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On Resource Allocation in Fading Multiple Access

Channels - An Efficient Approximate Projection

Approach
Ali ParandehGheibi, Atilla Eryilmaz, Asuman Ozdaglar, and Muriel Médard

Abstract

We consider the problem of rate and power allocation in a multiple-access channel. Our objective is to obtain rate

and power allocation policies that maximize a general concave utility function of average transmission rates on the

information theoretic capacity region of the multiple-access channel without using queue-length information. First,

we address the utility maximization problem in a non-fading channel and present a gradient projection algorithm

with approximate projections. By exploiting the polymatroid structure of the capacity region, we show that the

approximate projection can be implemented in time polynomial in the number of users. Second, we present optimal

rate and power allocation policies in a fading channel where channel statistics are known. For the case that channel

statistics are unknown and the transmission power is fixed, we propose a greedy rate allocation policy and characterize

the performance difference of this policy and the optimal policy in terms of channel variations and structure of the

utility function. The numerical results demonstrate superior convergence rate performance for the greedy policy

compared to queue-length based policies. In order to reduce the computational complexity of the greedy policy, we

present approximate rate allocation policies which track the greedy policy within a certain neighborhood.

Index Terms

Fading channel, multiple access, power control, rate splitting, resource allocation, utility maximization.

I. INTRODUCTION

Dynamic allocation of communication resources such as bandwidth or transmission power is a central issue in

multiple access channels in view of the time varying nature of the channel and the interference effects. Most of

the existing literature focuses on specific communication schemes such as TDMA (time-division multiple access)

[1], CDMA (code-division multiple access) [2], [3], and OFDM (Orthogonal Frequency Division Multiplexing) [4]

systems. An exception is the work by Tse and Hanly [5], which consider the notion of throughput capacity for the

fading channel with Channel State Information (CSI). The throughput capacity is the notion of Shannon capacity

applied to the fading channel, where the codeword length can be arbitrarily long to average over the fading of
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the channel. Tse and Hanly [5] consider allocation of rate and power to maximize a linear utility function of the

transmission rates over the throughput region, which characterizes the points on the boundary of the throughput

capacity region.

In this paper, we consider the problem of rate and power allocation in a multiple access channel with perfect

CSI. Contrary to the linear case in [5], we consider maximizing a general utility function of transmission rates.

Such a general concave utility function allows us to capture different performance metrics such as fairness or delay

(cf. Shenker [6], Srikant [7]).

Given a utility function, there are different notions of optimality for resource allocation policies. Below, we give

an overview of three criteria for optimality of a rate allocation policy.

1) Long-term optimality: The optimal policy in this case maximizes the utility of the expected achieved rate

over the throughput region. This type of metric is interesting when the communication period is significantly

large and oscillations in the allocated rate do not matter, e.g. when downloading a large file.

Various works in the literature such as the works by Tse and Hanly [5], Eryilmaz and Srikant [8], and Neely

et al. [9] consider this notion of optimality.

2) Short-term optimality: The optimal policy in this case maximizes the utility function over the instantaneous

capacity region at each time slot. This metric is normally employed for delay sensitive traffic and traffic bursts

as well as uncertain environments.

Note that maximizing the expected utility of the allocated rates requires short-term optimality for almost all

channel states. Also, we will see later in this paper that short-term optimality criterion coincides with the

long-term optimality for linear utility functions.

3) Discounted long-term optimality: In this case, the optimal policy maximizes the utility of a discounted average

of the allocated rates over the throughput region. This optimality criterion lies between the two extremes

presented above. This criterion allows choosing the discount factor so that we can adapt to the latency

requirement of the traffic.

Among several works in the literature addressing this criterion, the works by Agrawal and Subramanian [10],

and Stolyar [11] are closely related to our setup. Agrawal and Subramanian [10] develop optimal rate allocation

policies under a strict convexity type assumption for the capacity region. Stolyar relaxes this assumption in

[11] by focusing on a fixed (not time dependent) discount factor, and studying the asymptotic optimality

when the discount factor goes to one.

In this paper, we focus on both long-term and short-term optimality criteria of resource allocation policies. Our

contributions can be summarized as follows.

We first consider a non-fading multiple-access channel where we introduce a gradient projection algorithm for

the problem of maximizing a concave utility function of transmission rates over the capacity region. We establish

the convergence of the method to the optimal rate vector. Since the capacity region of the multiple-access channel

is described by a number of constraints exponential in the number of users, the projection operation used in the

method can be computationally expensive. To reduce the computational complexity, we introduce a new method that

utilizes approximate projections. By exploiting the polymatroid structure of the capacity region, we show that the

approximate projection operation can be implemented in time polynomial in number of users by using submodular

function minimization algorithms. Moreover, we present a more efficient algorithm for the approximate projection

problem which relies on rate-splitting [12]. This algorithm also provides the extra information that allows the
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receiver to decode the message by successive cancelation.

Second, we consider the case where the transmitters do not have the power control feature and channel statistics

are not known. We study long-term and short-optimal (greedy) rate allocation policies. We show that the short-term

optimal policy, which greedily maximizes the utility function for any given channel state, is suboptimal in the long-

term sense for general nonlinear utility functions. However, we can bound the long-term performance difference

between the greedy and long-term optimal policies. We show that this bound is tight in the sense that it goes to

zero either as the utility function tends to a linear function of the rates or as the channel variations vanish.

The short-term optimal policy requires exact solution of a nonlinear program in each time slot, which makes

it computationally intractable. To alleviate this problem, we present approximate rate allocation policies based on

the gradient projection method with approximate projection and study its tracking capabilities when the channel

conditions vary over time. In our algorithm, the solution is updated in every time slot in a direction to increase the

utility function at that time slot. But, since the channel may vary between time-slots, the level of these temporal

channel variations become critical to the performance. We explicitly quantify the impact of the speed of fading on

the performance of the policy, both for the worst-case and the average speed of fading. Our results also capture

the effect of the degree of concavity of the utility functions on the average performance.

Finally, we study jointly optimal rate and power allocation problem in a fading channel where channel statistics

are known and transmission power can be controlled at the transmitters. Owing to strict convexity properties of the

capacity region along the boundary, we show that the resource allocation problem for a general concave utility is

equivalent to another problem with a linear utility. Hence, the optimal resource allocation policies are obtained by

applying the results in [5] for the linear utility. Given a general utility function, the conditional gradient method is

used to obtain the corresponding linear utility.

An important literature relevant to our work appears in the context of cross-layer design, where joint scheduling-

routing-flow control algorithms have been proposed and shown to achieve utility maximization for concave utility

functions while guaranteeing network stability (e.g. [13], [8], [9], [14]). The common idea behind these schemes

is to use properly maintained queues to make dynamic decisions about new packet generation as well as rate

allocation.

Some of these works ([8], [9]) explicitly address the fading channel conditions, and show that the associated

policies can achieve rates arbitrarily close to the optimal based on a design parameter choice. However, the rate

allocation with these schemes requires that a large optimization problem requiring global queue-length information

be solved over a complex feasible set in every time slot. Clearly, this may not always be possible owing to

the limitations of the available information, the processing power, or the complexity intrinsic to the feasible set.

Requirement for queue-length information may impose much more overhead on the system than channel state

information. On the other hand, even in the absence of fading, the interference constraints among nearby nodes’

transmissions may make the feasible set so complex that the optimal rate allocation problem becomes NP-hard (see

[15]). Moreover, the convergence results of queue-length based policies ([8], [9]) are asymptotic, and our simulation

results show that such policies may suffer from poor convergence rate. In fact, duration of a communication session

may not be sufficient for these algorithms to approach the optimal solution while channel-state based policies such

as the greedy policy seems to have superior performance when communication time is limited, even though the

greedy policy does not use queue-length information.

In the absence of fading, several works have proposed and analyzed approximate randomized and/or distributed
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rate allocation algorithms for various interference models to reduce the computational complexity of the centralized

optimization problem of the rate allocation policy ([16], [13], [17], [15], [18], [19]). The effect of these algorithms on

the utility achieved is investigated in [15], [20]. However, no similar work exists for fading channel conditions, where

the changes in the fading conditions coupled with the inability to solve the optimization problem instantaneously

make the solution much more challenging.

Other than the papers cited above, our work is also related to the work of Vishwanath et al. [21] which builds

on [5] and takes a similar approach to the resource allocation problem for linear utility functions. Other works

address different criteria for resource allocation including minimizing delay by a queue-length based approach [22],

minimizing the weighted sum of transmission powers [23], and considering Quality of Service (QoS) constraints

[24]. In contrast to this literature, we consider the utility maximization framework for general concave utility

functions.

The remainder of this paper is organized as follows: In Section II, we introduce the model and describe the

capacity region of a fading multiple-access channel. In Section III, we consider the utility maximization problem

in a non-fading channel and present the gradient projection method with approximate projection. In Section IV, we

address the optimal rate allocation problem when the transmission powers are fixed and channel statistics are not

available. We also present approximate rate allocation policies and study their tracking behavior. In Section V, we

generalize the problem to the case where power control is available, and propose jointly optimal rate and power

allocation schemes. Section VI provides the simulation results, and we give our concluding remarks in Section VII.

Regarding the notation, we denote by xi the i-th component of a vector x. We write x′ to denote the transpose

of a vector x. All vectors in this paper are assumed to be column vectors, and the transpose notation is used for

row vectors. We denote the nonnegative orthant by Rn+, i.e., Rn+ = {x ∈ Rn | x ≥ 0}. We use the notation Pr(·)
for the probability of an event in the Borel σ-algebra on Rn. The exact projection operation on a closed convex

set is denoted by P , i.e., for any closed convex set X ⊆ Rn and x ∈ Rn, we have P(x) = argminy∈X‖x − y‖,
where ‖ · ‖ denotes the Euclidean norm.

II. SYSTEM MODEL

We consider M transmitters sharing the same media to communicate to a single receiver. We model the channel

as a Gaussian multiple access channel with flat fading effects,

Y (n) =

M∑
i=1

√
Hi(n)Xi(n) + Z(n), (1)

where Xi(n) and Hi(n) are the transmitted waveform and the fading process of the i-th transmitter, respectively,

and Z(n) is bandlimited Gaussian noise with variance N0. We assume that the fading processes of all transmitters

are jointly stationary and ergodic, and the stationary distribution of the fading process has continuous density. We

assume that all the transmitters and the receiver have instant access to channel state information. In practice, the

receiver measures the channels and feeds back the channel information to the transmitters. The implicit assumption

in this model is that the channel variations are much slower than the data rate, so that the channel can be measured

accurately at the receiver and the amount of feedback bits is negligible compared to that of transmitting information.

Definition 1: The temporal variation in fading is modeled as follows:

|Hi(n+ 1)−Hi(n)| = V i
n, for all n, i = 1, . . . ,M, (2)
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where the V i
ns are nonnegative random variables independent across time slots for each i. We assume that for each

i, the random variables V i
n are uniformly bounded from above by v̂i, which we refer to as the maximum speed of

fading. Under slow fading conditions, the distribution of V i
n is expected to be more concentrated around zero.

Consider the non-fading case where the channel state vector is fixed. The capacity region of the Gaussian

multiple-access channel with no power control is described as follows [25],

Cg(P ,H) =

{
R ∈ RM+ :

∑
i∈S

Ri ≤ C
(∑
i∈S

HiPi, N0

)
, for all S ⊆M = {1, . . . ,M}

}
, (3)

where Pi and Ri are the i-th transmitter’s power and rate, respectively. C(P,N) denotes Shannon’s formula for

the capacity of the AWGN channel given by

C(P,N) =
1

2
log(1 +

P

N
) nats. (4)

For a multiple-access channel with fading, but fixed transmission powers Pi, the throughput capacity region is

given by averaging the instantaneous capacity regions with respect to the fading process [26],

Ca(P ) =

{
R ∈ RM+ :

∑
i∈S

Ri ≤ EH
[
C
(∑
i∈S

HiPi, N0

)]
, for all S ⊆M

}
, (5)

where H is a random vector with the stationary distribution of the fading process.

A power control policy π is a function that maps any given fading state h to the powers allocated to the

transmitters π(h) = (π1(h), . . . ,πM (h)). Similarly, we can define the rate allocation policy, R, as a function that

maps the fading state h to the transmission rates, R(h). For any given power-control policy π, the capacity region

follows from (5) as

Cf (π) =

{
R ∈ RM+ :

∑
i∈S

Ri ≤ EH
[
C
(∑
i∈S

Hiπi(H), N0

)]
, for all S ⊆M

}
. (6)

Tse and Hanly [5] have shown that the throughput capacity of a multiple access fading channel is given by

C(P̄ ) =
⋃
π∈G

Cf (π), (7)

where G = {π : EH [πi(H)] ≤ P̄i, for all i} is the set of all power control policies satisfying the average power

constraint. Let us define the notion of boundary or dominant face for any of the capacity regions defined above.

Definition 2: The dominant face or boundary of a capacity region, denoted by F(·), is defined as the set of all

M -tuples in the capacity region such that no component can be increased without decreasing others while remaining

in the capacity region.

III. RATE ALLOCATION IN A GAUSSIAN MULTIPLE ACCESS CHANNEL

In this section, we address the problem of finding the optimal operation rates in a non-fading Gaussian multiple-

access channel from utility maximization point of view. Without loss of generality, we fix the channel state vector

to unity throughout this section, and denote the capacity region by a simpler notation Cg(P ) instead of Cg(P ,1),

where P > 0 denotes the transmission power. A rate vector R∗ is called optimal if it is a solution to the following

utility maximization problem for a M -user channel.

maximize u(R)

subject to R ∈ Cg(P ), (8)
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Fig. 1. Approximate projection of R on a two-user MAC capacity region

where Ri and Pi are i-th user rate and power, respectively. The utility function u(R) is assumed to satisfy the

following conditions.

Assumption 1: The following conditions hold:

(a) The utility function u : RM → R is concave with respect to vector R.

(b) u(R) is monotonically increasing with respect to Ri, for i = 1, . . . ,M .

Assumption 2: There exists a scalar B such that

‖g‖ ≤ B, for all g ∈ ∂u(R) and all R,

where ∂u(R) denotes the subdifferential of u at R, i.e., the set of all subgradients 1 of u at R.

Note that Assumption 2 is standard in the analysis of subgradient methods for non-differentiable optimization

problems [27]. The maximization problem in (8) is a convex program and the optimal solution can be obtained

by several optimization methods such as the gradient projection method. The gradient projection method with

exact projection is typically used for problems where the projection operation is simple, i.e., for problems with

simple constraint sets such as the non-negative orthant or a simplex. However, the constraint set in (8) is defined

by exponentially many constraints, making the projection problem computationally intractable. To alleviate this

problem, we use an approximate projection, which is obtained by successively projecting on violated constraints.

Definition 3: Let X = {x ∈ Rn|Ax ≤ b,x ≥ 0}, where A is an m × n matrix with non-negative entries. The

approximate projection of a vector y ∈ Rn on X , denoted by P̃ , is given by

P̃(y) = P+

(
Pm
(
. . .
(
P2

(
P1(y)

))))
,

where Pi denotes the exact projection on the half-space {x ∈ Rn|a′ix ≤ bi}, and P+ is projection on the nonnegative

orthant Rn+.

An example of approximate projection on a two-user multiple-access capacity region is illustrated in Figure 1.

As shown in the figure, the result of approximate projection is not unique in general, but by definition it terminates

in finitely many steps. In order to compute the approximate projection it is sufficient to successively identify

the violated constraints and project on their corresponding hyperplanes. In the following, when we write P̃ , it

refers to an approximate projection for an arbitrary order of projections on the violated hyperplanes. Although the

approximate projection is not unique, it is pseudo-nonexpansive as claimed in the following Lemma.

Lemma 1: The approximate projection P̃ on Cg(P ), the capacity region of the multiple-access channel, given

by Definition 3 has the following properties:

1The vector g is a subgradient of a concave function f : D → R at x0, if and only if f(x)− f(x0) ≤ g′(x− x0) for all x ∈ D.
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(i) For any x, P̃(x) is feasible with respect to Cg(P ), i.e., P̃(x) ∈ Cg(P ).

(ii) Every x ∈ Cg(P ) is a fixed point of P̃ , i.e., P̃(x) = x.

(iii) P̃ is pseudo-nonexpansive, i.e.,

‖P̃(x)− x̃‖ ≤ ‖x− x̃‖, for all x̃ ∈ Cg(P ). (9)

Proof: For part (i), note that the constraints defining Cg(P ) are of the form Ax ≤ b in addition to the

nonnegativity constraints, where A is has nonnegative entries. It is straightforward to see that Pi(y), projection of

y on the half-space a′ix ≤ bi, is given by (cf. [28] Sec. 2.1.1)

Pi(y) = y − (a′iy − bi)+

‖ai‖
ai,

where (z)+ = max{z, 0}. Since ai has only non-negative entries, no component of y is increased after the

projection. Hence, the constraint i will not be violated in the subsequent projections. This shows that given an

arbitrary vector x, the result of successive projections on the half-spaces corresponding to the constraints Ax ≤ b
is feasible with respect to such constraints, i.e., R = Pm

(
. . .
(
P2

(
P1(x)

)))
satisfies∑

i∈S
Ri ≤ C

(∑
i∈S

Pi, N0

)
, for all S ⊆M = {1, . . . ,M}. (10)

Nevertheless, R could have negative components. It remains to show that R+ = P+(R) ∈ Cg(P ). It is clear

that

R+
i =

{
Ri, i ∈ N c;

0, i ∈ N ,

where N and N c are the set of indices of R with negative and nonnegative components, respectively. For any

S ⊆M, write ∑
i∈S

R+
i =

∑
i∈S∩N

R+
i +

∑
i∈S∩Nc

R+
i

= 0 +
∑

i∈S∩Nc

Ri

≤ C
( ∑
i∈S∩Nc

Pi, N0

)
≤ C

(∑
i∈S

Pi, N0

)
, (11)

where the first inequality holds by (10), and the second one is the result of monotonicity of C(P,N) = 1
2 log(1 +

P/N) with respect to P .

Part (ii) is true by definition of P̃ , because the set of violated constraints is empty for any feasible point and

projection of a feasible point on each half-space gives the same point.

Part (iii) can be verified by successively employing the nonexpansiveness property of projection on a closed

convex set (See Proposition 2.1.3 of [28]). Since x̃ is feasible in Cg(P ), it is a fixed point of P+ and Pi for all

i. We conclude the claim as follows

‖P̃(x)− x̃‖ =

∥∥∥∥P+

(
Pm
(
. . .
(
P2

(
P1(x)

))))
− P+

(
Pm
(
. . .
(
P2

(
P1(x̃)

))))∥∥∥∥
≤

∥∥∥∥Pm( . . . (P2

(
P1(x)

)))
− Pm

(
. . .
(
P2

(
P1(x̃)

)))∥∥∥∥
...

≤
∥∥P1(x)− P1(x̃)

∥∥ ≤ ‖x− x̃‖. (12)



8

Fig. 2. Gradient projection method with approximate projection on a two-user MAC region

Here, we present the gradient projection method with approximate projection to solve the problem in (8). The

k-th iteration of the gradient projection method with approximate projection is given by

Rk+1 = P̃(Rk + αkgk), gk ∈ ∂u(Rk), (13)

where gk is a subgradient of u at Rk, and αk denotes the stepsize. Figure 2 demonstrates gradient projection

iterations for a two-user multiple access channel. The following theorem provides a sufficient condition which can

be used to establish convergence of (13) to the optimal solution.

Theorem 1: Let Assumptions 1 and 2 hold, and R∗ be an optimal solution of problem (8). Also, let the sequence

{Rk} be generated by the iteration in (13). If the stepsize αk satisfies

0 < αk <
2
(
u(R∗)− u(Rk)

)
‖gk‖2

, (14)

then

‖Rk+1 −R∗‖ < ‖Rk −R∗‖. (15)

Proof: We have

‖Rk + αkgk −R∗‖2 = ‖Rk −R∗‖2 + 2αk(Rk −R∗)′gk + (αk)2‖gk‖2.

By concavity of u(·), we have

(R∗ −Rk)′gk ≥ u(R∗)− u(Rk). (16)

Hence,

‖Rk + αkgk −R∗‖2 ≤ ‖Rk −R∗‖2 − αk
[
2
(
u(R∗)− u(Rk)

)
− (αk)‖gk‖2

]
.

If the stepsize satisfies (14), the above relation yields the following

‖Rk + αkgk −R∗‖ < ‖Rk −R∗‖.

Now by applying pseudo-nonexpansiveness of the approximate projection we have

‖Rk+1 −R∗‖ = ‖P̃(Rk + αkgk)−R∗‖ ≤ ‖Rk + αkgk −R∗‖ < ‖Rk −R∗‖.
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Theorem 2: Let Assumptions 1 and 2 hold. Also, let the sequence {Rk} be generated by the iteration in (13).

If the stepsize αk satisfies (14), then {Rk} converges to an optimal solution R∗.

Proof: See Proposition 8.2.7 of [27].

The convergence analysis for this method can be extended for different stepsize selection rules. For instance,

Theorem 1 still holds if we employ the diminishing stepsize (cf. Chapter 6 of [28]), i.e.,

αk → 0,

∞∑
k=0

αk =∞,

or more complicated dynamic stepsize selection rules such as the path-based incremental target level algorithm

proposed by Brännlund [29]. This stepsize selection rule guarantees convergence to the optimal solution [27], and

has better convergence rate compared to the diminishing stepsize rule.

A. Complexity of the Projection Problem

Even though the approximate projection is simply obtained by successive projection on the violated constraints,

it requires to find the violated constraints among exponentially many constraints describing the constraint set. In

this part, we exploit the special structure of the capacity region so that each gradient projection step in (13) can

be performed in polynomial time in M .

Definition 4: Let f : 2M → R be a function defined over all subsets of M. The function f is submodular if

f(S ∪ T ) + f(S ∩ T ) ≤ f(S) + f(T ), for all S, T ∈ 2M. (17)

Lemma 2: Define fC(S) : 2M → R as follows:

fC(S) = C
(∑
i∈S

Pi, N0

)
, for all S ⊆M. (18)

If Pi > 0 for all i ∈ M, then fC(S) is submodular. Moreover, the inequality (17) holds with equality if and

only if S ⊆ T , or T ⊆ S.

Proof: The proof is simply by plugging the definition of fC(·) in inequality (17). In particular,

fC(S) + fC(T )− f(S ∪ T )− f(S ∩ T ) =
1

2
log

[
(N0 +

∑
i∈S Pi)(N0 +

∑
i∈T Pi)

(N0 +
∑

i∈S∩T Pi)(N0 +
∑

i∈S∪T Pi)

]
=

1

2
log

[
1 +

∑
(i,j)∈(S\T )×(T\S) PiPj

(N0 +
∑

i∈S∩T Pi)(N0 +
∑

i∈S∪T Pi)

]
≥ 0. (19)

Since Pi > 0, the above inequality holds with equality if and only if S \ T = ∅, or T \ S = ∅. This condition is

equivalent to S ⊆ T , or T ⊆ S.

Theorem 3: For any R̄ ∈ RM+ , define the constraint violation for each constraint of the capacity region (3) as

max
{∑
i∈S

R̄i − C
(∑
i∈S

Pi, N0

)
, 0
}
, S ⊆M.

Then the problem of finding the most violated capacity constraint can be written as a submodular function

minimization (SFM) problem, that is unconstrained minimization of a submodular function over all S ⊆M.

Proof: We can rewrite the capacity constraints of Cg(P ) as

fC(S)−
∑
i∈S

Ri ≥ 0, for all S ⊆M. (20)
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Thus, the most violated constraint at R̄ corresponds to

S∗ = arg min
S∈2M

fC(S)−
∑
i∈S

Ri.

By Lemma 2 fC is a submodular function. Since summation of a submodular and a linear function is also

submodular, the problem above is of the form of submodular function minimization.

It was first shown by Grötschel et al. [30] that an SFM problem can be solved in polynomial time. There are

several fully combinatorial strongly polynomial algorithms in the literature. The best known algorithm for SFM

proposed by Orlin [31] has running time O(M6). Note that approximate projection does not require any specific

order for successive projections. Hence, finding the most violated constraint is not necessary for approximate

projection. In view of this fact, a more efficient algorithm based on rate-splitting is presented in Appendix A, to

find a violated constraint. It is shown in Theorem 11 that the rate-splitting-based algorithm runs in O(M2 logM)

time, where M is the number of users.

Although a violated constraint can be obtained in polynomial time, it does not guarantee that the approximate

projection can be performed in polynomial time. This is so since it is possible to have exponentially many constraints

violated at some point and hence the total running time of the projection would be exponential in M . However,

we show that for a small enough stepsize in the gradient projection iteration (13), no more than M constraints can

be violated at each iteration. Let us first define the notions of expansion and distance for a polyhedra.

Definition 5: Let Q be a polyhedron described by a set of linear inequalities, i.e.,

Q = {x ∈ Rn : Ax ≤ b} . (21)

Define the expansion of Q by δ, denoted by Eδ(Q), as the polyhedron obtained by relaxing all the constraints in

(21), i.e., Eδ(Q) = {x ∈ Rn : Ax ≤ b+ δ1} , where 1 is the vector of all ones.

Definition 6: Let X and Y be two polyhedra described by a set of linear constraints. Let Ed(X) be an expansion

of X by d as defined in Definition 5. The distance dH(X,Y ) between X and Y is defined as the minimum scalar

d such that X ⊆ Ed(Y ) and Y ⊆ Ed(X).

Lemma 3: Let fC be as defined in (18). There exists a positive scalar δ satisfying

δ ≤ 1

2
(fC(S) + fC(T )− fC(S ∩ T )− fC(S ∪ T )), for all S, T ∈ 2M, S ∩ T 6= S, T, (22)

and for any such δ the relaxed capacity region Eδ(Cg(P )) of an M -user multiple-access channel violates no more

than M constraints of Cg(P ) defined in (3).

Proof: Existence of a positive scalar δ satisfying (22) follows directly from Lemma 2, using the fact that

neither S nor T contains the other one.

Suppose for some R ∈ Eδ(Cg(P )), there are at least M+1 violated constraints of Cg(P ). Since it is not possible

to have M + 1 non-empty nested sets in 2M, there are at least two violated constraints corresponding to some sets

S, T ∈ 2M where S ∩ T 6= S, T , and

−
∑
i∈S

Ri < −fC(S), (23)

−
∑
i∈T

Ri < −fC(T ). (24)
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Since R is feasible in the relaxed region,∑
i∈S∩T

Ri ≤ fC(S ∩ T ) + δ, (25)∑
i∈S∪T

Ri ≤ fC(S ∪ T ) + δ. (26)

Note that if S ∩ T = ∅, (25) reduces to 0 ≤ δ, which is a valid inequality.

By summing the above inequalities we conclude

δ >
1

2
(fC(S) + fC(T )− fC(S ∩ T )− fC(S ∪ T )), (27)

which is a contradiction.

Theorem 4: Let Assumptions 1 and 2 hold. Let P1 ≤ P2 ≤ . . . ≤ PM be the transmission powers.

If the stepsize αk in the k-th iteration (13) satisfies

αk ≤ 1

4B
√
M

log

[
1 +

P1P2

(N0 +
∑M

i=3 Pi)(N0 +
∑M

i=1 Pi)

]
, for all k, (28)

then at most M constraints of the capacity region Cg(P ) can be violated at each iteration step.

Proof: We first show that inequality in (22) holds for the following choice of δ:

δ =
1

4
log

[
1 +

P1P2

(N0 +
∑M

i=3 Pi)(N0 +
∑M

i=1 Pi)

]
. (29)

In order to verify this, rewrite the right hand side of (22) as

1

4
log

[
(N0 +

∑
i∈S Pi)(N0 +

∑
i∈T Pi)

(N0 +
∑

i∈S∩T Pi)(N0 +
∑

i∈S∪T Pi)

]
=

1

4
log

[
1 +

∑
(i,j)∈(S\T )×(T\S) PiPj

(N0 +
∑

i∈S∩T Pi)(N0 +
∑

i∈S∪T Pi)

]
≥ 1

4
log

[
1 +

P1P2

(N0 +
∑

i∈S∩T Pi)(N0 +
∑

i∈S∪T Pi)

]
≥ 1

4
log

[
1 +

P1P2

(N0 +
∑

i∈S∩T Pi)(N0 +
∑M

i=1 Pi)

]
≥ 1

4
log

[
1 +

P1P2

(N0 +
∑M

i=3 Pi)(N0 +
∑M

i=1 Pi)

]
.

The inequalities can be justified by using the monotonicity of the logarithm function and the fact that (S \ T )×
(T \ S) is non-empty because S ∩ T 6= S, T .

Now, let Rk be feasible in the capacity region, Cg(P ). For every S ⊆M, we have∑
i∈S

(Rki + αkgki ) =
∑
i∈S

Rki + αk‖gk‖
∑
i∈S

gki
‖gk‖

≤ fC(S) +
δ

B
√
M
B
∑
i∈S

gki
‖gk‖

≤ fC(S) + δ, (30)

where the first inequality follows from Assumption 1(b), Assumption 2, and Eq. (28). The second inequality holds

because for any unit vector d ∈ RM , it is true that∑
i∈S

di ≤
∑
i∈S
|di| ≤

√
M. (31)
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Thus, if αk satisfies (28) then (Rk+αkgk) ∈ Eδ(Cg(P )), for some δ for which (22) holds. Therefore, by Lemma

3 the number of violated constraints does not exceed M .

In view of the fact that a violated constraint can be identified in O(M2 logM) time (see the Algorithm in

Appendix A), Theorem 4 implies that, for small enough stepsize, the approximate projection can be implemented

in O(M3 logM) time.

In section IV, we will develop algorithms that use the gradient projection method for dynamic rate allocation in

a time varying channel.

IV. DYNAMIC RATE ALLOCATION IN FADING CHANNELS

In this part, we study the rate allocation problem for a fading channel when transmission powers are fixed to P .

In practice, this scenario occurs when the transmission power may be limited owing to environmental limitations

such as human presence, or limitations of the hardware. Throughout this section, we also assume that the channel

statistics are not known 2. The capacity region of the fading multiple access channel for this scenario is a polyhedron

given by (5).

We study both long-term and short-term optimal rate allocation policies with respect to a given utility function,

which we formally define next. We show that the short-term optimal and long-term optimal policies coincide if the

utility function is linear. Moreover, we show that the long-term performance of the short-term policy is close to

the long-term optimal policy. The rest of Section IV is dedicated to efficiently computing the short-term optimal

policy.

Definition 7: [Long-term Optimal Policy] The long-term optimal rate allocation policy denoted by R∗(·) is a

mapping that satisfies R∗(H) ∈ Cg
(
P ,H

)
for all H , such that

EH [R∗(H)] = R∗ ∈ argmax u(R)

subject to R ∈ Ca(P ). (32)

Definition 8: [Short-term Optimal Policy] A short-term optimal or greedy rate allocation policy3, denoted by R̄,

is given by

R̄(H) = argmax u(R)

subject to R ∈ Cg(P ,H) (33)

i.e., for each channel state, the greedy policy chooses the rate vector that maximizes the utility function over the

corresponding capacity region.

The utility function u(R) is assumed to satisfy the following conditions.

Assumption 3: For every δ > 0, let Nδ =
{
H : dH(Cg(P ,H), Ca(P )) ≤ δ

}
. The following conditions hold:

(a) There exists a scalar B(δ) such that for all H ∈ Nδ,

|u(R1)− u(R2)| ≤ B(δ)‖R1 −R2‖, for all Ri, ‖Ri‖1 ≥ Dδ, i = 1, 2,

2We could also develop optimal rate allocation algorithms for the case where powers are fixed and channel statistics are known. See [32]

for more details on this scenario.
3We use the terms short-term optimal policy and greedy policy interchangeably throughout this paper.
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where

Dδ = inf
H∈Nδ

sup
R∈Cg(P ,H)

‖R‖1. (34)

(b) There exists a scalar A(δ) such that for all H ∈ Nδ,

|u(R̄(H))− u(R)| ≥ A(δ)‖R̄(H)−R‖2, for all R ∈ Cg(P ,H).

Assumption 3(a) is a weakened version of Assumption 2, which imposes a bound on subgradients of the utility

function. This assumption only requires a bound on the subgradient in a neighborhood of the optimal solution and

away from the origin, which is satisfied by a larger class of functions. Assumption 3(b) is a strong concavity type

assumption. In fact, strong concavity of the utility implies Assumption 3(b), but it is not necessary. The scalar A(δ)

becomes small as the utility tends to have a linear structure with level sets tangent to the dominant face of the

capacity region. Assumption 3 holds for a large class of utility functions including the well known α-fair functions

given by

fα(x) =

{
x1−α

1−α , α 6= 1

log(x), α = 1,
(35)

which do not satisfy Assumption 2.

Note that the greedy policy is not necessarily long-term optimal for general concave utility functions. Consider

the following relations

EH
[
u
(
R∗(H)

)]
≤ EH

[
u
(
R̄(H)

)]
≤ u

(
EH
[
R̄(H)

])
≤ u

(
EH
[
R∗(H)

])
, (36)

where the first and third inequality follow from the feasibility of the long-term optimal and the greedy policy for

any channel state, and the second inequality follows from Jensen’s inequality by concavity of the utility function.

In the case of a linear utility function we have u
(
EH
[
R∗(H)

])
= EH

[
u
(
R∗(H)

)]
, so equality holds throughout

in (36) and R̄(·) is indeed long-term optimal as well as being short-term optimal. For nonlinear utility functions,

the greedy policy can be strictly suboptimal in the long term.

However, the greedy policy is not arbitrarily worse than the long-term optimal one. In view of (36), we can

bound the performance difference, u(R∗) − u
(
EH
[
R̄(H)

])
, by bounding

∣∣∣u(EH[R∗(H)
])
− u

(
EH
[
R̄(H)

])∣∣∣
or
∣∣∣u(EH[R∗(H)

])
− EH

[
u
(
R∗(H)

)]∣∣∣ from above. We show that the first bound goes to zero as the channel

variations become small and the second bound vanishes as the utility function tends to have a more linear structure.

Before stating the main theorems, let us introduce some useful lemmas. The first lemma asserts that both long-term

optimal and greedy policies assign rates on the dominant face of the capacity region.

Lemma 4: Let u(·) satisfy Assumption 1(b). Also, let R∗(·) and R̄(·) be long-term and short-term optimal rate

allocation policies as in Definitions 7 and 8, respectively. Then,

(a) R̄(H) ∈ F
(
Cg(P ,H)

)
, for all H.

(b) Pr
{
H : R∗(H) ∈ F

(
Cg(P ,H)

)}
= 1.

where F(·) denotes the dominant face of a capacity region (cf. Definition 2).

Proof: Part (a) is direct consequence of Assumption 1(b) and Definition 2. If the optimal solution to the utility

maximization problem is not on the dominant face, there exists a user i such that we can increase its rate and
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keep all other user’s rates fixed while staying in the capacity region. Thus, we are able to increase the utility by

Assumption 1(b), which leads to a contradiction.

For part (b), first note that with the same argument as above we have

R∗ = EH [R∗(H)] ∈ F
(
Ca(P )

)
. (37)

From Definition 2 and the definition of throughput capacity region in (5), we have

EH
[ M∑
i=1

R∗i (H)
]

= EH
[
C
( M∑
i=1

HiPi, N0

)]
. (38)

Thus,
∑M

i=1R∗i (H) = C
(∑M

i=1HiPi, N0

)
, with probability one, because C

(∑M
i=1HiPi, N0

)
−
∑M

i=1R∗i (H) ≥
0, for all H . Therefore, by definition of MAC capacity region in (3) we conclude R∗(H) ∈ F

(
Cg(P ,H)

)
, with

probability one.

The following lemma extends Chebyshev’s inequality for capacity regions. It states that, with high probability,

the time varying capacity region does not deviate much from its mean.

Lemma 5: Let H be a random vector with the stationary distribution of the channel state process, mean H̄ and

covariance matrix K. Then

Pr
{
dH (Cg(P ,H), Ca(P )) > δ

}
≤
σ2
H

δ2
, (39)

where σ2
H is defined as

σ2
H ,

1

4

∑
S⊆{1,...,M}

Γ′SKΓS

1 +

[
(1 + Γ′SH̄)(

√
2 log(1 + Γ′SH̄)−

√
Γ′SKΓS

2
)

]2
 , (40)

where

(ΓS)i =

{
Pi
N0
, i ∈ S

0, otherwise.
(41)

Proof: See Appendix B.

The system parameter σ2
H in Lemma 5 is proportional to channel variations, and we expect it to vanish for very

small channel variations. The following lemma ensures that the distance between the optimal solutions of the utility

maximization problem over two regions is small, provided that the regions are close to each other.

Lemma 6: Let the utility function, u : RM → R, satisfy Assumptions 1 and 3. Also, let R∗1 and R∗2 be the

optimal solution of maximizing the utility over Ca(P ) and Cg(P ,H), respectively. If

dH
(
Cg(P ,H), Ca(P )

)
≤ δ,

then we have

‖R∗1 −R∗2‖ ≤ δ
1

2

[
δ

1

2 +
(B(δ)

A(δ)

) 1

2

]
. (42)

Proof: See Appendix C.

The following theorem combines the results of the above two lemmas to obtain a bound on the long-term

performance difference of the greedy and the long-term optimal policy.

Theorem 5: Let u : RM → R+ satisfy Assumptions 1 and 3. Also, let R∗(·) and R̄(·) be the long-term and

short-term optimal rate allocation policies as in Definitions 7 and 8, respectively. Then for every δ ∈ [σ2
H ,∞),

u(R∗)− u
(
EH
[
R̄(H)

])
≤
σ2
H

δ2
u(R∗) +

(
1−

σ2
H

δ2

)
B(δ)

[
δ

1

2 +
(B(δ)

A(δ)

) 1

2
]
δ

1

2 , (43)
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where R∗ = EH [R∗(H)], and A(δ) and B(δ) are positive scalars defined in Assumption 3.

Proof: Pick any δ ∈ [σ2
H ,∞). Define the event, V as

V =

{
H : dH

(
Cg(P ,H), Ca(P )

)
≤ δ
}
.

By Lemma 5, the probability of this event is at least 1− σ2
H

δ2 . Using Jensen’s inequality as in (36) we can bound

the left-hand side of (43) as follows

u(R∗)− u
(
EH [R̄(H)]

)
≤ u(R∗)− EH

[
u(R̄(H))

]
(a)

≤ u(R∗)− (1−
σ2
H

δ2
)EH

[
u(R̄(H))

∣∣∣V]
−Pr(Vc)EH

[
u(R̄(H))

∣∣∣Vc]
(b)

≤
σ2
H

δ2
u(R∗) + (1−

σ2
H

δ2
)

(
u(R∗)− EH

[
u(R̄(H))|V

])
≤

σ2
H

δ2
u(R∗) + (1−

σ2
H

δ2
)

∣∣∣∣EH[u(R∗)− u(R̄(H))
∣∣V]∣∣∣∣

≤
σ2
H

δ2
u(R∗) + (1−

σ2
H

δ2
)EH

[
|u(R∗)− u(R̄(H))|

∣∣∣V], (44)

where (a) follows from the fact that Pr(V) ≥ 1− σ2
H

δ2 , and (b) holds by non-negativity of u(R).

On the other hand, by definition of Dδ in (34) for any H ∈ V , write

Dδ = inf
H∈V

sup
R∈Cg(P ,H)

‖R‖1 ≤ sup
R∈Cg(P ,H)

‖R‖1 = ‖R̄(H)‖1,

where the equality follows from Lemma 4(a) and the fact that the constraint
∑M

i=1Ri ≤ C(
∑M

i=1HiPi) is active

for any point on the dominant face. The above relation allows us to use Assumption 3(a) which gives

|u(R∗)− u(R̄(H))| ≤ B(δ)‖R̄(H)−R∗‖, for all H ∈ V.

Now by Assumption 3 we can employ Lemma 6 to conclude the following from the above relation:

|u(R∗)− u(R̄(H))| ≤ B(δ)
(
δ

1

2 +
(B(δ)

A(δ)

) 1

2
)
δ

1

2 , for all H ∈ V,

which implies

EH
[∣∣u(R∗)− u(R̄(H))

∣∣∣∣∣V] ≤ B(δ)
(
δ

1

2 +
(B(δ)

A(δ)

) 1

2
)
δ

1

2 . (45)

The desired result follows immediately from substituting (45) in (44).

Theorem 5 provides a bound parameterized by δ. For very small channel variations, σH becomes small. Therefore,

the parameter δ can be picked small enough such that the bound in (43) tends to zero. Figure 3 illustrates the behavior

of right hand side of Eq. (43) as a function of δ for different values of σH . For each value of σH , the upper bound

is minimized for a specific choice of δ, which is illustrated by a dot in Figure 3. As demonstrated in the figure,

for smaller channel variations, a smaller gap is achieved and the parameter δ that minimizes the bound decreases.

The next theorem provides another bound demonstrating the impact of the structure of the utility function on the

performance of the greedy policy.
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Fig. 3. Parametric upper bound on performance difference between greedy and long-term optimal policies as in right hand side of (43) for

different channel variations, σH , as a function of δ

Theorem 6: Let Assumption 1 hold for the twice differentiable function u : RM → R+. Also, let R∗(·) and

R̄(·) be the long-term and short-term optimal rate allocation policies, defined in Definitions 7 and 8, respectively.

Then for every ε ∈ (0, 1],

u(R∗)− u
(
EH
[
R̄(H)

])
≤ εu(R∗) +

1

2
(1− ε)r(ε)2Ω, (46)

where R∗ = EH [R∗(H)], and Ω satisfies the following

λmax

(
−∇2u(ξ)

)
≤ Ω, for all ξ, ‖ξ −R∗‖ ≤ r(ε), (47)

in which ∇2 denotes the Hessian of u, λmax(Z) is the largest eigenvalue of matrix Z, and r(ε) is given by

r(ε) =
√
M
σH√
ε

+

 M∑
i=1

EH

[
1

2
log

(
(1 +HiPi)(1 +

∑
j 6=iHjPj)

1 +
∑M

j=1HjPj

)]2
 1

2

. (48)

Proof: Similarly to the proof of Theorem 5, for any ε ∈ (0, 1] define the event V as

V =

{
H : dH(Cg(P ,H), Ca(P )) ≤ σH√

ε

}
. (49)

By Lemma 5, this event has probability at least 1− ε. Lemma 4 asserts that the long-term optimal policy almost

surely allocates rate vectors on the dominant face of Cg(P ,H). Therefore, for almost all H ∈ V , the long-term

optimal policy satisfies the following

EH
[

1

2
log
(

1 +
HiPi

1 +
∑

j 6=iHjPj

)]
− σH√

ε
≤ R∗i (H) ≤ EH

[
1

2
log
(

1 +HiPi

)]
+
σH√
ε
. (50)

Thus, for almost all H ∈ V , we have

|R∗i (H)−R∗i | ≤
σH√
ε

+ EH

[
1

2
log

(
(1 +HiPi)(1 +

∑
j 6=iHjPj)

1 +
∑M

j=1HjPj

)]
.

Therefore,

‖R∗(H)−R∗‖ ≤
√
M
σH√
ε

+

 M∑
i=1

EH

[
1

2
log

(
(1 +HiPi)(1 +

∑
j 6=iHjPj)

1 +
∑M

j=1HjPj

)]2
 1

2

= r(ε), for almost all H ∈ V. (51)
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Now let us write the Taylor expansion of u(·) at R∗ in the direction of R,

u(R) = u(R∗) +∇u(R∗)′(R−R∗)− 1

2
(R−R∗)′(−∇2u(ξ))(R−R∗)

≥ u(R∗) +∇u(R∗)′(R−R∗)− 1

2
‖R−R∗‖2λmax(−∇2u(ξ))

for some ξ, ‖ξ −R∗‖ ≤ ‖R−R∗‖. (52)

In the above relation, let R = R∗(H) for all H ∈ V . The utility function is concave, so its Hessian is negative

definite and we can combine (51) with the above relation to write

u(R∗(H)) ≥ u(R∗) +∇u(R∗)′(R∗(H)−R∗)− 1

2
r(ε)2Ω, for almost all H ∈ V. (53)

Taking the expectation conditioned on V , and using the fact that R∗(H) ∈ F
(
Cg(P ,H)

)
we have the following

EH
[
u(R∗(H))

∣∣V] ≥ u(R∗)− 1

2
r(ε)2Ω. (54)

Hence, we conclude

u(R∗)− u(EH(R̄(H))) ≤ u(R∗)− EH [u(R∗(H))]

≤ u(R∗)− (1− ε)EH
[
u(R∗(H))

∣∣∣V]
−Pr(Vc)EH

[
u(R∗(H))

∣∣∣Vc]
≤ u(R∗)− (1− ε)

(
u(R∗)− 1

2
r(ε)2Ω

)
= εu(R∗) +

1

2
(1− ε)r(ε)2Ω.

where the first inequality is verified by (36), and the third inequality follows from non-negativity of the utility

function and the inequality in (54).

Similarly to Theorem 5, Theorem 6 provides a bound parameterized by ε. As the utility function tends to have

a more linear structure, Ω tends to zero. For instance, Ω is proportional to α for a weighted sum α-fair utility

function. Hence, we can choose ε small such that the right hand side of (46) goes to zero. The behavior of this

upper bound for different values of Ω is similar to the one plotted in Figure 3.

In summary, the performance difference between the greedy (short-term optimal) and the long-term optimal

policy is bounded from above by the minimum of the bounds provided by Theorem 5 and Theorem 6. Since the

greedy policy is short-term optimal and can perform closely to the long term optimal policy, we focus on developing

efficient algorithms to compute the greedy policy.

The greedy policy (cf. Definition 8) requires solving a nonlinear program in each time slot. For each channel

state, finding even a near-optimal solution of the problem in (33) requires a large number of iterations, making

the online evaluation of the greedy policy impractical. In the following section, we introduce an alternative rate

allocation policy, which implements a single gradient projection iteration of the form (13) per time slot.

A. Approximate Rate Allocation Policy

In this part, we assume that the channel state information is available at each time slot n, and the computational

resources are limited such that a single iteration of the gradient projection method in (13) can be implemented in

each time slot. In order to simplify the notation in this part and avoid unnecessary technical details, we consider a

stronger version of Assumption 3(b).
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Assumption 4: Let R† = argmaxR∈Cg(P ,H)u(R). Then there exists a positive scalar A such that

|u(R†)− u(R)| ≥ A‖R† −R‖2, for all R ∈ Cg(P ,H).

Definition 9: [Approximate Policy] Given some fixed integer k ≥ 1, we define the approximate rate allocation

policy, R̃, as follows:

R̃
(
H(n)

)
,

{
R̄
(
H(0)

)
, n = 0

R̃
τ
t(n), n ≥ 1,

(55)

where

τ = argmax
0≤j<k−1

u(R̃
j
t(n)), t(n) =

⌊
n− 1

k

⌋
, (56)

and R̃
j
t(n) ∈ RM is given by the following gradient projection iterations:

R̃
0
t(n) = P̃t(n)

[
R̃
(
H
(
kt(n)

))]
,

R̃
j+1
t(n) = P̃t(n)

[
R̃
j
t(n) + αj g̃jt(n)

]
, j = 1, . . . , k − 1, (57)

where g̃jt(n) is a subgradient of u(·) at R̃
j
t(n), α

j denotes the stepsize and P̃t(n) is the approximate projection on

Cg
(
P ,H(kt(n))

)
.

For k = 1, (57) reduces to taking only one gradient projection iteration at each time slot. For k > 1, the proposed

rate allocation policy essentially allows the channel state to change for a block of k consecutive time slots, and

then takes k iterations of the gradient projection method with the approximate projection. We will show below that

this method tracks the greedy policy closely. Hence, this yields an efficient method that on average requires only

one iteration step per time slot. Note that to compute the policy at time slot n, we are using the channel state

information at time slots kt, k(t− 1), . . .. Hence, in practice the channel measurements need to be done only every

k time slots.

There is a tradeoff in choosing system parameter k, because taking only one gradient projection step may not

be sufficient to get close enough to the greedy policy’s operating point. Moreover, for large k the new operating

point of the greedy policy can be far from the previous one, and k iterations may be insufficient.

Before stating the main result, let us introduce some useful lemmas. In the following lemma, we translate the

model in Definition 1 for temporal variations in channel state into changes in the corresponding capacity regions.

Lemma 7: Let
{

[Hi(n)]i=1,...,M

}
be the fading process that satisfies condition in (2). We have

dH

(
Cg
(
P ,H(n+ 1)

)
, Cg

(
P ,H(n)

))
≤Wn, (58)

where {Wn} are non-negative independent identically distributed random variables bounded from above by ŵ =
1
2

∑M
i=1 v̂

iPi, where v̂i is a uniform upper bound on the sequence of random variables {V i
n} and Pi is the i-th

user’s transmission power.
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Proof: By Definition 6 we have

dH

(
Cg
(
P ,H(n+ 1)

)
, Cg

(
P ,H(n)

))
= max

S⊆M

1

2

∣∣∣∣ log
(

1 +

∑
i∈S(Hi(n+ 1)−Hi(n))Pi

1 +
∑

i∈S Hi(n)Pi

)∣∣∣∣
≤ max

S⊆M

∑
i∈S |Hi(n+ 1)−Hi(n)|Pi
2(1 +

∑
i∈S Hi(n)Pi)

≤ 1

2

M∑
i=1

|Hi(n+ 1)−Hi(n)|Pi =
1

2

M∑
i=1

V i
nPi. (59)

Therefore, (58) is true for Wn = 1
2

∑M
i=1 V

i
nPi. Since the random variables V i

n are i.i.d. and bounded above by v̂in,

the random variables Wn are i.i.d. and bounded from above by 1
2

∑M
i=1 v̂

iPi.

The following useful lemma by Nedić and Bertsekas [33] addresses the convergence rate of the gradient projection

method with constant stepsize.

Lemma 8: Let rate allocation policies R̄ and R̃ be given by Definition 8 and Definition 9, respectively. Also, let

Assumptions 1, 2 and 4 hold and the stepsize αn be fixed to some positive constant α. Then for a positive scalar

ε we have

u
(
R̃
(
H(n)

))
≥ u

(
R̄
(
H(kt)

))
− αB2 + ε

2
, (60)

if k satisfies

k ≥
⌊‖R̃0

t − R̄
(
H(kt)

)
‖2

αε

⌋
, (61)

where t = t(n) =
⌊
n−1
k

⌋
.

Proof: See Proposition 2.3 of [33].

We next state our main result, which shows that the approximate rate allocation policy given by Definition 9

tracks the greedy policy within a neighborhood which is quantified as a function of the maximum speed of fading,

the parameters of the utility function, and the transmission powers.

Theorem 7: Let Assumptions 1, 2 and 4 hold and the rate allocation policies R̄ and R̃ be given by Definition 8

and Definition 9, respectively. Choose the system parameters k and α for the approximate policy in Definition 9 as

k =

⌊
(

2B

Aw′
)

2

3

⌋
, α =

(
16

B2A

) 1

3

w′
2

3 ,

where w′ = ŵ
1

2

(
ŵ

1

2 + (BA )
1

2

)
, ŵ is the upper bound on Wn as defined in Lemma 7, A and B are constants given

in Assumptions 4 and 2. Then, we have

‖R̃
(
H(n)

)
− R̄

(
H(n)

)
‖ ≤ 2θ = 2

(2B

A

) 2

3

w′
1

3 . (62)

Proof: First, we show that

‖R̃
(
H(n)

)
− R̄

(
H(kt)

)
‖ ≤ θ =

(2B

A

) 2

3

w′
1

3 , (63)

where t = bn−1
k c. The proof is by induction on t. For t = 0, note that R̃

(
H(n)

)
is the result of applying k steps

of gradient projection starting from the optimal solution R̄
(
H(0)

)
. Hence,

R̃
(
H(n)

)
= R̄

(
H(0)

)
, 0 ≤ n ≤ k.
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Thus the claim is trivially true for t = 0. Now suppose that (63) is true for some positive t. Hence, it also holds

for n = k(t+ 1) by induction hypothesis, i.e.,

‖R̃0
t+1 − R̄

(
H(kt)

)
‖ ≤ θ. (64)

On the other hand, Lemma 7 implies that for every n,

dH

(
Cg
(
P ,H(n+ 1)

)
, Cg

(
P ,H(n)

))
≤ ŵ.

Thus, by Lemma 6 and the triangle inequality we have

‖R̄
(
H(k(t+ 1))

)
− R̄

(
H(kt)

)
‖ ≤ kw′ ≤ θ. (65)

Therefore, by another triangle inequality we conclude from (64) and (65) that the initial point R̃
0
t+1 for the round

t+ 1 of the iterations is close to the optimal solution R̄
(
H(k(t+ 1))

)
, in particular

‖R̃0
t+1 − R̄

(
H(k(t+ 1))

)
‖ ≤ 2θ. (66)

Now, we show that for the given value of the stepsize α, the number of gradient projection steps k satisfies (61)

for ε = αB2.

By (66) and plugging the corresponding values of α and θ, we get

⌊‖R̃0
t+1 − R̄

(
H(k(t+ 1))

)
‖2

αε

⌋
≤
⌊

4θ2

α2B2

⌋
=

⌊ 4
(

2B
A

) 4

3

w′
2

3(
16
B2A

) 2

3w′
4

3B2

⌋
=

⌊
(

2B

Aw′
)

2

3

⌋
= k.

Thus, we can apply Lemma 8 to show∣∣∣∣u(R̃(H(n)
))
− u
(
R̄
(
H(k(t+ 1))

))∣∣∣∣ ≤ αB2. (67)

By Assumption 4 we can write

‖R̃
(
H(n)

)
− R̄

(
H(k(t+ 1))

)
‖ ≤

(αB2

A

) 1

2

= θ. (68)

Therefore, the proof of (63) is complete by induction.

Similarly to the derivation of (65), by applying Lemma 6 and Lemma 7 we get

‖R̄
(
H(n)

)
− R̄

(
H(kt)

)
‖ ≤ kw′ ≤ θ, (69)

and the desired result directly follows from (63) and (69) using the triangle inequality one last time.

Theorem 7 provides a bound on the size of the tracking neighborhood as a function of the maximum speed

of fading, denoted by ŵ, which may be too conservative. It is of interest to provide a rate allocation policy and

a bound on the size of its tracking neighborhood as a function of the average speed of fading. The next section

addresses this issue.
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B. Improved Approximate Rate Allocation Policy

In this section, we design an efficient rate allocation policy that tracks the greedy policy within a neighborhood

characterized by the average speed of fading which is typically much smaller than the maximum speed of fading.

We consider policies which can implement one gradient projection iteration per time slot.

Unlike the approximate policy given by (55) which uses the channel state information once in every k time

slots, we present an algorithm which uses the channel state information in all time slots. Roughly speaking, this

method takes a fixed number of gradient projection iterations only after the change in the channel state has reached

a certain threshold.

Definition 10: [Improved Approximate Policy] Let {Wn} be the sequence of non-negative random variables as

defined in Lemma 7, and γ be a positive constant. Define the sequence {Ti} as

T0 = 0,

Ti+1 = min

{
t |

t−1∑
n=Ti

Wn ≥ γ
}
. (70)

Define the improved approximate rate allocation policy, R̂, with parameters γ and k, as follows:

R̂
(
H(n)

)
,

{
R̄
(
H(0)

)
, n = 0

R̂
τ
t(n), n ≥ 1,

(71)

where

t(n) = max{i | Ti < n}, (72)

τ = argmax
0≤j<k−1

u
(
R̂
j
t(n)

)
, (73)

and R̂
j
t(n) ∈ RM is given by the following gradient projection iterations

R̂
0
t(n) = P̃t(n)

[
R̂
(
H(Tt(n))

)]
,

R̂
j+1
t(n) = P̃t(n)

[
R̂
j
t(n) + αj ĝjt(n)

]
, j = 1, . . . , k − 1, (74)

where ĝjt(n) is a subgradient of u(·) at R̂
j
t(n), α

j denotes the stepsize and P̃t(n) is the approximate projection on

Cg(P ,H(Tt(n))).

Figure 4 depicts a particular realization of the random walk generated by Wn, and the operation of the improved

approximate policy.

Theorem 8: Let t(n) be as defined in (72), and let w̄ = E[Wn]. If k = γ
w̄ , then we have

lim
n→∞

n

t(n)k
= 1, with probability 1. (75)

Proof: The sequence {Ti} is obtained as the random walk generated by the Wn crosses the threshold level γ.

Since the random variables Wn are positive, we can think of the threshold crossing as a renewal process, denoted

by N(·), with inter-arrivals Wn.

We can rewrite the limit as follows

lim
n→∞

n−N
(
t(n)γ

)
+N

(
t(n)γ

)
t(n)k

= lim
n→∞

n−N
(
t(n)γ

)
t(n)k

+ w̄
N
(
t(n)γ

)
t(n)γ

. (76)

Since the random walk will hit the threshold with probability 1, the first term goes to zero with probability 1.

Also, by Strong law for renewal processes the second terms goes to 1 with probability 1 (see [34], p.60).
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Fig. 4. The improved approximate policy takes k gradient projection iterations at time Tt(n), which is the time that the random walk

generated by the random variables Wn reach the threshold γ.

Theorem 8 essentially guarantees that the number of gradient projection iterations is the same as the number of

channel measurements in the long run with probability 1.

Theorem 9: Let Assumptions 1, 2 and 4 hold and the rate allocation policies R̄ and R̂ be given by Definition 8

and Definition 10, respectively. Also, let k = b γw̄c, and fix the stepsize to α = Aγ2

B2 in (74), where γ = c(BA )
3

4 w̄
1

4 ,

and c ≥ 1 is a constant satisfying the following equation(B
A

)(c2 − 1)8

28c4
= ŵ. (77)

Then

‖R̂
(
H(n)

)
− R̄

(
H(n)

)
‖ ≤ 2γ +

(γB
A

) 1

2

. (78)

Proof: We follow the line of proof of Theorem 7. First, by induction on t we show that

‖R̂
(
H(n)

)
− R̄

(
H(Tt)

)
‖ ≤ γ, (79)

where t is defined in (72). The base is trivial. Similar to (64), by induction hypothesis we have

‖R̂0
t+1 − R̄

(
H(Tt)

)
‖ ≤ γ. (80)

By definition of Ti in (70) we can write

dH

(
Cg

(
P ,H(Tt+1)

)
, Cg

(
P ,H(Tt)

))
≤ γ. (81)

Thus, by Lemma 6, we have

‖R̄
(
H(Tt+1)

)
− R̄

(
H(Tt)

)
‖ ≤ γ

1

2

(
γ

1

2 +
(B
A

) 1

2

)
. (82)

Therefore, by combining (80) and (82) by triangle inequality we obtain

‖R̂0
t+1 − R̄

(
H(Tt+1)

)
‖ ≤ 2γ +

(γB
A

) 1

2

. (83)

Using the fact that w̄ ≤ ŵ =
(
B
A

) (c2−1)8

28c4 , we can provide a simpler bound for the right hand side of (83) as

follows:

γ4 = c4
(B
A

)3
w̄ ≤ c4

(B
A

)3 · (B
A

)(c2 − 1)8

28c4
=

[(B
A

) 1

2
(c2 − 1)

2

]8

,

(84)
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that implies

γ ≤ (c2 − 1)

2

(γB
A

) 1

2

=
c2

2

(γB
A

) 1

2 − 1

2

(γB
A

) 1

2

,

which gives the following bound on the right hand side of (83) after rearranging the terms

2γ +
(γB
A

) 1

2 ≤ c2
(γB
A

) 1

2

.

Now by plugging the values of α and γ in terms of system parameters in (61), we can verify that

k =
⌊ γ
w̄

⌋
=

⌊
c4 γB

A

A γ2

B2Aγ2

⌋
≥
⌊‖R̂0

t+1 − R̄
(
H(Tt+1)

)
‖2

αε

⌋
. (85)

Hence, we can apply Lemma 8 for ε = Aγ2, and conclude∣∣∣∣u(R̂(H(n)
))
− u
(
R̄
(
H(Tt+1)

))∣∣∣∣ ≤ αB2. (86)

By exploiting Assumption 4 we have

‖R̂
(
H(n)

)
− R̄

(
H(Tt+1)

)
‖ ≤

(αB2

A

) 1

2

= γ. (87)

Therefore, the proof of (79) is complete by induction. Similarly to (82) we have

‖R̄
(
H(n)

)
− R̄

(
H(Tt)

)
‖ ≤ γ

1

2

(
γ

1

2 + (
B

A
)

1

2

)
, (88)

and (78) follows immediately from (79) and (88) by invoking triangle inequality.

Theorem 8 and Theorem 9 guarantee that the presented rate allocation policy tracks the greedy policy within a

small neighborhood while only one gradient projection iteration is computed per time slot, with probability 1. The

neighborhood is characterized in terms of the average behavior of temporal channel variations and vanishes as the

fading speed decreases.

In the following, we generalize the results of Section IV to the case of joint rate and power allocation in fading

channels.

V. DYNAMIC RATE AND POWER ALLOCATION IN FADING CHANNEL

In this section, we assume that the channel statistics are known. Our goal is to find feasible rate and power

allocation policies denoted by R∗ and π∗, respectively, such that R∗(H) ∈ Cg
(
π∗(H),H

)
, and π∗ ∈ G. Moreover,

EH [R∗(H)] = R∗ ∈ argmax u(R), subject to R ∈ C(P̄ ), (89)

where u(·) is a given utility function and is assumed to be differentiable and satisfy Assumption 1.

For the case of a linear utility function, i.e., u(R) = µ′R for some µ ∈ RM+ , Tse and Hanly [5] have shown

that the optimal rate and power allocation policies are given by the optimal solution to a linear program, i.e.,

(R∗(h),π∗(h)) = arg max
r,p

(
µ′r − λ′p

)
, subject to r ∈ Cg(p,h), (90)

where h is the channel state realization, and λ ∈ RM+ is a Lagrange multiplier satisfying the average power

constraint, i.e., λ is the unique solution of the following equations∫ ∞
0

1

h

∫ ∞
2λi(N0+z)

µi

∏
k 6=i

Fk

(
2λkh(N0 + z)

2λi(N0 + z) + (µk − µi)h

)
fi(h)dhdz = P̄i, (91)
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where Fk and fk are, respectively, the cumulative distribution function (CDF) and the probability density function

(PDF) of the stationary distribution of the channel state process for transmitter k.

Exploiting the polymatroid structure of the capacity region, problem (90) can be solved by a simple greedy

algorithm (see Lemma 3.2 of [5]). It is also shown in [5] that, for positive µ, the optimal solution, R∗, to the

problem in (89) is uniquely obtained. Given the distribution of channel state process, denoted by Fk and fk, we

have

R∗i (µ) =

∫ ∞
0

1

2(N0 + z)

∫ ∞
2λi(N0+z)

µi

∏
k 6=i

Fk

(
2λkh(N0 + z)

2λi(N0 + z) + (µk − µi)h

)
fi(h)dhdz. (92)

The uniqueness of R∗ follows from the fact that the stationary distribution of the channel state process has a

continuous density [5]. It is worth mentioning that (92) parametrically describes the boundary of the capacity region

which is precisely defined in Definition 2. Thus, there is a one-to-one correspondence between the boundary of

C(P̄ ) and the positive vectors µ with unit norm.

Now consider a general concave utility function satisfying Assumption 1. It is straightforward to show that R∗,

the optimal solution to (89), is unique. Moreover, by Assumption 1(b) it lies on the boundary of the throughput

region. Now suppose that R∗ is given by some genie. We can choose µ∗ = ∇u(R∗) and ũ(R) = (µ∗)′R, as

a replacement for the nonlinear utility. By checking the optimality conditions, it can be seen that R∗ is also the

optimal solution of the problem in (89), i.e.,

R∗ = argmax (µ∗)′R subject to R ∈ C(P̄ ). (93)

Thus, we can employ the rate and power allocation policies in (90) for the linear utility function ũ(·), and

achieve the optimal average rate for the nonlinear utility function u(·). Therefore, the problem of optimal resource

allocation reduces to computing the vector R∗. Note that the throughput capacity region is not characterized by

a finite set of constraints, so standard optimization methods such as gradient projection or interior-point methods

are not applicable in this case. However, the closed-form solution to maximization of a linear function on the

throughput region is given by (92). This naturally leads us to the conditional gradient method [28] to compute R∗.

The k-th iteration of the method is given by

Rk+1 = Rk + αk(R̄
k −Rk), (94)

where αk is the stepsize and R̄k is obtained as

R̄
k ∈ argmax

R∈C(P̄ )

(
∇u(Rk)′(R−Rk)

)
, (95)

where ∇u(Rk) denotes the gradient vector of u(·) at Rk. Since the utility function is monotonically increasing

by Assumption 1(b), the gradient vector is always positive and, hence, the unique optimal solution to the above

sub-problem is obtained by (92), in which µ is replaced by ∇u(Rk). By concavity of the utility function and

convexity of the capacity region, the iteration (94) will converge to the optimal solution of (89) for appropriate

stepsize selection rules such as the Armijo rule or limited maximization rule (cf. [28] pp. 220-222).

Note that our goal is to determine rate and power allocation policies. Finding R∗ allows us to determine such

policies by the greedy policy in (90) for µ∗ = ∇u(R∗). It is worth mentioning that all the computations for

obtaining R∗ are performed once in the setup of the communication session. Here, the convergence rate of the

conditional gradient method is generally not of critical importance.
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Fig. 5. Structure of the i-th transmitter and the receiver for the queue-length-based policy [8].

Fig. 6. Structure of the i-th transmitter and the receiver for the presented policies.

VI. SIMULATION RESULTS AND DISCUSSION

In this section, we provide simulation results to complement our analytical results and make a comparison with

other fair resource allocation approaches. We focus on the case with no power control or knowledge of channel

statistics. We also assume that the channel state processes are generated by independent identical finite state Markov

chains. We consider a weighted α-fair function as the utility function, i.e.,

u(R) =
∑
i

wifα(Ri), (96)

where fα(·) is given by equation (35).

We study two different communication scenarios to compare the performance of the greedy policy with the

queue-based rate allocation policy by Eryilmaz and Srikant [8]. This policy, parameterized by some parameter K,

uses queue length information to allocate the rates arbitrarily close to the long-term optimal policy by choosing

K large enough. The parameter K is used to achieve a tradeoff between rate of convergence and sub-optimality

of the achieved rates. Figures 5 and 6 illustrate the structure of the transmitters for queue-length based policy and

greedy policy, respectively. As shown in Figure 5, xi(n) denotes the queue-length of the i-th user. At time slot n,

the scheduler chooses the service rate vector µ(n) based on a max-weight policy, i.e.,

µ(n) = argmax
M∑
i=1

xi(n)Ri

subject to R ∈ Cg(P ,H(n)) (97)

The congestion controller proposed in [8] leads to a fair allocation of the rates for a given α-fair utility function.

In particular, the data generation rate for the i-th transmitter, denoted by ai(n) is a random variable satisfying the
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Fig. 7. Performance comparison of greedy and queue-based policies for a communication session with limited duration, for σH = 0.13.

Fig. 8. Average allocated rates by greedy and queue-length based policies approaching the optimal solution R∗ of maximizing the utility

function over the average capacity region. Part (b) is a magnification of the box in part (a) to demonstrate behavior of the policies in

the neighborhood of the optimal solution. The queue-based policy approaches R∗ from the interior of the region, while the greedy policy

approaches R∗ from the exterior.

following conditions:

E
[
ai(n) |xi(n)

]
= min

{
K
( wi
xi(n)

) 1

α

, D

}
, (98)

E
[
a2
i (n) |xi(n)

]
≤ U <∞, for all xi(n), (99)

where α, D and U are positive constants.

In the first scenario, we compare the average achieved rate by the two policies for a communication session with

limited duration. In this case, the utility function is given by (96) with α = 2 and w1 = 1.5w2 = 1.5, and the

corresponding optimal solution is R∗ = (0.60, 0.49). Figure 7(a) depicts the distance between empirical average

rate achieved by the greedy or the queue-length based policy, and R∗, the maximizer of the utility function over

the throughput region. Figure 7(b) demonstrates the performance difference in terms of the value of the utility of

average allocated rates. As shown in Figure 7, the greedy policy outperforms the queue-length based policy for

a communication session with limited duration. The average rate tuples allocated by the greedy and queue-length

based policies are illustrated over the throughput region in Figure 8. We see that the points allocated by the queue-

length based policy approach the optimal solution R∗ from the interior of the throughput region, while the greedy

policy always allocates rate tuples in a vicinity of the optimal solution. Hence, it achieves better performance within

limited number of time slots.
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Fig. 9. Performance comparison of greedy and queue-based policies for file upload scenario with respect to file size f = f1 = f2. Rg and

Rq are expected upload rate of the greedy and the queue-length based policy, respectively.

It is worth noting that there is a tradeoff in choosing the parameter K of the queue-length based policy. In order

to guarantee achieving close to optimal rates by queue-based policy, the parameter K should be chosen large which

results in large expected queue length and lower convergence rate. On the other hand, if K takes a small value to

improve the convergence rate, the achieved rate of the queue based policy converges to a larger neighborhood of

the R∗. We have tuned the parameter K so that the best performance of the queue-length based policy is achieved

within the time frame of the communication session.

Second, we consider a file upload scenario where each user is transmitting a file with fixed finite size to the

base station. It is assumed that a file of size fi is already stored at transmitter i at time 0. Let Ti be the i-th

user’s completion time of the file upload session for a file of size fi. Define the average upload rate for the i-th

user as fi
Ti . We can measure the performance of each policy for this scenario by evaluating the utility function at

the average upload rate. Figure 9 demonstrates the ratio of the utilities of the average upload rates for the greedy

and the queue-based policy plotted for different file sizes. We observe that for small file sizes, the greedy policy

achieves a higher utility value compared to the queue-based policy, and this difference decreases by increasing the

file size. We can interpret this behavior as follows. For the queue-length based policy, the transmission queue is

initially empty, and almost all of each file is first buffered into the queues with equal rate D (See Eq. (98)). Then

each queue is emptied by a max-weight scheduler according to (97). Once the files are all buffered in the queues,

the queues are emptied with the same rate which is not fair because it does not give any priority to the users based

on their utility. In other word, the parameter α that is supposed to capture different fairness notions does not play

any role in this mechanism. For larger file size, the duration for which the entire file is emptied into the queue

is negligible compared to the total transmission time. Hence, there is enough time for queues to build up so that

the rest of the files are buffered into the queues based on parameters of the utility functions. As a consequence, a

higher utility for the average upload rate is achieved. In contrast, the greedy policy always selects the transmission

rates by maximizing the utility function instantaneously, which results in close to optimal average achieved rates

even for small file sizes (See Figure 8).
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VII. CONCLUSION

We addressed the problem of optimal resource allocation in a fading multiple access channel from an information

theoretic point of view. We formulated the problem as a utility maximization problem for a general class of utility

functions.

We considered several different scenarios for a multiple-access channel. First, we considered the problem of

optimal rate allocation in a non-fading channel. We presented the notion of approximate projection for the gradient

projection method to solve the rate allocation problem in polynomial time in the number of users.

For the case of a fading channel where power control and channel statistics are not available, we propose a

greedy rate allocation policy that is short-term optimal but not long-term optimal for nonlinear utility functions.

Nevertheless, we showed that its long-term performance in terms of the utility is not arbitrarily worse compared to

the long-term optimal policy, by bounding their performance difference. The provided bound tends to zero as the

channel variations become small or the utility function behaves more linearly.

The greedy policy may itself be computationally expensive. A computationally efficient algorithm can be em-

ployed to allocate rates close to the ones allocated by the greedy policy. Two different rate allocation policies are

presented which only take one iteration of the gradient projection method with approximate projection at each time

slot. It is shown that these policies track the greedy policy within a neighborhood which is characterized by average

speed of fading as well as fading speed in the worst case.

We also studied rate and power allocation in a fading channel with known channel statistics. In this case, the

optimal rate and power allocation policies are obtained by greedily maximizing a properly defined linear utility

function.

Finally, using computer simulations, we compared the performance of the greedy policy and a queue-length

based policy [8] for a limited period of time. While not relying on any queue-length information, the greedy policy

outperformed the queue-length based policy during the communication session. This suggests that channel state

based approaches can be more efficient while causing less overhead.

APPENDIX A

ALGORITHM FOR FINDING A VIOLATED CONSTRAINT

In this section, we present an alternative algorithm based on the rate-splitting idea to identify a violated con-

straint for an infeasible point. For a feasible point, the algorithm provides information for decoding by successive

cancellation. We first introduce some definitions.

Definition 11: The quadruple (M,P ,R, N0) is called a configuration for an M -user multiple-access channel,

where R = (R1, . . . , RM ) is the rate tuple, P = (P1, . . . , PM ) represents the received power and N0 is the noise

variance. For any given configuration, the elevation, δ ∈ RM , is defined as the unique vector satisfying

Ri = C(Pi, N0 + δi), i = 1, . . . ,M. (100)

Intuitively, we can think of message i as rectangles of height Pi, raised above the noise level by δi. In fact, δi is

the amount of additional Gaussian interference that message i can tolerate. Note that if the rate vector corresponding

to a configuration is feasible its elevation vector is non-negative. However, the contrary is not true in general.

Definition 12: The configuration (M,P ,R, N0) is single-user codable, if after possible re-indexing,

δi+1 ≥ δi + Pi, i = 0, 1, . . . ,M − 1, (101)
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where we have defined δ0 = P0 = 0 for convention.

By the graphical representation described earlier, a configuration is single-user codable if none of the messages are

overlapping. Figure 10(a) gives an example of graphical representing for a message with power Pi and elevation

δi. Figures 10(b) and 10(c) illustrate overlapping and non-overlapping configurations, respectively.

Definition 13: The quadruple (m,p, r, N0) is a spin-off of (M,P ,R, N0) if there exists a surjective mapping

φ : {1, . . . ,m} → {1, . . . ,M} such that for all i ∈ {1, . . . ,M} we have

Pi ≥
∑

j∈φ−1(i)

pj ,

Ri ≤
∑

j∈φ−1(i)

rj .

where φ−1(i) is the set of all j ∈ {1, . . . ,m} that map into i by means of φ.

Definition 14: A hyper-user with power P̄ , rate R̄, is obtained by merging d actual users with powers (Pi1 , . . . , Pid)

and rates (Ri1 , . . . , Rid), i.e,

P̄ =

d∑
k=1

Pik , R̄ =

d∑
k=1

Rik . (102)

Theorem 10: For any M -user achievable configuration (M,P ,R, N0), there exists a spin-off (m,p, r, N0) which

is single user codable.

Proof: See Theorem 1 of [12].

Here, we give a brief sketch of the proof to give intuition about the algorithm. The proof is by induction on M . For a

given configuration, if none of the messages are overlapping then the spin-off is trivially equal to the configuration.

Otherwise, merge two of the overlapping users into a hyper-user of rate and power equal the sum rate and sum

power of the overlapping users, respectively. Now the problem is reduced to rate splitting for (M − 1) users. This

proof suggests a recursive algorithm for rate-splitting that gives the actual spin-off for a given configuration.

It follows directly from the proof of Theorem 10 that this recursive algorithm gives a single-user codable spin-off

for an achievable configuration. If the configuration is not achievable, then the algorithm encounters a hyper-user

with negative elevation. At this point the algorithm terminates. Suppose that this hyper-user has rate R̄ and power

P̄ . Negative elevation is equivalent to the following

R̄ > C(P̄ , N0).

Hence, by Definition 14 we have, ∑
i∈S

Ri > C(
∑
i∈S

Pi, N0).

where S = {i1, . . . , id} ⊆ M. Therefore, a hyper-user with negative elevation leads us to a violated constraint in

the initial configuration.

Theorem 11: The presented algorithm runs in O(M2 logM) time, where M is the number of users.

Proof: The computational complexity of the algorithm can be computed as follows. The algorithm terminates

after at most M recursions. At each recursion, all the elevations corresponding to a configuration with at most M

hyper-users are computed in O(M) time. It takes O(M logM) time to sort the elevation in an increasing order.

Once the users are sorted by their elevation, a hyper-user with negative elevation could be found in O(1) time,
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Fig. 10. Graphical representation of messages over multi-access channel [12].

or two if such a hyper-user does not exists it takes O(M) time to find two overlapping hyper-users. In the case

that there are no overlapping users and all the elevations are non-negative the input configuration is achievable,

and the algorithm terminates with no violated constraint. Hence, computational complexity of each recursion is

O(M) +O(M logM) +O(M) = O(M logM). Therefore, the algorithm runs in O(M2 logM) time.

APPENDIX B

PROOF OF LEMMA 5

First, consider the following lemmas. Lemma 9 bounds Jensen’s difference of a random variable for a concave

function. The upper bound is characterized in terms of the variance of the random variable.

Lemma 9: Let f : R→ R+ be concave and twice differentiable. Let X be a random variable with variance σ2
X .

Then,

f(E[X])− E[f(X)] ≤
√

2Mσ2
Xf(E[X])−

σ2
XM

2
, (103)

where M be an upper-bound on |f ′′(x)|.
Proof: Pick any 0 < ε ≤ 1. By Chebyshev’s inequality we have

Pr (|X − E(X)| > c) ≤ ε, (104)

where c = σX√
ε
. Therefore, we have

E[f(X)] = E
[
f(X)

∣∣∣|X − E(X)| ≤ c
]

Pr
(
|X − E(X)| ≤ c

)
+ E

[
f(X)

∣∣∣|X − E(X)| > c
]

Pr
(
|X − E(X)| > c

)
≥ (1− ε)E

[
f(X)

∣∣∣|X − E(X)| ≤ c
]

≥ 1− ε
2

(
f
(
E[X] + c

)
+ f

(
E[X]− c

))
= (1− ε)f(E[X]) +

1− ε
4

c2(f ′′(ξ1) + f ′′(ξ2)), (105)

where the first inequality follows from non-negativity of f , and the second inequality follows from concavity of f .

The scalars ξ1 ∈
[
E[X],E[X] + c

]
and ξ2 ∈

[
E[X]− c,E[X]

]
are given by Taylor’s theorem.

Given the above relation, for any ε > 0 we have

f(E[X])− E[f(X)] ≤ 1− ε
2ε

σ2
XM + εf(E[X]). (106)
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The right-hand side is minimized for

ε∗ = min

{(
σ2
XM

2f(E[X])

) 1

2

, 1

}
. (107)

By substituting ε∗ in (106), the desired result follows immediately.

We next provide an upper bound on variance of Y = log(1 +X) proportional to the variance of X .

Lemma 10: Let X > 0 be a random variable with mean X̄ and variance σ2
X . Also, let Y = log(1 + X). Then

variance of Y is upper-bounded as

σ2
Y ≤ σ2

X

(
1 +

[
(1 + X̄)(

√
2 log(1 + X̄)− σX

2
)

]2
)
. (108)

Proof: Let E(Y ) = log(1 + X̂) for some X̂ < X̄ . By invoking the mean value theorem, we have

σ2
Y = E

[(
log(1 +X)− log(1 + X̂)

)2
]

= E
[( 1

1 + X̃
(X − X̂)

)2
]

≤ E
[(
X − X̂

)2]
, (109)

where X̃ is a non-negative random variable.

On the other hand, by employing lemma 9 with f(x) = log(1 + x), we can write

E
[

log(1 +X)
]
≥ log(1 + X̄)−

√
2σ2

X log(1 + X̄) +
σ2
X

2
. (110)

Hence,

X̄ ≥ X̂ = exp {E[log(1 +X)]} − 1

≥ exp

{
log(1 + X̄)−

√
2σ2

X log(1 + X̄) +
σ2
X

2

}
− 1

≥ X̄ − σX(1 + X̄)(
√

2 log(1 + X̄)− σX
2

), (111)

where the first inequality is by (110), and the second relation can be verified after some straightforward manipulation.

By combining (109) and (111) the variance of Y can be bounded as follows

σ2
Y ≤ E[(X − X̂)2]

≤ E

[(
X − X̄ + σX(1 + X̄)(

√
2 log(1 + X̄)− σX

2
)

)2
]

= σ2
X

(
1 +

[
(1 + X̄)(

√
2 log(1 + X̄)− σX

2
)

]2
)
. (112)

Now we provide the proof for Lemma 5. Let the random variable YS be defined as follows:

YS =
1

2
log(1 +

∑
i∈S

HiPi
N0

), for all S ⊆M = {1, . . . ,M}. (113)
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The facet defining constraints of Cg(P ,H) and Ca(P ) are of the form of
∑

i∈S Ri ≤ YS and
∑

i∈S Ri ≤ E[YS ],

respectively. Therefore, by Definition 6, we have dH (Cg(P ,H), Ca(P )) ≤ δ if and only if |YS − E[YS ]| ≤ δ, for

all S ⊆M. Thus, we can write

Pr
{
dH (Cg(P ,H), Ca(P )) > δ

}
= Pr

{
max
S

∣∣YS − E[YS ]
∣∣ > δ

}
≤

∑
S⊆M

Pr
{∣∣YS − E[YS ]

∣∣ > δ
}

≤ 1

δ2

∑
S⊆M

σ2
YS . (114)

where the first inequality is obtained by union bound, and the second relation is by applying Chebyshev’s inequality.

On the other hand, σ2
YS

can be bounded from above by employing Lemma 10, i.e.,

σ2
YS ≤

σ2
ZS

4

(
1 +

[
(1 + Z̄S)(

√
2 log(1 + Z̄S)− σZS

2
)

]2
)
, (115)

where

Z̄S = E
[∑
i∈S

HiPi
N0

]
=
∑
i∈S

ΓiH̄i = Γ′SH̄,

σ2
ZS = var

(∑
i∈S

HiPi
N0

)
=

∑
(i,j)∈S2

ΓiΓjcov(Hi, Hj) = Γ′SKΓS .

The desired result is concluded by substituting Z̄S and σ2
ZS

in (115) and combing the result with (114). �

APPENDIX C

PROOF OF LEMMA 6

Let us first state and prove a useful lemma which asserts that Euclidean expansion of a capacity region by δ

contains its expansion by relaxing its constraints by δ.

Lemma 11: Let C1 be a capacity region with polymatroid structure, i.e.,

C1 =

{
R ∈ RM+ :

∑
i∈S

Ri ≤ f(S), for all S ⊆M
}
, (116)

where f(S) is a nondecreasing submodular function. Also, let C2 be an expansion of C1 by δ as defined in

Definition 5. Then, for all R ∈ C2, there exists some R′ ∈ C1 such that ‖R−R′‖ ≤ δ.

Proof: By Definition 4, it is straightforward to show that C2 is also a polymatroid, i.e.,

C2 =

{
R ∈ RM+ :

∑
i∈S

Ri ≤ g(S) = f(S) + δ, for all S ⊆M
}
, (117)

where g(S) is a submodular function. By convexity of C2, we just need to prove the claim for the vertices of C2.

Let R ∈ RM be a vertex of C2. The polymatroid structure of C2 implies that R is generated by an ordered subset

of M (see Theorem 2.1 of [35]). Hence, there is some k ∈M such that Rk = f({k}) + δ. Consider the following

construction for R′:

R′i =

{
Ri − δ, i = k

Ri, otherwise.
(118)
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By construction, R′ is in a δ-neighborhood of R. So we just need to show that R′ is feasible in C1. First, let

us consider the sets S that contain k. We have∑
i∈S

R′i =
∑
i∈S

Ri − δ ≤ f(S). (119)

Second, consider the case that k /∈ S.∑
i∈S

R′i =
∑

i∈S∪{k}

R′i −Rk + δ

≤ f(S ∪ {k}) + δ −Rk

≤ f(S) + f({k}) + δ −Rk

= f(S),

where the first inequality comes from (119), and the second inequality is true by submodularity of the function

f(·). This completes the proof.

of Lemma 6: Without loss of generality assume that u(R∗2) ≥ u(R∗1). By Lemma 11, there exists some

R ∈ Ca(P ) such that ‖R∗2 − R‖ ≤ δ. Moreover, we can always choose R to be on the boundary so that

‖R‖ ≥ Dδ, where Dδ is defined in (34). Therefore, by Assumption 3(a) and the fact that u(R∗2) ≥ u(R∗1) ≥ u(R),

we have

u(R∗2)− u(R) = |u(R∗2)− u(R)| ≤ B‖R∗2 −R‖ ≤ Bδ. (120)

Now suppose that ‖R∗1 −R‖ > (BAδ)
1

2 . By Assumption 3(b) we can write

u(R∗1)− u(R) = |u(R∗1)− u(R)| ≥ A‖R∗1 −R‖2 > Bδ. (121)

By subtracting (120) from (121) we obtain u(R∗2) < u(R∗1) which is a contradiction. Therefore, ‖R∗1−R‖ ≤ (BAδ)
1

2 ,

and the desired result follows immediately by invoking the triangle inequality.
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