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Abstract—We consider the issue of protection in very large ~ Our goal is to investigate the relation between reliability
networks displaying randomness in topology. We employ random metrics and basic network parameters for very large netsvork
graph models to describe such networks, and obtain probabilistic that display randomness in topology. We use a random graph

bounds on several parameters related to reliability. In particular, thod t t this ph h t i
we take the case of random regular networks for simplicity and Met0od 10 capture this phenomenon, where we compute rell-

consider the |ength of primary and backup paths in terms of ab|l|ty metl’ICS |n a pl’ObabI“StIC sense fOI’ a rand0m|y (ﬂ‘TDS
the number of hops. First, for a randomly picked pair of nodes, network from the set of networks with given size and degree

we derive a lower bound on the average distance between theconstraints. In particular, for a randomly picked pair otlas
pair and discuss the tightness of the bound. In addition, noting in a network. we consider

that primary and protection paths form cycles, we obtain a .
lower bound on the average length of the shortest cycle around  * |€ngth of the shortest path between the pair

the pair. Finally, we show that the protected connections of a e« length of the shortest cycle including the pair, which
given maximum finite length are rare. We then generalize our represents the sum of the lengths of primary and backup
network model so that different degrees are allowed according to paths

some arbitrary distribution, and show that the second moment « probability that we can establish protected connections

of degree over the first moment is an important shorthand o . . . .
for behavior of a network. Notably, we show that most of the within a finite length bound using path or link protection

results in regular networks carry over with minor modifications,  in terms of the size and the degree distribution of the ndtwor
which significantly broadens the scope of networks to which our  To this end, we first employ a random regular graph model,
approach applies. We present as an example the case of networksyhere the degree of each node is the same, for simplicity of
with a power-law degree distribution. exposition. Then we extend the graph model so as to deal
Index Terms— Graph theory, combinatorics, network robust- . . . .
ness, random graph with networks of arbitrary degree distributions and obtain
generalized results applicable to a much wider family of
networks.
Most work on the robustness of networks is concerned with
Providing resilient service against failures is a crucisiie the bandwidth efficiency of protection schemes in terms ef th
for high-speed networks since a single failure may causec@pacity devoted solely to backup purposes (e.g., [15]k Th
severe loss of data. Today’s high-speed networks are begomépeed of restoration is also considered [16], sometimeslyoi
increasingly complex and also dynamic in response to g@wityith capacity [8]. Some other considerations are transpare
and shifting communication demands [11]. In such networkexibility, and vulnerability [11].
the issue of reliability also becomes increasingly complex  In this paper, we are concerned with the length of paths
Restoration has been extensively researched for genénaterms of the number of hops. While this parameter is less
mesh topologies, but very few analytical results are allila widely considered than bandwidth efficiency, it is impottan
The typical approach is to give linear programming formuldn several contexts. For instance, in optical networkskbpc
tions or heuristic algorithms and to rely on simulationsdghs paths must remain within a moderate range for optical signal
on some standard networks for evaluating their performangeality reasons. Also, path length indirectly affects éficy
(e.g., [15], [8]). While this type of method can provideand speed, i.e., a longer protection path requires a larger
numerical results for each network with a specific topologgmount of resources, time and management complexity.
it is often difficult to extrapolate these results to give an If we use path protection to protect the network against link
analytical view of how parameters scale as networks grogmode) failure, then we have to establish a backup path which
Also, it may fail to provide concise rules to relate impottaris link (node)-disjoint from source to destination. By Men'g
network parameters, such as size and degree, to robustnesiseorem, the existence of such path between any two nodes
Networks evolve over time, that is, nodes and links atie guaranteed in any edge (vertex)-redundant graph [17]. We
added and deleted, or different networks can be intercaedec see that the primary and backup paths form a cycle along the
Furthermore, as networks become very large and charsgrce and the destination. Also in link protection, thekiac
rapidly, they may grow in an increasingly uncontrolled fash path around the failed link, together with the failed lingeilf,
since they tend to no longer remain under the control offarm a cycle. In light of these observations, the distribnti
single entity. and length of cycles in the graph are of natural interest.

I. INTRODUCTION



By studying these parameters, we can obtain an analytical edge between vertices
sense of how networks will measure if they grow in the way
described by such random graph models, which may be an
interesting problem in its own. Also, we can use the knowéedg
of those parameters to choose or evaluate which protection [d]
schemes are more appropriate in such large-scale networks.
This study can further contribute to designing protection
mechanisms that take advantage of the topological pregerti
of networks [6]. 1]
This paper is organized as follows: Section Il considers the
case of random regular networks, Section Ill generalizes th Fig. 1. Two-Dimensional SekV for Configuration Model
results to the case of networks of arbitrary degree didiohs,
Section IV presents as an example the case of networks with a
power-law degree distribution, and Section V conclude$ wibf which is disconnected from the other parts and can be dealt
a summary of the results and a discussion of further work.with as a separate problem. Moreover, if removal of a single
edge or vertex would cause a certain set of source-destmati
pairs to be disconnected, then in the corresponding netwerk
In this section, we consider random regular networks, whelnave no viable option to restore the connections but to cov
each node has the same degree. This model, though seemitgdyfailed link or node itself. Therefore, there is no need to
too restrictive, can provide simplicity to our expositidoyt consider protection for such pairs. However, in random legu
also enough insight for results applicable to general nétsvo graphs constructed by the configuration model, it is knova th
In the next section, we will find that many of the resultsuch a phenomenon does not happem agows large.
can carry over, with minor modifications, to networks with For an event,,, we say that,, holdsasymptotically almost
arbitrary degree distributions. surely (a.a.s) if Pr(&,) — 1 asn tends to infinity. Then, we
have the following result regarding connectivity [19]:
Theorem 2.1:If d > 3 and fixed, thenG(n,d) is a.a.s.
We represent each network by a graph, where each vertggonnected.
corresponds to a node in the network and each edge to a liNigte that we say a graph -connectedf, for any pair of
By n we denote the number of vertices anddthe common verticesi and j, there is a path connectingand j in every
degree of every vertex, whefe< d < n — 1, and we assume subgraph obtained by deletitid— 1) vertices other thanand
thatdn is even. Then we can think of the set of all possible together with their adjacent edges from the graph. Theeefor
d-regular graphs on those vertices. We turn this set into afor sufficiently largen, we still get a connected graph after
probability space by assigning the same probability to eagémoving(d — 1) vertices fromG (n,d) for d > 3.
element of the set. In other words, we get-eandom graph  Now, let us consider the distribution of cycles in a graph.
G(n,d) by picking an element uniformly at random amongefine a random variabl&; to be the number of cycles of
all possibled-regular graphs. length & in G(n,d). It is known that, for any set of’s that
We here present theonfiguration modelwhich is a stan- are fixed andk > 3, Z,’s are asymptotically distributed as
dard method for constructing random regular graphs uniformndependent Poisson random variables [3]. More precisely,
[9], [20]. Let V be the set of verticeg:] corresponding t0  Theorem 2.2:For each fixed j, a sequence of
n places along the horizontal axis. For each plac&’inwe random variables (Z3,Z4,...,Z;) converges a.a.s. to
introduced vertices and call this two-dimensional set &t (Z3oo, Zaoor -+ Zijoo), Where {Z,m}g;:3 is a sequence of
verticesW, W = [n] x [d]. A configurationis a partition of independent Poisson distributed random variables with
W into (dn/2) pairs. If we project the sét/ ontoV = [n] by E(Zoo) = (d—1)*

. . . . . . koo °k *
simply ignoring the second coordinate, we obtain a muligra  Note, however, that the previous theorem applies only for

m(F) where each pair in the configuration is considered %cles of fixed length, that is, where the length of cycle does
edge (see Fig. 1). However, this is not an ordinary grapfy grow withn. The case of long cycles of which lengttis
because it allows loops around the same vertex and multiplgined as a function of, i.e., k — k(n), is considered more
edges between two vertices, which, in other words, are Syc“’ecently by Garmo [7]. By counting the number of cycles on
of length 1 and 2, respectively. In particular,7{F") lacks ihe two-dimensional sell — [n] x [d] and using Stirling’s
those loops and multiple edges, it is a simple graph Whic“ﬂ?rmula, Garmo calculates(Ey), k = 3, ...,n, as follows:

d-regular. Note that each simpigregular graph corresponds | amma 2.3:Let k be an integer3 < k < n, and\ = k/n.
to precisely (d!)™ configurations. Hence, if we choose o

configuration uniformly at random, conditioned on it being

a simple graph, we gef(n, d) as desired. E(Z) = (d—1)* 1 .
Connectivity of graphs is a critical issue. If a graph is not 2k exp{%(d—fk — DA+ O(kX2)} +O(2)

connected initially, then it breaks into several subgrapglash
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II. REGULAR NETWORKS

A. Random Regular Graph Model




@) of s, some nodes adjacent to and some nodes two hops
@) away froms may again overlap, but still there can be at most
e O d+d(d—1) = d* such nodes if all of them are distinct. If we
k hops away d+d(d-1)+...+d(d-1)k! continue this counting, the number of nodes withihops of
O |- dl@DE1} | e sisatmostd +d(d —1)+d(d—1)2 +---+d(d—1)F"1 =
0O d-2 d{(d—1)*—~1}/(d—2) (see Fig. 2). Note that, in the probability
d nodes d(d-1) nodes space of the pair selectiofr(L < k) is the probability that
we pick another nodé among those nodes withit hops of
Fig. 2. Maximum Number of Nodes Withih Hops of s s. Hence,
. d{(d-1)F-1} 1
Pr(L <k) < 1 . .
r( _k)_mln[,( 13 p—] ]

In the above lemma, it is fixed, thenA — 0 asn tends

to infinity, and thus EZ;,) — (d;)k as shown in Theorem Note that this argument is independent of the selection of a

2.2. On the other hand, if grows withn, the exponent terms graph and thus the above inequality holds for ewénggular
in the denominator}(472k — 1)\ + O(kA?), are no longer graph. Therefore,

negligible, which leads E) to become smaller thaﬂ%)k. n—1
Therefore, we see thaEld;Tm is an upper bound on (Ey) E(L) = Z(l —Pr(L < k)
valid for all k, 3 < k < n. k=1
We will use these asymptotic results in the following discus loga_y n] d{(d-1)k -1} 1
sion to quantify the reliability issues of networks represe > Ny (- 1_9 )
by the configuration model. k=1
~logg 1, 1)

B. Shortest Path .
) ) ) where we assume thatis large.
Throughout the remainder of this section, we assume thazor comparison, let us consider a related result by Newman
our network is a large random network which dsregular et a). [14]. They give an asymptotic heuristic estimate of the

graph generated by the configuration model. Suppgsthe typical length Z of the shortest path between two randomly
number of nodes, is large enough so that all the asymptogigosen nodes as follows:

properties in the previous section are assumed to holdthes. 0 ) )

deviation from the asymptotic behavior is assumed nedégib 7 _ logl(n —1)(d” — 2d) + d°] — logd
Before proceeding, we present an important property of the log(d —1)

model that we will use in further analysis. If we pick a pair of ~ logy 1 n.

nodes randomly and define a random variakileepresenting . N .
. . They also note that this approximation may not be corredt if a

some parameter related to the pair, e.g., the distance betw; :

. ) ._the vertices are not reachable from a randomly chosen vertex
the pair, then there are two sources of randomness: one is the : .

. . owever, ifd > 3, we know thatG(n, d) is a.a.s.d-connected,

random selection of a graph and the other is the random pair N

. . and hence, we can expect that the above approximation
selection. However, note that, by the symmetric structure ; L

ecomes tight as tends to infinity.

the configuration model, the value of has no dependence Comparing this to the lower bound (1), we find that our

on a specific pair. Hence, calculating the expectationXof ower bound matches the existing estimate for laraeand
which is over the probability space of the selection of a gra[# . . existing o arg
his may be viewed as an indication of its tightness.

is not affected by averaging’ again over the selection of a
pair. Furthermore, by interchanging the order of calcalgti ¢ shortest Cycle

we obtain a more convenient way to compute the expecta’[ionR I th | ¢ . b . d
of X — that is, first conditioning on some graphs to get the ecall that cycles are of our interest because primary an

expected value oK over the pair selection and then averagin%aCkLJp paths.together form a cycle In a graph. In this section
the expectation over all graphs. e also consider a randomly picked pair of nodes, and now

Let us fix a randomly chosen pair of nodesand ¢, and we define the random variablE as the length of the shortest

define a random variablé to be the length of the shortestcyﬁ:e mclud:jng];c_ the pair. At that th o & |
path betweers andt. Then, as argued above, assume that we ow we define an eventy, that the pair is on a-cycle

have a certaind-regular graph and consider the value lof (Cycle of lengthk), i.e., there exists a-cycle through the

over the possible selections of a pair. two nodes. Then, by the definition of, X < k implies the
Itis clear that there aré nodes adjacent te. If we consider pair is on a certain cycle no longer tharand we obtain the

the nodes two hops away from there can be at mosd — following inequality:

1) such nodes, but some of them may overlap and therefore k

d(d — 1) is an upper bound on the number of such nodes. Pr(Y;) <Pr(X <k) < ZPr(Yi), 2)
Now if we count the total number of nodes within two hops i=3




where we used the union bound for an upper bound. Therefore
we can lowerbound EX) as follows:
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m—1 m
=m- Z Pr(Yi){ Z j—k}, (5) Fig. 3. Lower Bound on E(X) with respect ta for n = 10,000

k=3 j=k+1
wherem is an integerd < m < n. Note in (3) that, for each } )
larger thanm, we replaced: Pr(X = k) by mPr(X = k) to  Strictly less than that of the previous case. Hence, we get th
get a lower bound, and that (4) follows from (2). Since in (gyaximum number of pair selections Wheq the two cycles share
eachPr(Y},) is multiplied by a negative number, if we obtain© O only one vertex. Note that by repeating this argumest, t
a lower bound orPr(Y;), we can further bound [E) from result easily extends to the case of more than two cycles. Tha
below. is, if we havej cycles of lengtht, by assuming all the cycles

Now define an indicator random variablg taking 1 if the ~are disjoint, we can maximize the number of pair selections

pair is on ak-cycle, ando, otherwise. To calculate (&), as ©On @k-cycle, which is given byj (5). Hence, it follows from
mentioned above, we first condition on a certain graph af® and (7) that

consider a pair selection on the graph, and then average the ](k)

result over all graphs. More specifically, if we defitg to Pr(Y) < Z 2 Pr(Z), = j)

be the number ok-cycles in a graph, conditioned ¢y, = 7, J (2)

we calculate conditional expectation &f by considering a  k(E—1) E(Z) (®)
random selection of a pair of nodes, which we average over  n(n—1) kJ:

all possible values ofy. Identifying E1I;) as equivalent to

Pr(Y;), we can write this calculation as follows: Now, recall that, as discussed in Section II-A, we have an

upper bound orE/(Zy) for any k, 3 < k < n, such that

Pr(Yy) = Y E(Ie|Zk = j) Pr(Zy = j) (d—1)*
- E(Zy) < o
= Z Pr(Yy|Zy, = j) Pr(Zy = j), ©®) Therefore,
j (k—1) k
where the expectation and probability conditioned fynare Pr¥e) < m(d - ©

over the probability space of pair selection. - .
Let us consider how we can maximize the conditioné‘\rombInlng (5) and (9), we obtain
probability Pr(Y;|Z, = j), i.e., the probability that the pair m—1 (k—1)(d-1)F &
is on ak-cycle given that the graph has a certain number of E(X) >m — Z ﬁ{ Z Jj—k},  (10)

k-cycles. If we assume there is a totaloiodes, k=3 n(n—1) j=k+1

) (number of pair selections oftcycle) which is valid for anym, 4 < m < n. We can calculate this
Pr(VelZy = j) = 0 * lower bound ically for various:. In Fig. 3 |
B) ower bound numerically for various:. In Fig. 3, we notice
(7) that the bound grows until some valueraf where we obtain

In order to calculate the maximum number of pair selectiortBe tightest lower bound, and then it starts to decrease: as
on ak-cycle, we first take the case of two cycles. If the twdurther grows.
cycles are disjoint, i.e. they share no vertex, the number ofWe can collect these lower bounds for eaghwhich Fig.
such selections iS(’g). We obtain the same result when therd plots with respect tdogn, for n up to 103, Interestingly,
is only one vertex shared by the two cycles. However, if thhose bounds are shown to grow almost linearly witfn,
two cycles sharg vertices, where@ < j < k — 1, then the which is in turn congruent to the lower bound (Eq. (1)) on the
number of pair selections onfacycle is2(¥) — (J), which is path length in the previous section.
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or ., © o Dt ) Let us consider a path fromto ¢ and keep it recoverable
a . . .
20 ongde oo . i by the path protection scheme. To this end, there must exist
Lait a primary and a backup path, each of which does not exceed
0 L L L L L . .
0 5 10 oo 20 2 30 Imaz Ut which together form a cycle (see Fig. 5). Let us call
a cycle with this property @rotection cycle
Fig. 4. Lower Bound with respect tog n Let C' denote the set of all possible protection cycles

including the pair and consider (E’|), i.e., the expected
number of protection cycles. If, for any cycle we define

This can be explained analytically as well. For fixé@nd 55 indicator random variablé. taking 1 if ¢ exists, and 0,
m = m(n) that grows withn, let B be the terms on the gtherwise, then

right-hand side in (10). Then, by using manipulation of egri

ml E(IC) =E[Y L] =) Pr[id. (12)
B=m-— { Z ceC ceC
k=3 j=k+1 .
Note that any cycle of length arises from a set of edges

=m - — < Z m?2 —k3(d - )k> in the corresponding configuration. Then we call such a set of
k edges &-cycle on the two-dimensional s& = [n] x [d].

It is easy to see from the construction procedure§:/6i, d)

that, for anyk-cycle onW, the probability that it is contained

in a random configuration is given by the same expression,

which we denote by, ~ (dn)~* [9], i.e., it depends only on

the number of edges. Therefore, we can calculdti€’F by

1 m
zm—ﬁ-@(m (d—1)™m). (11)
Let us suppose that = clogn for a constant > 0, where
we can infer, by examining the value of that gives the

tightest lower bound for each in Fig. 3, that the maximum lculati d th ber of brotecti | £ lenath

may occur whenm is approximately order ofogn. Then, Za cuda INgpy. an th € nun; etr 0 pro“ec |on_k;:|ycles ?:h eng

@(m (d—1)™) = O((clogn)? - Clog(d,l)). Hence, ifc < K an sumrrnng eir product over a possr e leng

then B ~ clogn since ©(m3(d — 1)™)/n? — 0. Now consider the nurnber of protection cycles of .Iength
k < (Ijmax + 1) on W. Since we needk — 2) intermediate

then B tends to below zero since . ;

nodes and allow any possible orderingiafiodes on the cycle,

the number of possible protection cycles Bnis

W
Otherwise, ifc > T’
the termO©(m3(d — 1)™)/n? with a minus S|gn dominates
in B. Also, we can show that if2- — 0 or 2= 00,
then B = ©(m) or B — —o0, respectlvely Therefore, we n—2\ (k—1)! .
conclude that the best case is whBn= ©(logn), which is ap = ( ) 5 (dld—1))

the tightest lower bound on(K&). (k—1)

We also notice that, since the tightest lower bound occurs ~nk=2 (d(d —1))*, (13)
when ¢ =~ m, the resulting bound is approximately
2logy_q1 n. Therefore the lower bound on the shortest cyclghere p = 3,. o (lmaz + 1). However, if k > (Imas + 2),
turns out to be roughly twice the lower bound on the shortegjere exist some orderings on the cycle wherand ¢ are
path we obtained for regular graphs. located farther thari,,,, from each other, which we don't
D. Probability of Short Cycle count because it needs a path longer than,. Hence,

Suppose we want to maintain the path lengths below a _(n =2\ (k—2)!2lnar —k+1) dld — 1))
certain level in terms of the number of hops, for the reasons “* — |t — 2 2 (d(d 1))
mentioned in Section I. Let a finite numbgy,,, denote the o ka1l

. k—2 ( max + )
maximum length of the paths allowed, and we wantto compute ~~ ~ 7"~ 5 (d(d = 1))", (14)

the probability that we can protect the traffic using onlytsuc
paths. wherek = (Lnaz + 2), ..., 2Lnas- Therefore, using (13) and



(14), we obtain edge between vertices

-
Umas
E(C]) = Z akPk © O
A o] © © O o
maz k .
~ %*12)# o © O O ®
= 0000 e
CX 2lnar — k+1)(d = 1DF .0 © 0 © O @)
+k*lz +2 2n? - /
o [n]
U d-1)* n
- Z 22 mln[k — 1, 2lnaz =k + 1]' Fig. 6. 2-Dimensional Sell for Extended Model

k=3
If we consider the probability that there exists at least a o o
protection cycle along the pair of nodes, it is bounded frosPecific degree distribution: the power-law distributiarich
above by E|C|), which is a union bound including all possibleV€ Will take as an example in the next section. We address
protection cycles, and from below by the probability thatrth OUr graph model in detail to demonstrate the extendability o

exists a cycle of length 3 ofi”. Hence, our previous _result_s for regular graphs_. _ _
In the configuration model, we consider a two-dimensional
b < Pr(3protection cycle setW = [d] x [n] and partition the set int¢dn/2) pairs, then
(dn)? project onto the horizontal axis. A natural extension islkova
2lmaz (d—1)* . the degrees to vary over a finite range and keep the remaining
< oz minfk — 1, 2lmar — k +1]. procedure the same as before. Below we describe in detail the
k=3 whole procedure of the extended model.

In the case of link protection, if we assume that there is a Suppose first that we are given a degree distribution for the
link betweens andt, in order to ensure that traffic betweergraph, i.e.,ith vertex has degre®,, i = 1,2,...,n, each of
the pair is recoverable by the link protection scheme, thendich is defined to be aitlentically independently distributed
must exist a cycle not exceedin{$},.... + 1) around the pair. (i.i.d.) random variableD such that
In exactly the same manner, we can calculate the expected . . . .
number of such cycles around the pair. Hence, in the link Pr(D = d;) = p; 7= 12 jmaz, (15)
protection case, we can bound the probability that therstexiwhere we assum8 < d; < dy < --- < d;,,.. < oo. Our
at least one protection cycle of length within a finite bousd goal is to construct a random graph whose degree follows the
follows: given distribution. Then, we proceed as follows:
1 lmas—+1 (d—1)k o Determine a priori _the degree_ of each nogiéé_ for_
— < Pr(3protection cyclg < Z —— i=1,2,...,n, according to the given degree distribution.
(dn) k—3 2n More specifically, we generate a random variablémes
so that eachD; is i.i.d. with the given probability mass
function. If m = """ | D; is not even, we regenerafe,
until the sum becomes even. (Note that this regeneration
causesD,, to be no longer i.i.d. with respect to other
D;’s, but the effect of this regeneration is negligible.)
Consider a two-dimensional sBf = [D,] x [n] consisting
of m=>""" | D, vertices (see Fig. 6).
I1l. GENERAL NETWORKS « Choose two vertices randomly frol to make a pair.
In this section, we present an extended version of the Continue this until we exhaust all the vertices, which
configuration model, by which we can overcome the limitation IS guaranteed because is even. Hence, we obtain a
that the degree must be the same over all nodes. Then we show random perfect matching, which we again name a random

that most of our results for regular graphs carry over to more ~configuration _ . _
general networks based on the extended model. « Project the two-dimensional set onto the horizontal axis

by simply ignoring the vertical coordinate.
A. Extended Graph Model Again, the resulting graph may have self-loops around the
Molloy and Reed [12] and Newmaet al. [14] present a same vertex or multiple edges between two vertices. Hence,
random graph model with a given degree sequence, but thveg say the graph we constructed is a random multigraph with
do not consider explicitly the randomization of degreedwait the given degree distribution, and if we condition that ¢her
given degree distribution. Aiellet al. [1] use the same model are no self-loops or multiple edges, then we obtain a random
as that we discuss here, however their analyses are lintitad t(simple) graph as desired.

Note from the results above that, for both path and link
protection schemes, the probability that we find a backup pat
of finite length decays in the order ‘?3% In other words, in
the random networks described by the configuration model, it
is highly unlikely to find a backup path within a finite range
as the size of network grows very large. ¢



Note that in this model, by setting the minimum degree to be Lemma 3.2:
at least three, we can restrict ourselves to considerinticesr 1 (E(D?) k
of degree no less than three. Let us justify this exclusiainén E(Zy) < —( — 1> ,
context of protection in communication networks. For a node 2k \ E(D)
of degree one, there is only one link connecting the node far 3 < k < n.
the network. Hence, if the link fails, there is no way but t®roof outline A full derivation is omitted due to space
simply fix the failed link to recover the connection. Also, itimitations but also can be found in [10]. Even fbr= k(n),
is easy to see that we cannot establish two link-disjoinhatby considering the corresponding two-dimensional set, ave ¢
starting or ending at a node of degree one. Hence, we do paiculate the mean number é&fcycles exactly in a closed-
need to consider nodes of degree one explicitly in both lifflerm, which is, however, complicated. Applying Stirling’'s
and path protection. formula, we obtain a simpler asymptotic expression, and we
For nodes of degree two, any such node should fall in tlhan show that the desired inequality finally reduces to the lo
middle of links between a different pair of nodes. Hencepevaum inequality. O
if we ignore a node of degree two and merge its two links into We see that the crucial characteristic here is the second
one, there will be no changes in the topological structure nfoment of degree over the first momer&(D?)/E(D)},
the network. Hence, in considering the asymptotic behaviatich plays the same role as the degree in regular graphs
of the length of paths, we can ignore nodes of degree tWsee Theorem 2.2). As we will see later, this parameter also
and later, if needed, we can add such nodes according tohas a crucial impact on the length of path and cycle.
appropriate distribution, which can be handled in a separat
problem. C. Shortest Path
Regarding connectivity, [19] shows that a graph with any Throughout the remainder of this section, we consider a
given collection of degrees lying betweenand R, 3 < large network represented by a random gréRln, D), which
r < R < oo, is a.a.s.r-connected. Hence, ifl,,;, > 3 is generated by the extended configuration model with suffi-
is the minimum degree that each node can take, graptiently largen and the given degree distributidn satisfying
constructed by the extended configuration model ames. the properties discussed in Section IlI-A.
dmin-cONnected. Let us fix a randomly chosen pair of nodesand¢, and
define a random variable to be the length of the shortest path
betweens andt. As in the previous case of random regular
We recall that the number of-cycles in random regular graphs, Newmaset al’s heuristic approach to a related model
graphs is asymptotically Poisson distributed. Intergiyirthis  [14] also applies to networks of general degree distrilmtio
property carries over to the case of general networks basedd we will discuss how their asymptotic estimate of typical
the extended model. Let the distribution of degfedoe given length L relates to our results.
as in (15) and denote the resulting graph@y(n, D). Then  For g graph constructed by our model with general degree

Theorem 3.1:Let Z; be the number of cycles of length

in G..(n, D). For each fixed, a sequence of random variables j _ 108[{(1 — 1)(E(D?) — 2E(D)) + E(D)*}/E(D)?]
(Z3, Z4, ..., Z;) converges a.a.s. 10 (Zaoo, Zico, -+ Zjoo), log[(E(D?) — E(D))/E(D)]

B. Distribution of the Number of Cycles

; : ; . 16)
where{Zk.Oo}i_3 is a sequence of independent Poisson dis- . . (
. = . . and if E(D) and ED? E(D), this reduces to
tributed random variables with (E..) = i(EE((%Q)) — 1)k, n> E(D) HD®) > B(D)
Proof outline Details of the proof are omitted for lack of space - log( E(D?) _ 1) an

but can be found in [10]. This is an extension of the proof E(D)
of the distribution of short cycles in random regular graphs Interestingly, the second moment of degree over the first
[9]. First, consider a random multigraph with the given é&&gr moment is also crucial here. As we increase the variance
distribution. By conditioning on the number of nodes witlof degrees while maintaining the same mean degree, we
degreed; and using the strong law of large numbers, we camave shorterl. On the other hand, as pointed out in [14],
calculate each factorial moment. Averaging the resultedaswo random graphs with completely different distributionfs
on the degree distribution, we can show that each factordggrees, but the same value of the second moment of degree
moment convergea.a.s.to that of the desired joint Poissonover the first moment, will have asymptotically the same mean
random variables. Sincg;’s are independent, the distributiongpath length.
remain unchanged after conditionitlg = Z, = 0. Hence, the
result for a simple graph follows.  D. Shortest Cycle

Note that the above theorem holds only for fixed-length As before, we now consider a random varialsledefined to
cycles. For lengtht which grows withn, we show that the be the length of the shortest cycle including a randomly gxick
expression off(Z,) for fixed k is an upper bound o’ (Z;), pair of nodes. We will show that the procedures for deriving a
ie., lower bound on EX) for regular graphs apply here with slight



modifications, which is expected because we can see that mmstection cycles including the pair. Similarly as in regul
of the previous results do not depend on the fact that grapdrephs, we can calculate(|€'|) by counting the number of
are regular. For comprehensiveness, we recast importgua stappropriate cycles in the two-dimensional set of the extdnd
in the derivation, but also for conciseness, we omit deihils configuration model. A full derivation can be found in [10].
there is no major change compared with the case of regu@awing to space limitations we present only the result here.

graphs.
If we let Y, be the event that the pair is onkacycle, i.e., Zmar | E(D?) k
there exists &-cycle around the pair, then, for any integey E(|C|) ~ Z _2( - 1)
4 <m <n, 3 2n E(D)
m—1 x minlk — 1, 2lmee — k+ 1], (21)
B(X)zm - P r(Ye) {j %;1‘7 k) (18) If we consider the probability that there exists at least one

protection cycle along the pair of nodes, it is bounded from
Also, we have the same expression as in (8) for an upR§ove by E|C|), which is a union bound including all possible

bound onPr(Y}) such that protection cycles, and from below by the probability thagrth
k(k—1) exists a cycle of length 3 ol/. Therefore,
nn —

———— < Pr(3protection cycl¢
Applying Lemma 3.2, we have, for graphs with a general (nE(D))?

degree distributionD, ”rm 1 ( (D*) )’f
X — 9,2
(k—1) (E(D?) )" 2n
Pr(Y; -1 . 19
(Ye) < 2n(n— 1) \ E(D) (19) x minfk — 1, 2l — k + 1].
Hence, from (18) and (19), we obtain the following lower Now, for link protection, assume there is a link between
bound on EX): and¢. To ensure that traffic between the pair is recoverable
m1 ()~ 1)( E(D?) ko m by the link protection scheme, there must exist a cycle not
Z E(D) { Z j—k}. (20) exceeding(l,,.. + 1) around the pair. As in path protection,
— n(n —1) j=k+1 we calculate the expected number of such cycles around the

pair and bound the probability that there exists at least one

By similar numerical calculation and convergence analgsis . I .
y g §s protection cycle of length within a finite bound as follows:

in Section II-C, we conclude that the above boun@®{$og n).
It is very interesting to see that, since it is multiplied

by a negative value, a$E(D?)/E(D)} increases we have # < Pr(3protection cycle

a smaller bound on EX). Note that this fact is consistent (nE(D))® —

with the results in the previous two sections: a larger vaiie bmaz 1 E(D?) k
{E(D?)/E(D)} yields shorterl, (Eq. (17)) and more cycles < W( E(D) )
(Theorem 3.1). This observation meets our expectation that k=3

as the number of cycles increases, the length of the shortediote from the results above that, also in random graphs
cycle including a pair of nodes as well as the distance batweaf a general degree distribution, the probability that wel fin
the pair decreases. a backup path of finite length decays in the orderﬁ@ffor

Hence, the second moment of degree over the first moméoth path and link protection schemes. In other words, it is
should be dealt with as a special parameter that deterntieestighly unlikely to find a backup path within a finite range as
asymptotic behavior of both the average length of paths atié size of the network grows very large.

cycles, and the average number of cycles in random graphs.
y 9 Y grap IV. EXAMPLE: POWER-LAW DEGREEDISTRIBUTION

E. Finite Length Cycle In this section, we take as an example the case of networks
Let a finite numbei,,,,, denote the maximum length of thewith a power-law degree distribution, which is often use@as
paths allowed, and let us compute bounds on the probabildgscription of large complex networks. Our aim here is not to

that we can protect the network using only such paths. Agatfiscuss the validity of the power-law model, but to illugtra

if there is no major change in the argument compared withe flexibility and usefulness of our method by applying it to

the case of regular graphs, we omit details and present oaly existing model that is commonly used.

important steps. A considerable number of studies have been carried out
For path protection, we definemotection cycleas before, on the structures and properties of many kinds of real-world

i.e., a cycle consisting of a primary and a backup path, eacbmplex network, e.g., [2], [18]. A very common result isttha

of which does not exceed, .., from s to t. To compute in most real-world networks, the degree distribution ishhjg

the probability that there exists at least one protectiotiegy right-skewed, i.e., it has a long right tail of values tha¢ ar

we consider EC|) whereC denotes the set of all possiblefar above the mean [13]. More specifically, it is often of the



form p, ~ kK~ for some positive constant, which is called and if we calculate the parameter again including the nodes

a power-law distribution. of degree one and two, we now have 345, still a large value.
Despite the extensive research on various types of complégnce, we conclude that this property of high-connectivity

networks, there is a very limited amount of literature fangs and short path/cycle lengths is an inherent characterdtic

mainly on communication networks, where the issue of proetworks with a power-law degree distribution.

tection is of critical importance. Among those few studied, Note, however, that we do not intend to suggest that the

a frequently considered network is the Internet. Faloutspswer-law distribution is appropriate for large-scalewmks

et al. [6] discover that several parameters of the Intern@i practice, nor that our approach is limited to power-law

graph, such as outdegrees of a node or eigenvalues, disglafributed networks. Rather, we have shown that our agproa

power-law distributions. However, more recently Chetnal. is applicable to estimating the length of backup paths in

[4] show that, by using a different method for obtainingieneral networks of arbitrary degree distributions.

the Internet graph, degree distributions of the Internaplys

are also heavy-tailed but deviate significantly from a stric V. CONCLUSIONS

power-law. These observations indicate that, in consideri We have investigated the issue of protection in large-scale

communication networks, we do not need to limit ourselveandom networks by deriving several bounds on the parameter

to networks with the degree distribution of a power-law.  related to protection in terms of network parameters, sich a
Now, let us consider networks with the degree distributiosize and degree. We first considered random regular networks

defined as described by the configuration model, and derived bounds on
0 for 0 < k < 9 the mean path and cycle length and also the probability of
Pr(D=k)= { W - finite-length protected connections. We then extendedethes

ke /e for 3 <k < kmaa, results to general networks with arbitrary degree distiiins.

for given constantv. Herek,,,,.. is an often-used approximateWe presented the distribution of the number of fixed-length
of the maximum degree [13], given By, = n'/(>~1 andc cycles and derived an upper bound on the mean number of
is a normalizing constant, given lay= ZZZE k~—>. Note that cycles of non-finite length. We found the second moment of
this distribution is different from a strict power-law distution degree over the first moment is a crucial parameter for the
in that nodes of degree below three are ignored for the reasasymptotic behavior of a network.
discussed in Section IlI-A. Also, this analysis is approaten ~ The main contributions of this study are the following. Eirs
— the degree constraint of our model is not precisely satisfizze took an analytical approach toward the study of network
since here the maximum degree is a functiommpfalthough protection by bringing the concept of randomness into net-
the probability of such nodes decays significantly. Withie t work topologies. Our approach is crucial to understandirgy t
best of our knowledge, the overall effect of the unboundgdlation between reliability metrics, such as connegtiand
maximum degree in graphs with a general degree distributiangth of backup paths, and basic network parameters, such
is not known precisely. as degree distribution and network size, for large networks
For networks of this degree distribution, Fig. 7 plots wittin addition, we established analytical results for the thng
respect tolog n the parameters that we have considered. W& backup paths for path and link-based protection schemes.
choose three different’s around the experimental values inThese results, though not complete yet, allow us to undedsta
[6]. In particular, Fig. 7(a) shows the second moment of degrthe applicability of standard protection preplanned apphes.
over the first moment of degree, which as we have discusdéidally, we developed a unified framework for studying the
above closely relates to the average number of cycles as wigllue of robustness in very general networks with arbitrary
as the average path/cycle length. We find that the value of tthegree distributions.
second moment of degree over the first moment increases witfThere are several topics for further research. Our results
n, but decreases with. In Fig. 7(b), we plot the asymptotic indicate that both the shortest path and cycle between apair
heuristic estimate of typical distancé, (Eq. (16)), and the nodes may scale logarithmically with the size of the network
lower bound on the expected length of the shortest cycleformal analysis of the validity of this claim would be uskfu
including a randomly picked pair of nodeE(X) (Eq. (20)). Furthermore, we may extend our network model to allow time
Here we see that, as we discussed before, those two parameigrability of networks that are evolving dynamically, whi
decrease a$E(D?)/E(D)} increases for the same may provide an analytical tool for developing or evaluating
One may notice that those parameters produce surprisingpecific algorithms or protocols for protection. The networ
small values for the size of the network. Recall that the sdcomodel may be also modified to allow some dependency on
moment of degree over the first moment is a crucial paramepgoximity or localization, for instance to satisfy Rentsle
that determines the asymptotic behavior of a network. FfB], or to explain transitivity or clustering in a network3JL
cycle length, this parameter corresponds exactly to theegeg
in a regular network (see (20) and (10)). For instance # ACKNOWLEDGMENT
2.6 andn = 10'°, the network shows the characteristics of a The authors would like to thank Douglas B. West, R. Srikant
regular graph with degree 825. This large value resultdyparand Supratim Deb at the University of Illinois at Urbana-
from the fact that we ignore the nodes of degree less thaa,thr€hampaign for helpful discussions.
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