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Abstract

We consider applying network coding in settings where
there is a cost associated with network use. We show
that, while minimum-cost multicast problems without
network coding are very difficult except in the special
cases of unicast and broadcast, finding minimum-cost
subgraphs for single multicast connections with net-
work coding can be posed as a linear optimization prob-
lem. In particular, we apply our approach to the prob-
lem of minimum-energy multicast in wireless networks
with omnidirectional antennas and show that it can be
handled by a linear optimization problem when net-
work coding is used. For the case of multiple multicast
connections, we give a partial solution: We specify a
linear optimization problem that yields a solution of no
greater cost than any solution without network coding
and that we suspect can potentially be substantially
better.

1. Introduction

The selection of routes is an issue of utmost impor-
tance in data networks that has so far received scant at-
tention in the literature on network coding. Indeed, the
standard framework in which network coding is cast,
that of network information flow problems [2], assumes
that we have a network with limited-capacity links and
considers whether or not a given set of connections can
be simultaneously established, but gives no consider-
ation to the resources that are consumed as a result
of communicating on the links. In addition, such a
framework implicitly assumes a certain homogeneity in
network traffic — the goal is to ensure that connec-
tions are established as long as the network has the
capacity to accommodate them, regardless of the type
or purpose of the connections — which is frequently
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not the case. The most notable example is today’s in-
ternet, which not only carries different types of traffic,
but is also used by a vastly heterogeneous group of end
users with differing valuations of network service and
performance. It has been variously proposed that such
heterogeneous networks be priced [20], with some mod-
els allowing for selfish routing decisions based on the
price of the links [13, 1].

In the present paper, we consider applying network
coding in settings where there is a cost associated with
network use, our natural objective being to select sub-
graphs for coding that minimize the cost incurred.

We commence by considering single multicast con-
nections (which include single unicast and broadcast
connections as special cases) in the following section. In
Section 3, we study a particular instance of minimum-
cost single multicast connections that has attracted
much recent interest, that of minimum-energy multi-
cast in wireless networks. In Section 4, we treat the
case of multiple multicast connections.

2. Single multicast connections

Whenever the members of a multicast group have
a selfish cost objective, or when the network sets link
weights to meet its objective or enforce certain policies
and each multicast group is subject to a minimum-
weight objective, we wish to set up single multicast
connections at minimum cost. Network coding for sin-
gle multicast connections is relatively simple as we have
a simple characterization of feasibility in networks with
limited-capacity links [2, Theorem 1] and, moreover, it
is known that it suffices to consider linear operations
over a sufficiently large finite field on a sufficiently long
vector created from the source process [15, Theorem
3.3], [14, Theorem 4].

We model the network with a directed graph G =
(N,A). For each link (i, j) ∈ A, we associate non-
negative numbers aij and cij , which are the cost per
unit flow and the capacity of the link, respectively.



Suppose we have a source node s producing data
at a positive, real rate R that it wishes to transmit
to a non-empty set of terminal nodes T . Consider the
following linear optimization problem:

minimize
∑

(i,j)∈A

aijzij

subject to zij ≥ x
(t)
ij , ∀ (i, j) ∈ A, t ∈ T ,∑

{j|(i,j)∈A}
x

(t)
ij −

∑
{j|(j,i)∈A}

x
(t)
ji = σ

(t)
i ,

∀ i ∈ N , t ∈ T ,

cij ≥ x
(t)
ij ≥ 0, ∀ (i, j) ∈ A, t ∈ T ,

(1)

where

σ
(t)
i =



R if i = s,

−R if i = t,

0 otherwise.
(2)

Theorem 1. The vector z is part of a feasible solu-
tion for the linear optimization problem (1) if and only
if there exists a network code that sets up a multicast
connection in the graph G at rate arbitrarily close to R
from source s to terminals in the set T and that puts a
flow arbitrarily close to zij on each link (i, j).

Proof. First suppose that z is part of a feasible solution
for the problem. Then, for any t in T , we see that the
maximum flow from s to t in the network where each
link (i, j) has capacity zij is at least R. So, by Theorem
1 of [2], a network coding solution with flow arbitrarily
close to zij on each link (i, j) exists. Conversely, sup-
pose that we have a network coding solution with flow
arbitrarily close to zij on each link (i, j). Then the ca-
pacity of each link must be at least zij and, moreover,
flows of size R exist from s to t for each t in T (again
by Theorem 1 of [2]). Therefore the vector z is part of
a feasible solution for the optimization problem.

It follows straightforwardly from Theorem 1 that
the linear optimization problem (1) finds the optimal
cost for a rate R multicast connection from s to T in
graph G that can be asymptotically achieved with a
network code.

To establish minimum-cost multicast with network
coding, therefore, it suffices to solve problem (1) and
then compute a code that achieves the optimal cost
within an arbitrary factor, which can be done system-
atically in time polynomial in |N |, |A|, and the block-
length of the code [12] or, alternatively, in a random,
decentralized fashion [10, 11, 6]. On the other hand,
the standard approach for establishing minimum-cost
multicast without network coding requires solving the
Steiner tree problem on directed graphs, which is

known to be NP-complete (and which, moreover, only
really applies when the links are of unlimited capac-
ity). Although tractable approximation algorithms ex-
ist for the Steiner tree problem on directed graphs (for
example [23, 5]), the multicast routing solutions thus
obtained are suboptimal relative to the minimum-cost
multicast without network coding, which in turn is sub-
optimal relative to when network coding is used. Hence
network coding promises to provide significant cost im-
provements for practical multicast routing.

Another advantage offered by network coding is
that problem (1) can be easily modified to accommo-
date convex cost functions, yielding a monotropic pro-
gramming problem, or, if the cost functions are also
piecewise-linear, reformulated into another linear opti-
mization problem. When network coding is not used,
it is not at all clear how any non-linear cost functions
could be handled and, indeed, solving the Steiner tree
problem on directed graphs no longer suffices to find
the optimal solution.

Note that, in the special case of unicast, problem (1)
reduces to a minimum-cost flow problem, whose solu-
tion leads to a fractional routing of flow over a number
of paths, which is referred to as bifurcated routing. We
see, then, that network coding essentially facilitates the
same natural extension to general multicast for bifur-
cated routing as that for single-path routing. Hence
it would appear that, in a cost-efficient network that
uses bifurcated routing and that services both unicast
and multicast connections, network coding is a sine qua
non.

We have thus far assumed that the cost is a function
(in fact, a separable function) of the vector z, which
reflects the flow on every link. There are, however, sce-
narios where this is not the case. One such scenario is
where we are routing selfishly to minimize latency. In
this case, we are generally interested in minimizing the
latency of each member of the multicast group — we
have what Bharath-Kumar and Jaffe [4] term a desti-
nation cost criterion and, just as the solution for single-
path routing is to compute the shortest path from the
source to each terminal and route over the resulting
tree, the solution for bifurcated routing is to compute
the minimum-cost flow from the source to each termi-
nal and code over the resulting “union” of flows. It
is not hard to see that, whilst optimizing for destina-
tion cost criteria is very easy, it can potentially be very
wasteful of network resources. Another scenario is that
of energy-limited wireless networks, which we consider
in the next section.

3. Minimum-energy multicast in wireless net-
works



In wireless networks, computing the energy cost is
complicated by of the omnidirectionality of the anten-
nas; so when transmitting from node i to node j, we
get transmission to all nodes whose distance from i is
less than that from i to j “for free” — a phenomenon
referred to as the “wireless multicast advantage” in
[22]. Under this phenomenon, even the problem of
minimum-energy broadcast in wireless networks with-
out network coding is NP-complete [3].

In our formulation of minimum-cost routing with
network coding, modifying the cost function to reflect
the wireless multicast advantage poses no serious com-
plication, as we now proceed to show.

Let i be a node in N . We impose an ordering � on
the set of outgoing links from i, such that (i, j) � (i, k)
if and only if aij ≤ aik. Typically, the set of outgoing
links from i will be the set of all nodes within a certain,
fixed radius of i and the cost aij of the link between
nodes i and j will be proportional to their distance
raised to some power α, where α ≥ 2.

Recall that a network coding solution with flow ar-
bitrarily close to zij on each link (i, j) exists if and only
if we can accommodate flows x(t) for all terminals t in
T in the network where each link (i, j) has capacity zij .
Consider a particular link (i, j). Owing to the omnidi-
rectionality of the antennas, flow can be pushed from i
to j by pushing it to any node k such that (i, k) ∈ A
and (i, k) 
 (i, j), and it follows that the maximum
flow x

(t)
ij that can be pushed for a given t in T is

zij +
∑

{k|(i,k)∈A,(i,k)�(i,j)}\{j}
(zik − x

(t)
ik ). (3)

Hence we have ∑
{k|(i,k)∈A,(i,k)�(i,j)}

(zik − x
(t)
ik ) ≥ 0 (4)

for all t ∈ T .
Thus, the relevant linear optimization problem that

needs to be solved is the following.

minimize
∑

(i,j)∈A

aijzij

subject to
∑

{k|(i,k)∈A,(i,k)�(i,j)}
(zik − x

(t)
ik ) ≥ 0,

∀ (i, j) ∈ A′, t ∈ T ,∑
{j|(i,j)∈A}

x
(t)
ij −

∑
{j|(j,i)∈A}

x
(t)
ji = σ

(t)
i ,

∀ i ∈ N , t ∈ T ,

x
(t)
ij ≥ 0, ∀ (i, j) ∈ A, t ∈ T ,

(5)

where A′ is a subset of A with the property that the
constraint (4) is unique for all (i, j) ∈ A′ (for example,

if (i, j1) and (i, j2) are unique members of A such that
aij1 = aij2 , then only one of the two is in A′).

Note that we have not included any capacity con-
straints in problem (5). This is the correct formulation
if energy is the most significant constraint and we are
interested in optimizing only for energy usage, without
regard to rate or spectral efficiency. If, however, band-
width is a significant constraint and overall throughput
a concern, then it is necessary to add the constraint
z ∈ Z. Unlike the wireline scenario, the constraint set
Z will in general not be separable (i.e. the constraints
on separate links will in general be coupled) because of
the effect of interference.

4. Multiple multicast connections

We turn our attention to multiple multicast connec-
tions in this section. So rather than one source process
at a single node, we suppose instead that there are M
source processes X1, . . . , XM with rates R1, . . . , RM ,
respectively, which are generated at (possibly differ-
ent) nodes s1, . . . , sM in N . Each terminal t ∈ T
demands a subset of the source process that are gen-
erated in the network, which we specify with the set
D(t) ⊂ {1, . . . ,M}. While the nodes s1, . . . , sM can
be different, they do not need to be, and an important
example where they are not is when a data source has
been compressed by a multiresolution or successive re-
finement source code (see, for example, [9]) and is to
be transmitted to users of the network with varying
demands of quality.

Given a network with limited-capacity links, the
problem of determining whether or not a set of mul-
ticast connections is feasible with network coding is
considerably more difficult than the equivalent problem
when there is only a single multicast connection. All
that we currently have are rather cumbersome bounds
on the feasible region [21]. In addition, it is known
that it is not sufficient to consider linear operations
over a sufficiently large finite field on sufficiently long
vectors created from the source process — non-linear
functions may be necessary in general [7]. Thus it ap-
pears that we have little hope of finding minimum-cost
solutions. We are not, however, precluded from find-
ing non-trivial cost improvements that network coding
can provide. We therefore propose a linear optimiza-
tion problem whose minimum cost is no greater than
the minimum cost of any solution without network cod-
ing and show, with a constructive proof, that feasible
solutions correspond to network codes that perform lin-
ear operations on vectors created from the source pro-
cesses.

We first introduce some additional notation. For



any node i, let T (i) denote the terminals that are ac-
cessible from i, i.e.

T (i) = {t ∈ T | ∃ a forward path to t from i or t = i},
(6)

and let C(i) denote the set of atoms of the algebra gen-
erated by {D(t)}t∈T (i) (for the reader unfamiliar with
set algebras and atoms, see, for example, [8, Section
4.1]), i.e.

C(i) =



⋂
t∈T (i)

C(t)

∣∣∣∣∣∣ C(t) = D(t)

or C(t) = {1, . . . ,M} \D(t)} \ {∅}. (7)

In essence, what C(i) gives is a set partition of
{1, . . . ,M} that represents the sources that can be
mixed (combined linearly) on links going into i. For
a given C ∈ C(i), the terminals that receive a source
process in C by way of link (j, i) either receive all the
source processes in C or none at all. Hence source pro-
cesses in C can be mixed on link (j, i) as the terminals
that receive the mixture will also receive the source
processes (or mixtures thereof) necessary for decoding.

Consider the following linear optimization problem:

minimize
∑

(i,j)∈A

aijzij

subject to cij ≥ zij =
∑

C∈C(j)

y
(C)
ij , ∀ (i, j) ∈ A,

y
(C)
ij ≥

∑
m∈C

x
(t,m)
ij , ∀ (i, j) ∈ A, t ∈ T , C ∈ C(j),

∑
{j|(i,j)∈A}

x
(t,m)
ij −

∑
{j|(j,i)∈A}

x
(t,m)
ji = σ

(t,m)
i ,

∀ i ∈ N , t ∈ T , m = 1, . . . ,M,

x
(t,m)
ij ≥ 0, ∀ (i, j) ∈ A, t ∈ T , m = 1, . . . ,M,

(8)

where

σ
(t,m)
i =



Rm if v = sm and m ∈ D(t),
−Rm if m ∈ D(i),
0 otherwise,

(9)

and we define D(i) := ∅ for i in N \ T . Again, the
optimization problem can be easily modified to accom-
modate convex cost functions.

Theorem 2. If the vector z is part of a feasible solu-
tion for the linear optimization problem (8), then there
exists a network code that sets up multicast connections
for m = 1, . . . ,M at rate arbitrarily close to Rm from

source sm to terminals in the set {t ∈ T |m ∈ D(t)}
and that puts a flow arbitrarily close to zij on each link
(i, j).

Proof. Let z be part of a feasible solution. We first
consider the case where R1 = . . . = RM = 1 and the
underlying multicommodity flows {x(t,m)} are forward
path flows of size one. In this case, the codes we use
are linear with symbols from a finite field F.

We introduce M nodes i1, . . . , iM that are con-
nected to nodes s1, . . . , sM , respectively. Each link
(im, sm) carries one unit of flow of commodity m for
each of the terminals in the set {t ∈ T |m ∈ D(t)}.
We associate with each link (i, j) a set of global coding
vectors B(i, j) ⊂ F

M . The set B(i, j) represents the
symbols that are transmitted on link (i, j) as a linear
function of the original source processes; thus we have
B(im, sm) = {[0m−1, 1, 0M−m]} for m = 1, . . .M and
the global coding vectors that are put out by a node on
its outgoing links must be linear combinations of the
ones it receives on its incoming links. Moreover, it is
not difficult to see that the terminal t can recover its
demands D(t) if and only if

span


 ⋃

{i|(i,t)∈A}
B(i, t)




⊃ span


 ⋃

m∈D(t)

B(im, sm)


 . (10)

Our proof now follows a development similar to the
proof of the main result in [12]. We step through
the nodes in topological order, examining the outgo-
ing links and defining global coding vectors on them.
On each link (i, j), we write B(i, j) =

⋃
C∈C(j) BC(i, j),

where the BC(i, j) are disjoint, and, if the flow variable
x

(t,m)
ij = 1, then it is associated with global coding vec-
tors in the set BC(i, j) for the unique C ∈ C(j) such
that m ∈ C.

Every time we define a new global coding vector,
we maintain the following invariants:

1. For every terminal t ∈ T , the set of most re-
cently defined global coding vectors associated
with each flow path {x(t,m)}m∈D(t) forms a set
of |D(t)| global coding vectors Bt with the prop-
erty that span(Bt) = span(

⋃
m∈D(t) B(im, sm)).

2. The set of global coding vectors BC(i, j) has the
property that BC(i, j) ⊂ span(

⋃
m∈C B(im, sm)).

The invariants are initially established by the sets of
global coding vectors B(i1, s1), . . . , B(iM , sM ). Now,
consider node i and link (i, j) and suppose that the



invariants have been thus far satisfied. Let C ∈
C(j), and define x

(t,C)
ij :=

∑
m∈C x

(t,m)
ij and t∗ :=

argmaxt∈T x
(t,C)
ij . For all terminals in the set S := {t ∈

T |x(t,C)
ij > 0}, there are global coding vectors associ-

ated with incoming flows of commodities m ∈ C that
must be replaced by global coding vectors in the set
BC(i, j). First, note that as long as |F| ≥ |T |, we can
find x

(t∗,C)
ij valid global coding vectors for BC(i, j) such

that dim(span(Bt)) = |D(t)| for all t ∈ S [12]. Sec-
ondly, we have T (i) ⊃ T (j); and, given m ∈ C, if C ′ is
the unique element of C(i) such that m ∈ C ′, then it is
not hard to see that C ′ ⊂ C. Hence all the global cod-
ing vectors associated with incoming flows of commodi-
ties m ∈ C are elements of span(

⋃
m∈C B(im, sm)),

so it follows that BC(i, j), whose elements are lin-
ear combinations of these global coding vectors, is
a subset of span(

⋃
m∈C B(im, sm)). But, for t ∈

S, span(
⋃

m∈C B(im, sm)) ⊂ span(
⋃

m∈D(t) B(im, sm))
since C ⊂ D(t). Therefore, span(Bt) ⊂
span(

⋃
m∈D(t) B(im, sm)) and, because of the dimen-

sionality of span(Bt), it follows that span(Bt) =
span(

⋃
m∈D(t) B(im, sm)).

We define sets of global coding vectors for all C ∈
C(j) as we did above and we see that

|B(i, j)| =
∑

C∈C(j)

|BC(i, j)|

=
∑

C∈C(j)

max
t∈T

{ ∑
m∈C

x
(t,m)
ij

}
.

(11)

It is evident that, upon stepping through the entire
graph, condition (10) is satisfied and, since z forms
part of the feasible solution, we have zij ≥ |B(i, j)|, so
a flow arbitrarily close to zij can be placed on each link
(i, j).

In the general case, we code over time n ≥ 1. We
convert the rate-Rm source process Xm into �nRm�
unit rate source processes Xm,1, . . . , Xm,
nRm�. Now,
for a given t ∈ T and m ∈ {1, . . . ,M}, consider the
graph G with link capacities �nx(t,m)

ij �. Since the min-
imum cut between sm and t in this graph must be
at least �nRm�, there exists an integer flow χ(t,m)

of size �nRm� from sm to t that satisfies χ(t,m) ≤
�nx(t,m)�. Using a conformal decomposition, the flow
χ(t,m) can be decomposed into �nRm� forward path
flows of size one for each of the source processes
Xm,1, . . . , Xm,
nRm�. We have now reduced the general
case to the special case where all the source processes
are all of unit rate and the underlying multicommod-
ity flows are forward path flows of size one. Therefore,
using linear coding with symbols from a finite field, we
have sets of global coding vectors on each link (i, j)

with size satisfying

|B(i, j)| ≤
∑

C∈C(j)

max
t∈T

{∑
k∈C

�nx(t,m)
ij �

}
. (12)

The rate achieved by such coding is �nRm�/n,
which differs from Rm by no more than 1/n, and the
flow placed on each link (i, j) can be made as low as
|B(i, j)|/n, which exceeds zij by no more than M/n.
We obtain the desired result by taking n arbitrarily
large.

Note that because our formulation implicitly as-
sumes that coding delay can be made arbitrarily large,
we have avoided the pathologies that arise when the
coding delay is fixed, for example, those illustrated by
examples in [19, 17, 18]. Indeed, the resolutions to the
examples given in the former two papers that use linear
coding over longer blocks fall nicely into our formula-
tion and can be obtained as solutions of problem (8).

5. Conclusion

This paper has considered the problem of finding
minimum-cost subgraphs for network coding. An im-
portant point to note is that this problem is essentially
decoupled from the coding problem; that is, we can
first determine the amount of flow that must be placed
on each edge, then determine the content of the flows.
Setting up network connections without network cod-
ing can be thought of as consisting of the same pair of
problems, except that the coding problem is trivial —
it is obvious what the content of the flows should be.

One of our main results is that, while minimum-
cost multicast problems without network coding are
very difficult except in the special cases of unicast and
broadcast, finding minimum-cost subgraphs for sin-
gle multicast connections with network coding can be
posed as a linear optimization problem. For the case
of multiple multicast connections, we are only able to
give a partial solution: We specify a linear optimiza-
tion problem that yields a solution of no greater cost
than any solution without network coding and that we
suspect can potientially be substantially better.

In a separate paper [16], we show that the opti-
mization problem for finding minimum-cost subgraphs
for single multicast connections in fact admits a decen-
tralized solution for any convex cost function, which,
when coupled with decentralized schemes for construct-
ing network codes [10, 11, 6], forms a fully decentral-
ized approach for achieving minimum-cost multicast.
We have not yet developed a distributed algorithm for
solving the optimization problem for multiple multicast
connections, though it is a clear avenue for future work.
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