a simple graph follows. �

Note that the above theorem holds only for fixed-length
cycles. For lengthk which grows withn, we show that the
expression ofE(Zk) for fixed k is an upper bound onE(Zk),
i.e.,

Lemma 3.2:

E(Zk) ≤
1

2k

(

E(D2)

E(D)
− 1

)k

,

for 3 ≤ k ≤ n.
Proof outline: A full derivation is omitted due to space
limitations but also can be found in [10]. Even fork = k(n),
by considering the corresponding two-dimensional set, we can
calculate the mean number ofk-cycles exactly in a closed-
form, which is, however, complicated. Applying Stirling’s
formula, we obtain a simpler asymptotic expression, and we
can show that the desired inequality finally reduces to the log-
sum inequality. �

We see that the crucial characteristic here is the second
moment of degree over the first moment,{E(D2)/E(D)},
which plays the same role as the degree in regular graphs
(see Theorem 2.2). As we will see later, this parameter also
has a crucial impact on the length of path and cycle.

C. Shortest Path

Throughout the remainder of this section, we consider a
large network represented by a random graphGe(n,D), which
is generated by the extended configuration model with suffi-
ciently largen and the given degree distributionD satisfying
the properties discussed in Section III-A.

Let us fix a randomly chosen pair of nodes,s and t, and
define a random variableL to be the length of the shortest path
betweens and t. As in the previous case of random regular
graphs, Newmanet al.’s heuristic approach to a related model
[14] also applies to networks of general degree distribution,
and we will discuss how their asymptotic estimate of typical
length L̂ relates to our results.

For a graph constructed by our model with general degree
distributionD, L̂ is given in [14] by

L̂ =
log[{(n − 1)(E(D2) − 2E(D)) + E(D)2}/E(D)2]

log[(E(D2) − E(D))/E(D)]
(16)

and if n ≫ E(D) and E(D2) ≫ E(D), this reduces to

L̂ =
log( n

E(D) )

log(E(D2)
E(D) − 1)

+ 1. (17)

Interestingly, the second moment of degree over the first
moment is also crucial here. As we increase the variance
of degrees while maintaining the same mean degree, we
have shorterL̂. On the other hand, as pointed out in [14],
two random graphs with completely different distributionsof
degrees, but the same value of the second moment of degree
over the first moment, will have asymptotically the same mean
path length.

D. Shortest Cycle

As before, we now consider a random variableX, defined to
be the length of the shortest cycle including a randomly picked
pair of nodes. We will show that the procedures for deriving a
lower bound on E(X) for regular graphs apply here with slight



modifications, which is expected because we can see that most
of the previous results do not depend on the fact that graphs
are regular. For comprehensiveness, we recast important steps
in the derivation, but also for conciseness, we omit detailsif
there is no major change compared with the case of regular
graphs.

If we let Yk be the event that the pair is on ak-cycle, i.e.,
there exists ak-cycle around the pair, then, for any integerm,
4 ≤ m ≤ n,

E(X) ≥ m −

m−1
∑

k=3

Pr(Yk){

m
∑

j=k+1

j − k}. (18)

Also, we have the same expression as in (8) for an upper
bound onPr(Yk) such that

Pr(Yk) ≤
k(k − 1)

n(n − 1)
E(Zk).

Applying Lemma 3.2, we have, for graphs with a general
degree distributionD,

Pr(Yk) ≤
(k − 1)

2n(n − 1)

(

E(D2)

E(D)
− 1

)k

. (19)

Hence, from (18) and (19), we obtain the following lower
bound on E(X):

E(X) ≥ m −

m−1
∑

k=3

(k − 1)(E(D2)
E(D) − 1)k

2n(n − 1)
{

m
∑

j=k+1

j − k}. (20)

By similar numerical calculation and convergence analysisas
in Section II-C, we conclude that the above bound isO(log n).

It is very interesting to see that, since it is multiplied
by a negative value, as{E(D2)/E(D)} increases we have
a smaller bound on E(X). Note that this fact is consistent
with the results in the previous two sections: a larger valueof
{E(D2)/E(D)} yields shorterL̂ (Eq. (17)) and more cycles
(Theorem 3.1). This observation meets our expectation that,
as the number of cycles increases, the length of the shortest
cycle including a pair of nodes as well as the distance between
the pair decreases.

Hence, the second moment of degree over the first moment
should be dealt with as a special parameter that determines the
asymptotic behavior of both the average length of paths and
cycles, and the average number of cycles in random graphs.

E. Finite Length Cycle

Let a finite numberlmax denote the maximum length of the
paths allowed, and let us compute bounds on the probability
that we can protect the network using only such paths. Again,
if there is no major change in the argument compared with
the case of regular graphs, we omit details and present only
important steps.

For path protection, we define aprotection cycleas before,
i.e., a cycle consisting of a primary and a backup path, each
of which does not exceedlmax, from s to t. To compute
the probability that there exists at least one protection cycle,
we consider E(|C|) whereC denotes the set of all possible

protection cycles including the pair. Similarly as in regular
graphs, we can calculate E(|C|) by counting the number of
appropriate cycles in the two-dimensional set of the extended
configuration model. A full derivation can be found in [10].
Owing to space limitations we present only the result here.

E(|C|) ∼

2lmax
∑

k=3

1

2n2

(

E(D2)

E(D)
− 1

)k

× min[k − 1, 2lmax − k + 1]. (21)

If we consider the probability that there exists at least one
protection cycle along the pair of nodes, it is bounded from
above by E(|C|), which is a union bound including all possible
protection cycles, and from below by the probability that there
exists a cycle of length 3 onW . Therefore,

1

(nE(D))3
≤Pr(∃protection cycle)

≤

2lmax
∑

k=3

1

2n2

(

E(D2)

E(D)
− 1

)k

× min[k − 1, 2lmax − k + 1].

Now, for link protection, assume there is a link betweens
and t. To ensure that traffic between the pair is recoverable
by the link protection scheme, there must exist a cycle not
exceeding(lmax + 1) around the pair. As in path protection,
we calculate the expected number of such cycles around the
pair and bound the probability that there exists at least one
protection cycle of length within a finite bound as follows:

1

(nE(D))3
≤ Pr(∃protection cycle)

≤

lmax+1
∑

k=3

1

2n2

(

E(D2)

E(D)
− 1

)k

.

Note from the results above that, also in random graphs
of a general degree distribution, the probability that we find
a backup path of finite length decays in the order of1

n2 for
both path and link protection schemes. In other words, it is
highly unlikely to find a backup path within a finite range as
the size of the network grows very large.

IV. EXAMPLE : POWER-LAW DEGREEDISTRIBUTION

In this section, we take as an example the case of networks
with a power-law degree distribution, which is often used asa
description of large complex networks. Our aim here is not to
discuss the validity of the power-law model, but to illustrate
the flexibility and usefulness of our method by applying it to
an existing model that is commonly used.

A considerable number of studies have been carried out
on the structures and properties of many kinds of real-world
complex network, e.g., [2], [18]. A very common result is that,
in most real-world networks, the degree distribution is highly
right-skewed, i.e., it has a long right tail of values that are
far above the mean [13]. More specifically, it is often of the



form pk ∼ k−α for some positive constantα, which is called
a power-law distribution.

Despite the extensive research on various types of complex
networks, there is a very limited amount of literature focusing
mainly on communication networks, where the issue of pro-
tection is of critical importance. Among those few studied,
a frequently considered network is the Internet. Faloutsos
et al. [6] discover that several parameters of the Internet
graph, such as outdegrees of a node or eigenvalues, display
power-law distributions. However, more recently Chenet al.
[4] show that, by using a different method for obtaining
the Internet graph, degree distributions of the Internet graphs
are also heavy-tailed but deviate significantly from a strict
power-law. These observations indicate that, in considering
communication networks, we do not need to limit ourselves
to networks with the degree distribution of a power-law.

Now, let us consider networks with the degree distribution
defined as

Pr(D = k) =

{

0 for 0 ≤ k ≤ 2

k−α/c for 3 ≤ k ≤ kmax,

for given constantα. Herekmax is an often-used approximate
of the maximum degree [13], given bykmax = n1/(α−1), andc
is a normalizing constant, given byc =

∑kmax

k=3 k−α. Note that
this distribution is different from a strict power-law distribution
in that nodes of degree below three are ignored for the reasons
discussed in Section III-A. Also, this analysis is approximate
– the degree constraint of our model is not precisely satisfied
since here the maximum degree is a function ofn, although
the probability of such nodes decays significantly. Within the
best of our knowledge, the overall effect of the unbounded
maximum degree in graphs with a general degree distribution
is not known precisely.

For networks of this degree distribution, Fig. 7 plots with
respect tolog n the parameters that we have considered. We
choose three differentα’s around the experimental values in
[6]. In particular, Fig. 7(a) shows the second moment of degree
over the first moment of degree, which as we have discussed
above closely relates to the average number of cycles as well
as the average path/cycle length. We find that the value of the
second moment of degree over the first moment increases with
n, but decreases withα. In Fig. 7(b), we plot the asymptotic
heuristic estimate of typical distance,L̂ (Eq. (16)), and the
lower bound on the expected length of the shortest cycle
including a randomly picked pair of nodes,E(X) (Eq. (20)).
Here we see that, as we discussed before, those two parameters
decrease as{E(D2)/E(D)} increases for the samen.

One may notice that those parameters produce surprisingly
small values for the size of the network. Recall that the second
moment of degree over the first moment is a crucial parameter
that determines the asymptotic behavior of a network. For
cycle length, this parameter corresponds exactly to the degree
in a regular network (see (20) and (10)). For instance, ifα =
2.6 andn = 1010, the network shows the characteristics of a
regular graph with degree 825. This large value results partly
from the fact that we ignore the nodes of degree less than three,

and if we calculate the parameter again including the nodes
of degree one and two, we now have 345, still a large value.
Hence, we conclude that this property of high-connectivity
and short path/cycle lengths is an inherent characteristicof
networks with a power-law degree distribution.

Note, however, that we do not intend to suggest that the
power-law distribution is appropriate for large-scale networks
in practice, nor that our approach is limited to power-law
distributed networks. Rather, we have shown that our approach
is applicable to estimating the length of backup paths in
general networks of arbitrary degree distributions.

V. CONCLUSIONS

We have investigated the issue of protection in large-scale
random networks by deriving several bounds on the parameters
related to protection in terms of network parameters, such as
size and degree. We first considered random regular networks
described by the configuration model, and derived bounds on
the mean path and cycle length and also the probability of
finite-length protected connections. We then extended these
results to general networks with arbitrary degree distributions.
We presented the distribution of the number of fixed-length
cycles and derived an upper bound on the mean number of
cycles of non-finite length. We found the second moment of
degree over the first moment is a crucial parameter for the
asymptotic behavior of a network.

The main contributions of this study are the following. First,
we took an analytical approach toward the study of network
protection by bringing the concept of randomness into net-
work topologies. Our approach is crucial to understanding the
relation between reliability metrics, such as connectivity and
length of backup paths, and basic network parameters, such
as degree distribution and network size, for large networks.
In addition, we established analytical results for the length
of backup paths for path and link-based protection schemes.
These results, though not complete yet, allow us to understand
the applicability of standard protection preplanned approaches.
Finally, we developed a unified framework for studying the
issue of robustness in very general networks with arbitrary
degree distributions.

There are several topics for further research. Our results
indicate that both the shortest path and cycle between a pairof
nodes may scale logarithmically with the size of the network.
A formal analysis of the validity of this claim would be useful.
Furthermore, we may extend our network model to allow time
variability of networks that are evolving dynamically, which
may provide an analytical tool for developing or evaluating
specific algorithms or protocols for protection. The network
model may be also modified to allow some dependency on
proximity or localization, for instance to satisfy Rent’s rule
[5], or to explain transitivity or clustering in a network [13].
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