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Abstract—Current medium access control mechanisms are
based on collision avoidance and collided packets are discarded.
The recent work on ZigZag decoding departs from this approach
by recovering the original packets from multiple collisions. In
this paper, we present an algebraic representation of collisions
which allows us to view each collision as a linear combination
of the original packets. The transmitted, colliding packets may
themselves be a coded version of the original packets.

We propose a new acknowledgment (ACK) mechanism for
collisions based on the idea that if a set of packets collide,
the receiver can afford to ACK exactly one of them and still
decode all the packets eventually. We analytically compare delay
performance of such collision recovery schemes with other collision
avoidance approaches in the context of a single hop wireless
erasure network. From the delay perspective, our scheme, without
any coordination, outperforms not only ALOHA-type random
access mechanisms, but also centralized scheduling.

I. INTRODUCTION

The nature of the wireless network is intrinsically different
from the wired network because of the sharing of the medium
among several transmitters. Such a restriction generally has
been managed through forms of scheduling algorithms to co-
ordinate access to the medium, usually in a distributed manner.
The conventional approach to the Medium Access Control
(MAC) problem is contention-based protocols in which mul-
tiple transmitters simultaneously attempt to access the wireless
medium and operate under some rules that provide enough
opportunities for the others to transmit. Examples of such
protocols in packet radio networks include ALOHA, MACAW,
CSMA/CA, etc[1].

However, in many contention-based protocols, it is possible
that two or more transmitters transmit their packet simul-
taneously, resulting in a collision. The collided packets are
considered useless in the conventional approaches. There is a
considerable literature on extracting partial information from
such collisions. Gollakota and Katabi [4] showed how to
recover multiple collided packets in a 802.11 system using
ZigZag decoding when there are enough transmissions involv-
ing those packets. In fact, they suggest that each collision can
be treated as a linearly independent equation of the packets
involved. ZigZag decoding is based on interference cancelation,
and hence, requires a precise estimation of channel attenuation
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and phase shift for each packet involved in a collision. ZigZag
decoding provides a fundamentally new approach to manage in-
terference in a wireless setting that is essentially decentralized,
and can recover losses due to collisions. In this work, we wish
to understand the effects of this new approach to interference
management in the high SNR regime, where interference, rather
than noise, is the main limiting factor for system throughput.

We first provide an abstraction of a single-hop wireless
network with erasures when a generalized form of ZigZag de-
coding is used at the receiver, and network coding is employed
at the transmitters. We introduce an algebraic representation of
the collisions at the receivers, and study conditions under which
a collision can be treated as a linearly independent equation
(degree of freedom) of the original packets at the senders. We
use this abstract model to analyze the delay performance of the
system in various scenarios.

Second, we analyze a single-hop wireless erasure network,
when each sender has one packet to deliver to all of its
neighbors. We characterize the expected time to deliver all of
the packets to each receiver when collisions of arbitrary number
of packets are recoverable. We observe that with collision
recovery we can deliver n packets to a receiver in n+O(1) time
slots, where n is the degree (contention level) of that particular
receiver. This is significantly smaller than the delivery time
of centralized scheduling and contention-based mechanisms
such as slotted ALOHA. In the case that collisions of only
a limited number of packets can be recovered, we propose
a random access mechanism in conjunction with collision
recovery to limit the level of contention at the receiver. Our
numerical results show that such a scheme provides a significant
improvement upon contention-based mechanisms even if each
recoverable collision is limited to only two packets.

The literature related to collision recovery methods include
the works by Tsatsanis et al. [9], and Paek and Neely [7]. In
this literature, once a collision of k packets occurs, all senders
remain silent until those involved in the collision retransmit
another k − 1 times. Our proposed scheme, however, does not
require such coordination and consecutive collisions can consist
of arbitrary collection of packets.

The rest of this paper is organized as follows. In Section II,
we present an abstract model of a single-hop wireless network
with erasures. Section II-A discusses an algebraic representa-
tion of the collisions at the receivers. Section III is dedicated to
mean delivery time characterization of a single-receiver system
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Fig. 1. Single-hop wireless network model with n senders and r receivers

for various interference management schemes. In Section IV,
we generalize the results of the preceding section to the case of
a single-hop wireless network with multiple receivers. Finally,
concluding remarks and extensions are discussed in Section V.

II. SYSTEM MODEL

The system consists of a single-hop wireless network with n
senders and r receivers. We assume that a node cannot be both
a sender and a receiver. The connectivity is thus specified by a
bipartite graph. Fig. 1 shows an example of such a network.

We assume that time is slotted. Every sender is equipped with
an infinite sized buffer. The goal of a sender is to deliver all
of its packets to each of its neighbors, i.e., the set of receivers
to which it is connected.

In every slot, a sender can broadcast a packet to its neigh-
bors. Owing to the fading nature of the wireless channel, not
all packet transmissions result in a successful reception at every
neighbor. Each link between any sender i and any receiver
j may experience packet erasures. These erasures occur with
probability p, and are assumed to be independent across links
and over time. This type of erasure is to model the effect of
obstacles between the senders and the receivers. The channel
state between i and j at time slot t is denoted by cij(t).

At the end of every slot, each receiver is allowed to send an
acknowledgment (ACK) to any one of the senders to which it
is connected. A packet is retained in the sender’s queue until
it has been acknowledged by all the receivers. We ignore the
overhead caused by the ACKs, and assume that the ACKs are
delivered reliably without any delay.

Note that a collision of packets at a receiver does not
immediately imply an erasure. It may be possible to extract
useful information from collisions. In the following, we discuss
how a collision could be thought of as a linear combination of
the original packets at the sender.

A. An algebraic representation of collisions

In this section, we introduce an algebraic representation of
collisions. The collision of two packets is essentially the su-
perposition of the physical signal corresponding to the packets.
A packet is a vector of bits that can be grouped into symbols
over a finite field Fl. For the rest of this section, we represent
a packet as a polynomial over the delay variable D, with
coefficients being the symbols of Fl that form the packet. The
mapping from the packet to the corresponding physical signal
is a result of two operations – channel coding and modulation.

We abstract these two operations in the form of a map M from
symbols over Fl to the complex number field:

M : Fl → C

We assume that the map M is such that given a complex
number, there is a well-defined demodulation and channel
decoding method that outputs the symbol from Fl that is most
likely to have been transmitted.

Remark 1: The above assumption essentially says that the
channel coding occurs over blocks of log2 l bits (corresponding
to a single symbol of Fl). Depending on l, this could mean a
short code length, which would be effective only at high SNR.

Let X(D) and Y (D) be two packets at two different senders,
represented as polynomials over Fl. The coding and modulation
results in a signal polynomial over the complex field: SX(D)
and SY (D). Suppose that these two packets collide with each
other at a receiver twice, in two different time slots. We denote
h

(t)
j to be the channel coefficient in slot t from sender j.
When packets collide, they may not be perfectly aligned. Let

u
(t)
j denote the offset (in symbols) of the packet from sender
j within slot t measured from the beginning of the slot. We
assume that a packet is significantly longer than the offsets, so
that the loss of throughput because of these offsets is negligible.

The channel gains, offsets and the identity of the packets that
are involved in the collision are assumed to be known at the
receiver. Then, the two collisions can be represented thus:(
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C2(D)
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h

(1)
1 Du
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)(
S1(D)
S2(D)

)
,

or alternately, C = HS.
Therefore, with n collisions of the same n packets, it is

possible to decode them all as long as the n×n transfer matrix
H is invertible over the field of rational functions of D. The
process of decoding by inverting this matrix is more general
than the ZigZag procedure of [4]. The decoding process will
result in the signals corresponding to the original packets. The
signals will then have to be demodulated and decoded (channel
coding) to obtain the original data. This algebraic representation
formalizes the intuition introduced in [4] that every collision is
like a linear equation in the original packets.

B. Combining packet coding with collision recovery

Due to the broadcast constraint of the wireless medium, a
sender that wants to broadcast data to several receivers will have
to code across packets over a finite field in order to achieve the
maximum possible throughput. Random linear coding is known
to achieve the multicast capacity over wireless erasure networks
[6]. Suppose that the sender codes across packets over the field
Fl and that the coding coefficients are known at the receiver.

This can also be incorporated into the above formulation in
the following sense. Suppose a receiver receives n collisions,
where the colliding packets in each collision are themselves
finite-field linear combinations of a collection of n original
packets, then it is possible to decode all n packets.
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Fig. 2. Combining packet coding with collision recovery

This is immediately seen if we assume that that the coding
and modulation are linear operations, i.e., that M is a linear
function with respect to the symbols of the original packets. In
this case, the above matrix representation will still hold, and the
invertibility condition for decoding will also be true. However,
in general, the modulation operation may not be linear with
respect to the original packets’ symbols. Even in this case, we
can still decode the n packets from n collisions.

We explain this using a simple example with two senders
and one receiver. Suppose the first sender has two packets x
and y and the second sender has a single packet z. The first
sender transmits a random linear combination of its two packets
in every slot, while the second sender repeat packet z in every
slot. Figure 2 shows the collisions in three different time slots.
Using the three collisions, the receiver can decode all three
packets as follows. The offsets between the first and second
senders’ packets in the three collisions are τ1, τ2 and τ3. From
the figure, since the first τ2 symbols of the first two collisions
are interference-free, we can decode the first τ2 symbols of
x and y. Using this, we can compute the first τ2 symbols of
α(3)x+β(3)y, and thereby obtain the first (τ2−τ3) symbols of
z. This process can be continued after subtracting these symbols
from the other collisions.

We assume throughout this paper that the field size l is large
enough such that every collision counts as a new degree-of-
freedom (also called innovative) if and only if it involves at
least one packet that has not yet been decoded. Every such
collision counts as one step towards decoding the packets.

III. SINGLE RECEIVER CASE

In this section, we study a special case where there is only
one receiver in the network. We shall show later in this paper
that the results derived in this section generalize to the multiple
receiver case. We study a scenario where every sender has a
single packet that needs to be delivered to the receiver.

Definition 1: Consider a single-hop network with a single
receiving node and n senders, each having one packet to
transmit. Define the delivery time, TD(n), as the time to
transmit all packets successfully to the receiver.

We can divide the delivery time into n portions, where the
kth portion corresponds to the additional time required for the

receiver to send the kth ACK, starting from the time when the
previous (i.e. (k−1)st) ACK was sent. We define the following
notation, for k = 1, 2, . . . n:

Tk = Time when the receiver sends the kth ACK
Xk = Tk − Tk−1 (T0 is assumed to be 0).

Note that TD(n) is then given by:

TD(n) = Tn =

n∑
k=1

Xk (1)

The goal of this section is to characterize the expectation
of the delivery time for collision recovery, and to compare
it with contention-based protocols and a central scheduling
mechanism. First we study schemes that treat any collision as
a loss. In this case, collisions have to be avoided either by
centralized coordination among the senders, or in a distributed
way by having senders access the channel in a probabilistic
manner, as studied in the literature (see Chapter 4 of [1]).

A. Centralized scheduling
We assume that the receiver, upon successfully receiving a

packet, sends an acknowledgment to the corresponding sender.
With centralized scheduling, we assume the following policy.
The channel is initially reserved for sender 1, up to the point
when its packet is acknowledged. At this point, the channel is
reserved for sender 2, and so on. In this setting, the calculation
of the expected delivery time is straightforward. For each
sender, the delivery is complete in the first slot when the
channel from that sender to the receiver is not under erasure.
The time Xk between the (k − 1)st and the kth ACK, which
is also the delivery time for the kth sender, is thus a geometric
random variable, with mean 1

1−p . This implies that the total
expected delivery time under centralized scheduling policy is
given by:

E[TD(n)] =

n∑
k=1

E[Xk] =
n

1− p
.

Note that the delivery time for centralized scheduling is nor-
mally a lower bound for the delivery time of other distributed
probabilistic approaches because it ensures that there is no
collision. However, even perfect collision avoidance does not
result in full exploitation of the resources because of the empty
time slots due to channel erasures.

B. Random access
In this case, we assume that in every slot, each sender

transmits its packet with probability q until it is acknowledged.
The choice of whether to transmit or not is made independently
across senders and across time. Note that, by controlling the
access probability q, the senders can control the level of
contention and thereby prevent collisions.

Theorem 1: The expected delivery time for the random
access scheme with an access probability q is given by:

E[TD(n)] =

n∑
k=1

1

kqe(1− qe)k−1
.
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where qe = q(1−p) is the effective probability of access, after
incorporating the erasures.

Proof: If a sender decides to transmit in a given slot, then
it might still experience an erasure with probability p. Hence,
the effective access probability is qe = q(1− p).

Consider the interval corresponding to Xn−k+1. In this
interval, there are k unacknowledged senders. Therefore, at
each time slot, the number of senders that the receiver can hear
from follows a binomial distribution with parameters (k, qe).
A successful reception occurs when exactly one sender is
connected, which happens with probability kqe(1 − qe)

k−1.
Thus, Xn−k+1 is a geometric random variable with mean
(kqe(1− qe)k−1)−1. The result follows from Eqn. (1).

Corollary 1: If the access probability q = 1
n , then:

E[TD(n)] = O(n log n).

C. Collision Recovery

Next, we consider the scenario where the receiver has colli-
sion recovery capability. In this scenario, every sender transmits
its packet in every slot until acknowledged by the receiver.

With collision recovery, there are multiple ways to ac-
knowledge a packet. The conventional method is to ACK a
packet when it is decoded. However, we propose a new ACK
mechanism that is not based on decoding. The key observation
is that upon receiving an equation (collision), the receiver can
afford to ACK any one of the senders involved in that collision.

In the following theorem, we show that this form of acknowl-
edgments will still ensure that every packet is correctly decoded
by the receiver eventually.

Theorem 2: Consider a single-hop network with n senders
and one receiver capable of performing collision recovery. Sup-
pose the receiver, upon a reception, acknowledges an arbitrary
sender among those involved in the collision. When the receiver
sends the nth ACK, it can successfully decode all n packets.

Proof: Let Wk be the set of packets that have been decoded
at time Tk, i.e., immediately after sending the kth ACK. Also,
let Ak be the set of packets that have been ACKed at time Tk
including the kth ACK. We shall show that Wk ⊆ Ak for all
k = 1, 2, . . . n.

For any k = 1, 2, . . . n, let |Wk| = m. This means, among
the first k receptions, there are at least m linearly independent
equations involving only these m packets (from Section II-A).
For every reception, the receiver always ACKs exactly one of
the senders involved in the collision. This means, corresponding
to these m equations, m ACKs were sent by the receiver to a
set of senders within Wk.

An ACKed sender never transmits again. Since the receiver
always ACKs one of the senders involved in a collision, no
sender will be ACKed more than once. Hence, these m ACKs
are sent to m distinct senders in Wk. This means all senders
in Wk have been ACKed.

We have shown that Wk ⊆ Ak for all k = 1, 2, . . . n. A
sender that has been ACKed will not transmit again. Hence,
every reception will only involve senders whose packet has not

been decoded. This implies that every reception is innovative
(see Section II-A).

Therefore, at the point of sending the nth ACK, the receiver
has n linearly independent equations in n unknowns, and hence
can decode all the packets.

We shall now derive the expected delivery time for a receiver
with collision recovery capability.

Theorem 3: For collision recovery approach, the expected
delivery time is given by:

E[TD(n)] =

n∑
k=1

1

1− pk
= n+O(1).

Proof: At time Tk, k distinct senders have been ACKed,
and only (n − k) senders will attempt transmission. From
the proof of Theorem 2, every collision at the receiver will
result in an innovative linear combination. Hence, an innovative
reception occurs if and only if not all of the (n − k) senders
experience an erasure. The time to receive the next innovative
packet, Xk+1, is thus a geometric random variable with mean
1/(1− pn−k). Now, by Eqn. 1, we obtain the following:

E[TD(n)] =

n∑
k=1

1

1− pk
= n+

n∑
k=1

pk

1− pk

≤ n+
1

1− p

n∑
k=1

pk ≤ n+
p

(1− p)2
= n+O(1).

Let us now compare this scheme with a centralized schedul-
ing mechanism. Centralized scheduling requires a central con-
troller that assigns every time slot to a single sender, and
achieves a delivery time of n/(1−p). In contrast, in the collision
recovery approach, no coordination is necessary among the
senders, and yet, the delivery time is n+O(1), that is close to
the lower bound of n slots for delivering n packets.

Such an improvement in performance can be explained as
follows. For centralized scheduling, since only one user is
scheduled to transmit in a time-slot, the time-slot will be wasted
from the receiver’s point of view, with probability p. In contrast,
with collision recovery, since all the unacknowledged senders
attempt to access the channel in a given slot, we obtain a
diversity benefit – if even one of the attempting senders does
not experience an erasure, the slot is useful to the receiver.

D. Collision recovery with random access

The earlier subsection assumed that a collision of any number
of packets can be treated as a linear equation involving those
packets. The largest number of packets that can be allowed to
collide for collision recovery to still work depends on the range
of the received Signal-to-Noise Ratio (SNR). In practice, if a
collision involves more than 3 or 4 packets, then a collision
recovery method such as ZigZag decoding process is likely to
fail, owing to error propagation.

Hence, in a more realistic setup, we need to limit the level
of contention in order to ensure that more collisions at the
receiver are useful. In this part of the paper, we explore
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the possibility of combining collision recovery with random
access. Instead of allowing every unacknowledged sender to
transmit, each sender opportunistically transmits its packet with
some probability q. Thus, the expected number of transmitting
senders is reduced, which in turns limits the expected number of
colliding packets in one time slot. We assume that any collision
involving more than C packets is not useful. This scheme is
expected to perform better than conventional random access
with no collision recovery, since a collision of C or fewer
packets is not useless, but is treated as one received linear
equation. Under this assumption, we can derive the expected
delivery time in a manner similar to the analysis of simple
random access.

Theorem 4: The expected delivery time for the random
access scheme with an access probability q is given by:

E[TD(n)] =

n∑
k=1

1∑min(C,k)
m=1

(
k
m

)
qme (1− qe)k−m

,

where qe = q(1−p) is the effective probability of access, after
incorporating the erasures.

Proof: Consider the interval corresponding to Xn−k+1. In
this interval, there are k unacknowledged senders. Therefore,
as in Theorem 1, at each time slot, the number of senders that
the receiver can hear from follows a binomial distribution with
parameters (k, qe), where qe is the effective access probability
of a sender, given by qe = q(1− p).

A successful reception occurs when C or fewer senders is
connected, which happens with probability

pk =

min(C,k)∑
m=1

(
k

m

)
qme (1− qe)k−m.

Thus, Xn−k+1 is a geometric random variable with mean 1/pk.
Using Eqn. 1, we obtain the desired result.

The design parameter q should be chosen so as to minimize
the delivery time. Unfortunately, the exact characterization of
the optimal q in closed form seems difficult to obtain. In the
following section, we compare the expected delivery time for
the above schemes, with the optimal values of q computed
numerically.

E. Numerical results

Fig. 3 shows the expected delivery time for the different
schemes discussed above, as a function of the number of
senders n. The plot compares conventional random access
approach with collision recovery approaches for different values
of the contention limit C, which is the maximum number of
packets that can be allowed to collide for the collision to be
considered useful.

The contention level is controlled by adjusting the access
probability q. In the unlimited collision recovery case, i.e.,
when we have no contention limit, there is no need to reduce
contention through random access, and hence q is set to 1. For
the other cases, for each n, the value of q is chosen so as to
minimize the delivery time.

Fig. 3. The delivery time for p = 1/3 for different schemes

The main observation is that by allowing collision recovery,
the expected delivery time is significantly reduced, as compared
to conventional random access where any collision is treated
as being useless. We also observe that the delivery time drops
with an increase in the contention limit C. In the unlimited
collision recovery case, we can see that the delivery time is
very close to the best possible time of n slots.

The value of the erasure probability p, is fixed at 1/3.
However, we found that varying the value of p does not
significantly affect the delivery time for the other schemes. In
contrast, the plot for the centralized scheduling case (not shown
in the figure), would be a straight line with slope 1/(1 − p).
In other words, the delivery time for centralized scheduling is
sensitive to p.

Intuitively, the reason is, the random access approaches are
allowed to change the access probability to reach a certain
level of contention at the receiver. As the erasure probability
p increases, the senders can compensate by increasing their
access probability q to achieve the same contention level.

IV. MULTIPLE RECEIVER CASE

In this section, we generalize the results of the preceding
parts to the case of a single-hop wireless erasure channel with
multiple senders and receivers. Denote by ΓO(i) the set of
receivers that can potentially receive a packet from sender i,
and write ΓI(j) for the set of senders that can reach receiver j.
Recall that the senders are constrained to broadcast the packets
on all outgoing links. The goal of each sender is to deliver
all the packets in its queue to each of its neighbors. In the
following we characterize the delivery time of the network for
the collision recovery approach.
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Define the delivery time of receiver j, T (j)
D , as the time taken

by receiver j to successfully decode all packets transmitted
from all senders in ΓI(j).

A centralized scheduling scheme involves assigning at most
one sender to each receiver so that collisions are avoided. How-
ever, unlike the single receiver case, it is not always feasible to
assign exactly one sender to each receiver owing to interference.
For example, in the configuration depicted in Fig. 1, we cannot
allow both of the senders to transmit simultaneously. Hence,
the delivery time for a particular receiver is larger than the
case where other receivers are absent. Therefore, we have

T
(j)
D ≥ |ΓI(j)|

1− p
.

With a collision recovery method such as ZigZag decoding
in place, every sender keeps transmitting its packet until an
acknowledgement is received from all of its neighbor receivers.
If we use the acknowledgement mechanism as in the single
receiver case, i.e., ACK any of the packets involved in a
collision, then sending an acknowledgement does not neces-
sarily correspond to receiving a degree of freedom. Moreover,
multiple ACKs may be sent to the same sender while the other
senders are not acknowledged even after decoding their packets.
This is so since a sender does not stop broadcasting its packet
unless receiving ACKs from all of its neighbors. Here, we
slightly modify the acknowledgement mechanism as follows.
Upon a reception at each receiver, the receiver acknowledges
any of the packets involved in the reception (collision) that have
not already been acknowledged.

Theorem 5: Consider a single-hop wireless erasure network
with collision recovery at the receivers. The expected delivery
time for each receiver j is bounded from above as

E
[
T

(j)
D

]
≤
|ΓI(j)|∑
k=1

1

1− pk
= |ΓI(j)|+O(1).

Proof: Fix a particular receiver j. Suppose each sender
in ΓI(j) stops transmitting after receiving an ACK from j.
By Theorem 2 all of the packets at the neighbors of j are
decodable, once all of the senders in ΓI(j) are acknowledged,
i.e., the system of |ΓI(j)| equation at receiver j is full rank.
Therefore, even if the acknowledged packet gets retransmitted,
the receiver j will have a full rank system after sending |ΓI(j)|
ACKs. Now we can divide the delivery time into intervals
corresponding to ACK instances, i.e.,

T
(j)
D (n) ≤

|ΓI(j)|∑
k=1

X
(j)
k , (2)

where X(j)
k is the duration between sending the (k−1)st ACK

and kth ACK. The inequality could be strict if the system of
equations becomes full rank before sending the last ACK.

Note that, at a give time slot, a new ACK is sent by receiver
j if and only if a collision is received that involves at least
one unacknowledged packet. Therefore, X(j)

k+1 is a geometric
random variable with mean (1 − p|ΓI(j)|−k)−1. Similarly to

the proof of Theorem 3, the desired result is followed from
plugging this into (2).

The exact characterization of the expected delivery time re-
quires characterizing the exact decoding process that is beyond
the scope of this paper. Note that the upper bound on the
expected deliver time given by Theorem 5 differs from the
lower bound, |ΓI(j)|, by only a small constant.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied the delay and throughput
performance of collision recovery methods, e.g. ZigZag de-
coding [4], for a single-hop wireless erasure network. Using
an algebraic representation of the collisions allowed us to
view receptions at a receiver as linear combinations of the
packets at the senders. This algebraic framework provides
alternative collision recovery methods to ZigZag decoding and
generalizations for the case when the transmitted packets are
themselves coded versions of the original packets.

We have focused on the completion time for all of the senders
to deliver a single packet to their neighbor receivers. We show
that the completion time at a receiver with collision recovery
is at most a constant away from the degree of that receiver
which is the ultimate lower bound in this setup. Moreover, for
the case that collisions of only a limited number of packets
can be recovered, we propose a random access mechanism
in conjunction with collision recovery to limit the level of
contention at the receiver. Our numerical results show that such
a scheme provides a significant improvement upon contention-
based mechanisms even if each recoverable collision is limited
to only two packets.

In our future work, we study the streaming case where
packets arrive at each sender according to some arrival process
and characterize the stability region of the system when a
collision recovery mechanism is available at each receiver.
Further, we present an acknowledgement mechanism similar
to the one in [8] that could serve as an ARQ-type mechanism
for achieving the capacity of a wireless erasure network when
both broadcast and interference constraints are present.
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